Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (142)

Search Parameters:
Keywords = pollen exposures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 998 KiB  
Article
Colony Nutrition Enhances Bee Resilience to Fungicides, While the Benefit of Propolis Supplementation Depends on Stress Conditions
by Yara Martins Molina Ferraz, Aline Yukari Kato, Tainá Angelica de Lima Freitas, Cássia Regina de Avelar Gomes, Thais Regina Ramos Alves, Matheus Franco Trivellato, Samir Moura Kadri, Ricardo de Oliveira Orsi, David De Jong, Jaqueline Dalbello Biller and Daniel Nicodemo
Agriculture 2025, 15(15), 1665; https://doi.org/10.3390/agriculture15151665 - 1 Aug 2025
Viewed by 198
Abstract
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. [...] Read more.
Enhanced colony nutrition can support brood development, resulting in better physiological conditions and increased resilience in adult honey bees, particularly under stress. This study investigated the effects of colony nutrition and adult dietary supplementation with green propolis on bee health under fungicide exposure. Colonies were managed under food restriction or nutritional supplementation for 22 weeks. Newly emerged bees from each colony were then caged and fed protein diets consisting of honey-pollen patties contaminated or not with fungicide, and sucrose sugar syrup with or without aqueous green propolis extract. Bees from supplemented colonies showed greater body weight, higher hemolymph protein levels, and higher consumption of protein food after seven days in cages. Fungicide exposure reduced hemolymph protein levels, altered the expression of detoxification and immune-related genes, and significantly decreased bee survival. Interestingly, propolis supplementation alone changed gene expression patterns and slightly reduced longevity compared to bees not exposed to propolis or fungicide. However, under fungicide stress, bees that ingested propolis survived longer, indicating a protective effect. While colony nutritional supplementation clearly promotes honey bee resilience against fungicide exposure, feeding propolis also showed promising effects, though further studies are needed to determine an optimal dietary concentration. Full article
(This article belongs to the Special Issue Honey Bees and Wild Pollinators in Agricultural Ecosystems)
Show Figures

Graphical abstract

24 pages, 1117 KiB  
Article
Comparative Analysis of Pesticide Residues in Hive Products from Rapeseed (Brassica napus subsp. napus) and Sunflower (Helianthus annuus) Crops Under Varying Agricultural Practices in Romania During the 2020–2021 Beekeeping Seasons
by Dan Bodescu, Viorel Fătu, Agripina Şapcaliu, Elena Luiza Bădic, Roxana Zaharia, Dana Tăpăloagă, Alexandru-Dragoș Robu and Radu-Adrian Moraru
Agriculture 2025, 15(15), 1648; https://doi.org/10.3390/agriculture15151648 - 31 Jul 2025
Viewed by 202
Abstract
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and [...] Read more.
Over the past years, increasing attention has been drawn to the adverse effects of agricultural pesticide use on pollinators, with honeybees being especially vulnerable. The aim of this study was to evaluate the levels of residues detectable and/or quantifiable of neonicotinoid pesticides and other pesticides in biological materials (bees, bee brood, etc.) and beehive products (honey, pollen, etc.) applied as seed dressings in rapeseed and sunflower plants in two growing seasons (2020–2021) in fields located in three agro-climatic regions in Romania. The study involved the comparative sampling of hive products (honey, pollen, adult bees, and brood) from experimental and control apiaries, followed by pesticide residue analysis in an accredited laboratory (Primoris) using validated chromatographic techniques (LC-MS/MS and GC-MS). Toxicological analyses of 96 samples, including bees, bee brood, honey, and pollen, confirmed the presence of residues in 46 samples, including 10 bee samples, 10 bee brood samples, 18 honey samples, and 8 pollen bread samples. The mean pesticide residue concentrations detected in hive products were 0.032 mg/kg in honey, 0.061 mg/kg in pollen, 0.167 mg/kg in bees, and 0.371 mg/kg in bee brood. The results highlight the exposure of honeybee colonies to multiple sources of pesticide residue contamination, under conditions where legal recommendations for the controlled application of agricultural treatments are not followed. The study provides relevant evidence for strengthening the risk assessment framework and underscores the need for adopting stricter monitoring and regulatory measures to ensure the protection of honeybee colony health. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

19 pages, 2753 KiB  
Article
Exploring Molecular Responses to Aeroallergens in Respiratory Allergy Across Six Locations in Peru
by Oscar Manuel Calderón-Llosa, César Alberto Galván, María José Martínez, Ruperto González-Pérez, Eva Abel-Fernández and Fernando Pineda
Allergies 2025, 5(3), 23; https://doi.org/10.3390/allergies5030023 - 3 Jul 2025
Viewed by 374
Abstract
Allergic diseases, particularly respiratory allergies like asthma and allergic rhinitis, are a growing public health concern influenced by environmental factors such as climate change and air pollution. The exposome framework enables a comprehensive assessment of how lifelong environmental exposures shape immune responses and [...] Read more.
Allergic diseases, particularly respiratory allergies like asthma and allergic rhinitis, are a growing public health concern influenced by environmental factors such as climate change and air pollution. The exposome framework enables a comprehensive assessment of how lifelong environmental exposures shape immune responses and allergic sensitization. Peru’s diverse ecosystems and climates provide a unique setting to investigate regional variations in allergic sensitization. This study characterized these patterns in five Peruvian regions with distinct climatic, urbanization, and socioeconomic characteristics. A total of 268 individuals from Lima, Piura, Tarapoto, Arequipa, and Tacna were analysed for allergen-specific IgE responses using a multiplex IgE detection system. The results revealed significant geographical differences in sensitization frequencies and serodominance profiles, based on descriptive statistics and supported by Chi-square comparative analysis. House dust mites were predominant in humid regions, while Arequipa exhibited higher sensitization to cat allergens. In Tacna, olive pollen showed notable prevalence alongside house dust mites. Tarapoto’s high humidity correlated with increased fungal and cockroach allergen sensitization. Notably, some allergens traditionally considered minor, such as Der p 5 and Der p 21, reached sensitization prevalences close to or exceeding 50% in certain regions. These findings provide the most detailed molecular characterization of allergic sensitization in Peru to date, highlighting the importance of region-specific allergy management strategies. Understanding environmental influences on allergic diseases can support more effective diagnostic, therapeutic, and preventive approaches tailored to diverse geographical contexts. Full article
(This article belongs to the Section Allergen/Pollen)
Show Figures

Figure 1

11 pages, 773 KiB  
Review
Inhaled Allergy Diagnostics and Treatment in a Polluted Environment
by Marcel Mazur and Ewa Czarnobilska
Int. J. Mol. Sci. 2025, 26(13), 5966; https://doi.org/10.3390/ijms26135966 - 21 Jun 2025
Viewed by 476
Abstract
Allergic diseases have been increasing in prevalence over the last years. In a polluted environment, this problem can worsen and become more complex. Long-term exposure to air pollution can lead to the aggravation of allergic rhinitis (AR) and even to the development of [...] Read more.
Allergic diseases have been increasing in prevalence over the last years. In a polluted environment, this problem can worsen and become more complex. Long-term exposure to air pollution can lead to the aggravation of allergic rhinitis (AR) and even to the development of seasonal asthma. Climate changes can accelerate and extend the pollination season. Research indicates that air pollution may modify the properties of pollen, making it more aggressive. Asymptomatic allergic people disclose their allergies in a polluted environment. A polluted environment complicates the diagnosis of seasonal allergies. The treatment might be more challenging as standard allergy medications may not be enough to control symptoms. The causal treatment of allergic rhinitis is specific allergen immunotherapy (AIT), which may prove less effective in people living in a polluted environment. The problem may lie in the proper evaluation for AIT as well as the assessment of its effectiveness. To date, the best way to confirm an allergy and qualify a patient for AIT seems to be molecular diagnostics. The question arises whether patients exposed to air pollution, which could potentially reduce the effectiveness of AIT, are still eligible for AIT. It is also debatable whether molecular diagnostics remain effective in such cases. Advancing precision medicine alongside environmental management represents a critical pathway toward reducing the growing global burden of allergic diseases. Full article
(This article belongs to the Special Issue Molecular Therapeutic Strategies in Allergic Diseases)
Show Figures

Figure 1

17 pages, 2154 KiB  
Article
Apricot Bee Pollen Alleviates Deoxynivalenol-Induced Cellular Toxicity in Bovine Granulosa Cells
by Ce Lv, Xiaoxue Zheng, Hanxiao Wu, Peihao Sun, Qun Lu, Fang Fang, Mingxiao Liu, Shuo Zhou, Rui Liu, Xiang Li, Liguo Yang and Aixin Liang
Animals 2025, 15(11), 1580; https://doi.org/10.3390/ani15111580 - 28 May 2025
Viewed by 411
Abstract
Apricot bee pollen is an important natural product that exhibits antioxidant, anti-inflammatory, and antimicrobial properties. Deoxynivalenol (DON), one of the most prevalent mycotoxins produced by Fusarium fungi, poses risks to both human and animal reproductive systems. We observed that exposure to DON inhibited [...] Read more.
Apricot bee pollen is an important natural product that exhibits antioxidant, anti-inflammatory, and antimicrobial properties. Deoxynivalenol (DON), one of the most prevalent mycotoxins produced by Fusarium fungi, poses risks to both human and animal reproductive systems. We observed that exposure to DON inhibited cell proliferation and induced apoptosis in bovine granulosa cells (bGCs), accompanied by a significant downregulation of PCNA expression and an upregulation of BAX expression. RNA sequencing analysis revealed that differentially expressed genes (DEGs) were primarily enriched in the oxidation-reduction process, oxidoreductase activity, and steroid biosynthesis. We further confirmed that DON exposure inhibited the production of estrogen and progesterone by decreasing the protein expression levels of CYP19A1 and StAR. Additionally, DON exposure increased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in a dose-dependent manner, suggesting that DON induced oxidative stress in bGCs. Importantly, we demonstrated that apricot bee pollen ethanol extract (ABPE) increased the cell viability of bGCs and alleviated the effects of DON-induced cell viability reduction and estrogen dysfunction. Furthermore, ABPE attenuated the DON-induced increase in ROS levels and upregulated the expression of antioxidant-related gene heme oxygenase-1 (HO-1). These results reveal the protective effects of ABPE against DON-induced cell viability reduction, estrogen disorder, and oxidative stress, providing new insights into the potential of bee pollen as a promising natural agent to improve mycotoxin contamination. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

14 pages, 1818 KiB  
Article
Pesticide Pollution Provokes Histopathological Alterations in Apis mellifera (Linnaeus, 1758) Drone Gonads
by Stela Stoyanova, Elenka Georgieva, Plamen Petrov, Vesela Yancheva, László Antal, Dóra Somogyi, Krisztián Nyeste and Evgeniya N. Ivanova
Environments 2025, 12(6), 173; https://doi.org/10.3390/environments12060173 - 22 May 2025
Viewed by 544
Abstract
Honey bees are one of the most significant pollinators and contribute to the pollination of various crops. The honey bee, Apis mellifera (Linnaeus, 1758), has unique characteristics that could be successfully used to improve biomonitoring approaches in assessing environmental interactions. Three apiaries with [...] Read more.
Honey bees are one of the most significant pollinators and contribute to the pollination of various crops. The honey bee, Apis mellifera (Linnaeus, 1758), has unique characteristics that could be successfully used to improve biomonitoring approaches in assessing environmental interactions. Three apiaries with different rates of honey bee colony losses were included in the study—Dimovtsi, Plovdiv, and Krasnovo, Bulgaria. Male individuals (immature and mature) were collected from five colonies for each of the three apiaries and studied for histopathological changes in the gonads. The results concerning the rate of honey bee colony losses in the studied apiaries from 2022 and 2023 showed honey bee losses in the tested colonies due to queen problems, which were reported for Plovdiv, as well as the death of honey bees or a reduction in their number to a few hundred bees in the colony. The chemical analysis showed the presence of different organic substances, such as Coumaphos, DEET (N, N-diethyl-M-toluamide), Fluvalinate, and Piperonyl-butoxide, in the alive and dead honey bee samples and those of food stocks (wax, pollen, and honey) within the hives. Among the sample types, those of the dead honey bees contained the greatest variety of pesticide residues, particularly in Plovdiv and Dimovtsi, reinforcing the link between pesticide exposure and honey bee mortality. The histopathological alterations were mainly associated with the thinning of the covering epithelium of the seminiferous tubules and the detachment of the basement membrane of the seminiferous tubules. The more severe histopathological lesion, necrosis, was observed in a higher degree of expression in the drones from Plovdiv, indicating a higher pollution level in this region. Full article
Show Figures

Graphical abstract

13 pages, 1223 KiB  
Article
Developmental Transfer of Microplastic Particles from Larval to Adult Stages of the Drone Fly Eristalis tenax
by Malik Abdulla, Jaimie C. Barnes, Oliver M. Poole, Karl R. Wotton and Eva Jimenez-Guri
Microplastics 2025, 4(2), 22; https://doi.org/10.3390/microplastics4020022 - 2 May 2025
Viewed by 556
Abstract
Plastic pollution has become a critical environmental issue, with vast amounts of plastic waste accumulating in aquatic and terrestrial ecosystems. Plastic pollution poses significant risks to biodiversity by introducing toxic chemicals and disrupting biological functions. The drone fly, Eristalis tenax, is perhaps [...] Read more.
Plastic pollution has become a critical environmental issue, with vast amounts of plastic waste accumulating in aquatic and terrestrial ecosystems. Plastic pollution poses significant risks to biodiversity by introducing toxic chemicals and disrupting biological functions. The drone fly, Eristalis tenax, is perhaps the most globally widespread hoverfly. This success is aided by its development as a rat-tailed maggot in a wide array of aquatic environments where it feeds on decaying organic matter. As an adult, E. tenax is a vital pollinator, visiting a wide range of crops and wild plants, and has been shown to vector pollen over hundreds of kilometres during seasonal migrations. Exposure to microplastics during larval stages has the potential to alter the provision of these ecosystem services and to provide a route for the long-distance vectoring of microplastics. To investigate this, we rear E. tenax in water contaminated with different concentrations of microplastic particles. We show that these plastics are retained in the gut from larval through to pupal to adult developmental stages. This contamination resulted in reductions of 33% and 60% in pupal and adult weight when exposed to the highest concentrations of microplastic particles but resulted in no detectable effects on mortality or developmental length. Our results demonstrate the potential for the vectoring of microplastics by this highly mobile species. However, the associated reductions in body size likely have profound consequences for movement capability in terms of foraging and migration and should be further investigated for their impact on ecosystem service provision. Full article
Show Figures

Figure 1

18 pages, 1764 KiB  
Review
Food as Medicine: A Review of Plant Secondary Metabolites from Pollen, Nectar, and Resin with Health Benefits for Bees
by Bandele Morrison, Laura R. Newburn and Gordon Fitch
Insects 2025, 16(4), 414; https://doi.org/10.3390/insects16040414 - 15 Apr 2025
Viewed by 1069
Abstract
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and [...] Read more.
Bees rely on pollen and nectar for nutrition, but floral products provide more than just macronutrients; many also contain an array of plant secondary metabolites (PSMs). These compounds are generally thought to serve primarily defensive purposes but also appear to promote longevity and immune function, protect against disease agents, and detoxify toxicants. This review presents a comprehensive overview of PSMs, as well as some fatty acids, with documented health benefits for eusocial bees at ecologically relevant exposure levels and the plant species whose floral products and/or resin are known to contain them. We find medicinal metabolites to be widespread but unevenly distributed across the plant phylogeny, with a few families containing a majority of the species known to produce PSMs with documented health benefits. We discuss the current state of knowledge and identify gaps in our understanding. The existing literature on the health benefits of metabolites, and particularly PSMs, to bees is spread across multiple fields; our hope is that this review will bring these fields closer together and encourage further investigation of the role of metabolites in promoting bee health in ecological contexts. Full article
(This article belongs to the Special Issue Bee Conservation: Behavior, Health and Pollination Ecology)
Show Figures

Figure 1

25 pages, 2836 KiB  
Article
A Multi-Model Approach to Pollen Season Estimations: Case Study for Olea and Quercus in Thessaloniki, Greece
by Sofia Papadogiannaki, Kostas Karatzas, Serafim Kontos, Anastasia Poupkou and Dimitrios Melas
Atmosphere 2025, 16(4), 454; https://doi.org/10.3390/atmos16040454 - 14 Apr 2025
Viewed by 569
Abstract
The accurate prediction of the Main Pollen Season (MPS) is crucial for public health and environmental management, particularly for allergenic and highly abundant taxa such as Olea and Quercus. This study presents a comparative evaluation of multiple predictive models for estimating MPS [...] Read more.
The accurate prediction of the Main Pollen Season (MPS) is crucial for public health and environmental management, particularly for allergenic and highly abundant taxa such as Olea and Quercus. This study presents a comparative evaluation of multiple predictive models for estimating MPS in Thessaloniki, Greece, from 2016 to 2022. The models examined include cumulative temperature-based approaches, Logistic Models (LM), the Distribution Method (DM), and Machine Learning Techniques (MLTs) such as Random Forest, Neural Networks, and Ensemble Learning. The results indicate that Double-Threshold temperature-based (DT) and LM models effectively capture the end of the pollen season, with differences from observed values ranging from 0 to 7 days. Meanwhile MLTs, particularly Random Forest, exhibit high accuracy in predicting its onset of the season, with deviations ranging from 0 to 10 days. Notably, the DT approach, which incorporates transition ranges, enhances the prediction reliability in complex urban environments. These findings contribute to the development of more robust aerobiological forecasting systems, supporting allergen exposure mitigation strategies and agricultural planning in Mediterranean climates. Future research should focus on multifold cross-validation techniques and advanced deep learning models, such as LSTMs (Long Short-Term Memory models), to further refine the prediction accuracy. These advancements would enable the development of more accurate and generalized forecasting models, contributing into a broader modeling system capable of predicting daily pollen concentrations, further supporting real-time pollen forecasting efforts. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

21 pages, 10338 KiB  
Article
Breaking Barriers: The Detrimental Effects of Combined Ragweed and House Dust Mite Allergen Extract Exposure on the Bronchial Epithelium
by Răzvan-Ionuț Zimbru, Manuela Grijincu, Gabriela Tănasie, Elena-Larisa Zimbru, Florina-Maria Bojin, Roxana-Maria Buzan, Tudor-Paul Tamaș, Monica-Daniela Cotarcă, Octavia Oana Harich, Raul Pătrașcu, Laura Haidar, Elena Ciurariu, Karina Cristina Marin, Virgil Păunescu and Carmen Panaitescu
Appl. Sci. 2025, 15(8), 4113; https://doi.org/10.3390/app15084113 - 9 Apr 2025
Cited by 1 | Viewed by 852
Abstract
(1) Background: Respiratory allergens, particularly ragweed (RW) pollen and house dust mites (HDMs), are major triggers of respiratory inflammation and allergic diseases. This study investigated the impact of single- versus combined-allergen exposure on the barrier function of normal human bronchial epithelial (NHBE) cells [...] Read more.
(1) Background: Respiratory allergens, particularly ragweed (RW) pollen and house dust mites (HDMs), are major triggers of respiratory inflammation and allergic diseases. This study investigated the impact of single- versus combined-allergen exposure on the barrier function of normal human bronchial epithelial (NHBE) cells cultured at the air–liquid interface (ALI). (2) Methods: NHBE cells were exposed to RW pollen extract (200 µg/mL), HDM extract (200 µg/mL) and their combination at varying concentrations (200 µg/mL, 100 µg/mL, 50 µg/mL, 25 µg/mL). Additional groups included a mixture of Amb a 1, Amb a 11 and Amb a 12 (100 mg/mL) and combinations of Der p 1 with the ragweed allergens (50 mg/mL, 100 µg/mL). Transepithelial electrical resistance (TEER) was recorded over 72 hours to assess barrier integrity, and immunofluorescence (IF) staining for zonula occludens-1 (ZO-1) was performed to evaluate tight junction alterations. (3) Results: TEER measurements showed a significant reduction in epithelial barrier integrity following allergen exposure, with the most pronounced disruption observed with the combined exposure to RW and HDM groups. IF staining confirmed extensive tight junction damage, highlighting their synergistic impact. (4) Conclusions: These findings emphasize the importance of assessing cumulative allergen effects, as combined exposure may exacerbate epithelial dysfunction and represent a key aspect in the management of allergic rhinitis and asthma. Full article
(This article belongs to the Special Issue Clinical Research on Severe Asthma: Latest Advances and Prospects)
Show Figures

Figure 1

17 pages, 1124 KiB  
Review
Pollen Food Allergy Syndrome in Southern European Adults: Patterns and Insights
by Christina Rousou, Egor Kostin, Eleni Christodoulou, Theodoros Theodorou, Zenon Pavlou and Constantinos Pitsios
Appl. Sci. 2025, 15(7), 3943; https://doi.org/10.3390/app15073943 - 3 Apr 2025
Viewed by 1282
Abstract
Oral Allergy Syndrome (OAS) is an allergic reaction that occurs upon contact of the mouth and throat with food, leading to symptoms primarily affecting the oral mucosa. In patients with allergic rhinitis, OAS may develop due to cross-reactivity between the pollen allergens responsible [...] Read more.
Oral Allergy Syndrome (OAS) is an allergic reaction that occurs upon contact of the mouth and throat with food, leading to symptoms primarily affecting the oral mucosa. In patients with allergic rhinitis, OAS may develop due to cross-reactivity between the pollen allergens responsible for allergic rhinitis, and specific plant-derived foods. This particular type of OAS is known as Pollen Food Allergy Syndrome (PFAS). The difference in prevalence of PFAS across different regions of the world is attributed to various factors, including environmental exposure and dietary habits. Southern Europe’s temperate climate favors the blooming of many allergenic plants, making respiratory allergies and PFAS significant public health concerns. There is a regional variation in pollen in Southern Europe, contributing to differences in the presence of panallergens—such as profilins, pathogenesis-related class 10 (PR-10) proteins and lipid transfer proteins (LTPs)—which mediate PFAS. In order to examine the epidemiology, pathogenesis, and diagnostic approaches of OAS and PFAS, focusing on their prevalence and impact in Southern European adults, a narrative review was performed. Data from Portugal, Spain, France, Italy, Albania, Greece, and Türkiye were retrieved. The main outcome of this review was that the frequency of PFAS varies across studies, not only between countries but also within the same country, due to vegetation variability across regions as well as methodological differences and the year of study. However, despite these differences, PFAS emerges as a common issue in Southern Europe, underscoring the need for effective diagnosis and management. Full article
(This article belongs to the Special Issue New Diagnostic and Therapeutic Approaches in Food Allergy)
Show Figures

Figure 1

21 pages, 3286 KiB  
Article
Molecular Signatures of Aeroallergen Sensitization in Pediatric Populations: A Comparative Study Across Spanish Cities
by Ana Martínez-Cañavate, María Mesa-Del-Castillo, Francisco Carballada, Cristina Rivas-Juesas, José Ángel Porto, Cristina Blasco, Montserrat Álvaro-Lozano, Jaime Lozano, Julián Andrés Manrique, María José Martínez, Tania Galán, Gema Domingo, Laura Marín, Pilar Vega, Raquel López-Rodríguez, Práxedes Solano Galán, Yolanda Aliaga, Fernando Pineda and Miguel Tortajada-Girbés
Int. J. Mol. Sci. 2025, 26(7), 2963; https://doi.org/10.3390/ijms26072963 - 25 Mar 2025
Viewed by 896
Abstract
Spain exhibits significant climatic variability across its regions, ranging from the humid oceanic climate in the north to the Mediterranean and stepped climates in the southern and central areas. These climatic differences influence environmental allergen exposure, which may, in turn, affect allergic sensitization [...] Read more.
Spain exhibits significant climatic variability across its regions, ranging from the humid oceanic climate in the north to the Mediterranean and stepped climates in the southern and central areas. These climatic differences influence environmental allergen exposure, which may, in turn, affect allergic sensitization patterns in the pediatric population. Variations in temperature, humidity, and airborne allergen distribution, such as pollen, dust mites, animal epithelia, and mold, contribute to regional disparities in allergic responses among children. Understanding how climatic conditions shape allergen recognition patterns across different geographical areas is essential for improving allergy prevention and management strategies. This study aims to shed light on this issue by identifying sensitization patterns in a pediatric population of 236 patients (with 2 age groups analyzed: 6–10 and 11–15 years old) from different climatic regions of Spain. Skin tests with standard aeroallergens were performed, and specific IgE (sIgE) analysis by Allergy Explorer of Macroarray Diagnostic test (ALEX2) and Western blot. The results revealed different sensitization trends across patients from the eight cities analyzed (Barcelona, Granada, Lugo, Sagunto, Santiago de Compostela, Valencia, and Zaragoza). Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

14 pages, 2961 KiB  
Article
Cadmium Contaminants in Pollen and Nectar Are Variably Linked to the Growth and Foraging Behaviors of Honey Bees
by Dawei Li, Jia Liu, Yibin Yuan, Juanli Chen and Junpeng Mu
Insects 2025, 16(3), 306; https://doi.org/10.3390/insects16030306 - 15 Mar 2025
Viewed by 973
Abstract
Cadmium (Cd) is a heavy metal present in pollen and nectar that affects pollinator attributes. Honey bees possess the ability to eliminate Cd from honey. Consequently, the concentration of Cd in pollen, rather than nectar, is the critical factor influencing the growth and [...] Read more.
Cadmium (Cd) is a heavy metal present in pollen and nectar that affects pollinator attributes. Honey bees possess the ability to eliminate Cd from honey. Consequently, the concentration of Cd in pollen, rather than nectar, is the critical factor influencing the growth and foraging behavior of honey bees. However, there is a dearth of studies regarding the specific association by which the impact on bee growth and foraging behavior fluctuates in relation to the Cd dosage of pollen or nectar. We hypothesized that at low exposure levels, the amount of Cd in pollen would affect honey bee growth, and the amount of nectar influences honey bee foraging behavior. At high exposure levels, the amount of Cd in pollen and nectar would affect both honey bee growth and foraging behavior. A field experiment was performed in Sichuan (the average background value of Cd in soil is 5.6 times higher than other regions in China) to examine the impact of different soil Cd concentrations (low: 0.60 ± 0.05 mg·kg−1 (average ± SD); middle: 1.32 ± 0.08 mg·kg−1; high: 1.76 ± 0.10 mg·kg−1) on the Cd levels in plant organs (Brassica campestris), alongside the body mass and visitation rates of honey bees (Apis mellifera). Our results indicated in honey bees in the habitats with low concentrations of soil Cd that the Cd content in pollen was inversely correlated with the body mass of larvae, pupae, and worker bees. The quantity of nectar governed the foraging activity of honey bees in the habitats with low levels of soil Cd. At middle to high exposure levels, Cd concentrations in pollen and honey exerted a negative influence on honey bee development and foraging behavior. These findings offer novel insights into the impact of Cd on pollinator attributes, and the global decline of pollinators. Full article
(This article belongs to the Special Issue Bee Conservation: Behavior, Health and Pollination Ecology)
Show Figures

Figure 1

14 pages, 1099 KiB  
Article
The Association of Childhood Allergic Diseases with Prenatal Exposure to Pollen Grains Through At-Birth DNA Methylation
by Rajesh Melaram, Hongmei Zhang, James Adefisoye and Hasan Arshad
Epigenomes 2025, 9(1), 9; https://doi.org/10.3390/epigenomes9010009 - 11 Mar 2025
Viewed by 1590
Abstract
Background: Pollen exposure in early life is shown to be associated with allergy and asthma. DNA methylation (DNAm), an epigenetic marker, potentially reacts to pollen. However, the role of at-birth DNAm between prenatal pollen grain (PPG) exposure and childhood asthma and allergic rhinitis [...] Read more.
Background: Pollen exposure in early life is shown to be associated with allergy and asthma. DNA methylation (DNAm), an epigenetic marker, potentially reacts to pollen. However, the role of at-birth DNAm between prenatal pollen grain (PPG) exposure and childhood asthma and allergic rhinitis is unknown. Methods: Data in a birth cohort study on the Isle of Wight, UK, were analyzed (n = 236). Newborn DNAm was measured in cord blood or blood spots on Guthrie cards and screened for potential association with PPG exposure using the R package ttScreening. CpGs that passed screening were further assessed for such associations via linear regressions with adjusting covariates included. Finally, DNAm at PPG-associated CpGs were evaluated for their association with asthma and allergic rhinitis using logistic regressions, adjusting for covariates. The impact of cell heterogeneity on the findings was assessed. Statistical significance was set at p < 0.05. Results: In total, 42 CpGs passed screening, with 41 remaining statistically significant after adjusting for covariates and cell types (p < 0.05). High PPG exposure was associated with lower DNAm at cg12318501 (ZNF99, β = −0.029, p = 0.032) and cg00929606 (ADM2, β = −0.023, p = 0.008), which subsequently was associated with decreased odds of asthma (OR = 0.11, 95% CI 0.02–0.53, p = 0.006; OR = 0.14, 95% CI 0.02–1.00, p = 0.049). For rhinitis, cg15790214 (HCG11) was shown to play such a role as a mediator (β = −0.027, p ≤ 0.0001; OR = 0.22, 95% CI 0.07–0.72, p = 0.01). Conclusions: The association of PPG exposure with childhood asthma and allergic rhinitis incidence is potentially mediated by DNAm at birth. Full article
Show Figures

Figure 1

17 pages, 3420 KiB  
Article
Changes of Catalase and Peroxidase Activity and Expression Under Cold Stress in Prunus persica Cultivars with Different Cold Tolerances
by Ekaterina Vodiasova, Elina Chelebieva, Ekaterina Kladchenko, Oksana Grebennikova, Victoria Uppe, Valentina Tsiupka, Sergey Dolgov and Anatoly Smykov
Agronomy 2025, 15(3), 556; https://doi.org/10.3390/agronomy15030556 - 25 Feb 2025
Viewed by 1215
Abstract
Peach is one of the most common stone fruit crops, but it is also the most thermophilic. One of the main problems in peach cultivation is frost up to −8 °C in spring during pollen development, budding, and flowering. The adaptation of the [...] Read more.
Peach is one of the most common stone fruit crops, but it is also the most thermophilic. One of the main problems in peach cultivation is frost up to −8 °C in spring during pollen development, budding, and flowering. The adaptation of the plant to low temperatures could be related to the activation of the antioxidant system under cold stress. The aim of this work was to test the hypothesis of distinct adaptation mechanisms to cold stress in Prunus persica L. cultivars with various cold tolerances. The difference between this study and the previous ones is that previously, only contrasting varieties (resistant and sensitive) were studied. For the first time, we studied the effect of cold stress on cold-resistant varieties but with different degrees of resistance, such as “Loadel” and “Springold” (medium resistant) and “Podarok Like” and “Temisovskij” (highly resistant). The experiment was designed to simulate the effects of short-term cold snaps, which are a common occurrence during February and March in the south of Crimea. A series of tests were conducted on annual shoots that were frozen at −12 °C. The activity and gene expression of two major antioxidant enzymes, catalase and peroxidase, were studied by spectrophotometry and RT-qPCR, respectively. The experiment showed that these enzymes responded differently to cold stress in varieties with different cold tolerances. Catalase responded similarly in all four varieties. After frost, there was an increase in activity (7-fold in “Temisovskij” and 3-fold in “Podarok Like”) and a decrease in expression. In contrast to catalase, peroxidase showed an opposite response to cold stress in medium-tolerant and highly tolerant cultivars. Peroxidase activity after exposure to low temperatures increased in highly tolerant cultivars (1.5-fold in “Temisovskij”), while it decreased in medium-tolerant cultivars (1.5–2 fold in “Springold” and “Loadel”, respectively). The change in peroxidase expression was the opposite. It decreased in highly resistant varieties and increased in medium-resistant varieties. Thus, our results revealed the opposite response of one of the major antioxidant enzymes (peroxidase) in moderately resistant and highly resistant cultivars. The data obtained show that varieties with a high degree of resistance could have other adaptation mechanisms involved, which may be useful for selecting resistant varieties. Full article
(This article belongs to the Special Issue Plant Ecophysiology Under Anthropogenic and Natural Stresses)
Show Figures

Figure 1

Back to TopTop