Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = polarized light scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

11 pages, 2054 KiB  
Article
Polarization-Enhanced Multi-Target Underwater Salient Object Detection
by Jiayi Song, Peikai Zhao, Jiangtao Li, Liming Zhu, Khian-Hooi Chew and Rui-Pin Chen
Photonics 2025, 12(7), 707; https://doi.org/10.3390/photonics12070707 - 12 Jul 2025
Viewed by 156
Abstract
Salient object detection (SOD) plays a critical role in underwater exploration systems. Traditional SOD approaches encounter notable constraints in underwater image analysis, primarily stemming from light scattering and absorption effects induced by suspended particulate matter in complex underwater environments. In this work, we [...] Read more.
Salient object detection (SOD) plays a critical role in underwater exploration systems. Traditional SOD approaches encounter notable constraints in underwater image analysis, primarily stemming from light scattering and absorption effects induced by suspended particulate matter in complex underwater environments. In this work, we propose a deep learning-based multimodal method guided by multi-polarization parameters that integrates polarization de-scattering mechanisms with the powerful feature learning capability of neural networks to achieve adaptive multi-target SOD in an underwater turbid scattering environment. The proposed polarization-enhanced salient object detection network (PESODNet) employs a multi-polarization-parameter-guided, material-aware attention mechanism and a contrastive feature calibration unit, significantly enhancing its multi-material, multi-target detection capabilities in underwater scattering environments. The experimental results confirm that the proposed method achieves substantial performance improvements in multi-target underwater SOD tasks, outperforming state-of-the-art models of salient object detection in detection accuracy. Full article
Show Figures

Figure 1

19 pages, 2636 KiB  
Article
Poly(pyridinium salt)s Containing 9,9-Bis(4-aminophenyl)fluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties
by Pradip K. Bhowmik, David King, Haesook Han, András F. Wacha and Matti Knaapila
Polymers 2025, 17(13), 1785; https://doi.org/10.3390/polym17131785 - 27 Jun 2025
Viewed by 314
Abstract
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium [...] Read more.
Main-chain conjugated and non-conjugated polyelectrolytes are an important class of materials that have many technological applications ranging from fire-retardant materials to carbon-nanotube composites, nonlinear optical materials, electrochromic materials for smart windows, and optical sensors for biomolecules. Here, we describe a series of poly(pyridinium salt)s-fluorene containing 9,9-bis(4-aminophenyl)fluorene moieties with various organic counterions that were synthesized using ring-transmutation polymerization and metathesis reactions, which are non-conjugated polyelectrolytes. Their chemical structures were characterized by Fourier transform infrared (FTIR), proton (1H) and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers, and elemental analysis. They exhibited polyelectrolytic behavior in dimethyl sulfoxide. Their lyotropic liquid-crystalline phases were examined by polarizing optical microscopy (POM) and small angle X-ray scattering (SAXS) studies. Their emission spectra exhibited a positive solvatochromism on changing the polarity of solvents. They emitted greenish-yellow lights in polar organic solvents. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0–90%), whose λem peaks were blue shifted. Full article
(This article belongs to the Special Issue Smart Polymers for Stimuli-Responsive Devices)
Show Figures

Graphical abstract

22 pages, 2561 KiB  
Article
JPSS-4 VIIRS Pre-Launch Calibration Performance and Assessment
by Amit Angal, David Moyer, Xiaoxiong Xiong, Daniel Link, Thomas Schwarting, Jeff McIntire, Qiang Ji and Chengbo Sun
Remote Sens. 2025, 17(13), 2146; https://doi.org/10.3390/rs17132146 - 23 Jun 2025
Viewed by 279
Abstract
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing [...] Read more.
The Joint Polar Satellite System (JPSS) is a collaborative program between NASA and NOAA to provide scientific measurements from multiple polar-orbiting satellites. The development, testing, launch, and operation of the satellites is jointly overseen by NASA and NOAA, with NASA responsible for developing and building instruments, spacecraft, ground systems, and launching into orbit. While three VIIRS instruments are currently on-orbit, spacecraft integration of the two VIIRS instruments planned for launch on the JPSS-3 and -4 spacecraft is ongoing. The latest build in the series, set to be launched on the JPSS-4 platform, recently completed its main ground calibration program at the vendor facility. This program covered a comprehensive series of performance metrics designed to ensure that the instrument can maintain its calibration successfully on-orbit. In this paper, we present the results from the radiometric calibration process, which includes metrics such as dynamic range, signal-to-noise ratio, noise equivalent differential temperature, polarization sensitivity, scattered light response, relative spectral response, response versus scan angle, and crosstalk. All key metrics have met or exceeded their design requirements, with some minor exceptions. Also included are comparisons with previous VIIRS instruments, as well as a description of their expected performance once on-orbit. Full article
(This article belongs to the Collection The VIIRS Collection: Calibration, Validation, and Application)
Show Figures

Figure 1

20 pages, 6956 KiB  
Article
Chiral Growth of Gold Horns on Polyhedrons for SERS Identification of Enantiomers and Polarized Light-Induced Photothermal Sterilization
by Bowen Shang and Guijian Guan
Materials 2025, 18(11), 2627; https://doi.org/10.3390/ma18112627 - 4 Jun 2025
Viewed by 501
Abstract
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement [...] Read more.
The integration of chirality into nanomaterials holds significant potential for improving molecular recognition and biomedical technologies. In this work, we fabricated novel chiral horned gold nanostructures (HNS) by controlling the concentration of chiral ligands L-/D-cysteine (Cys). The unique three-dimensional morphology with horns-rotational arrangement enables synergistic optimization of chiral optical responses and surface-enhanced Raman scattering (SERS) performance. The proposed chiral HNSs can be used to recognize amino acid enantiomers, in which homochiral amino acid has distinct affinities to the chiral HNSs of homogeneous handedness. The 4-mercaptobenzoic acid (4-MPBA)-modified D-HNS demonstrates significantly enhanced targeting affinity for D-amino acids in the Escherichia coli (E. coli) cell wall, enabling successful amplification of SERS signals and advancing bacterial detection methodologies. By demonstrating the rotation-selective interaction between chiral HNSs and circularly polarized light (CPL), D-HNS exhibits excellent photothermal conversion efficiency under right-handed circularly polarized light (RCP) irradiation. This enables the synergistic combination of targeted physical disruption and photothermal sterilization, which leads to efficient eradication of E. coli. The D-HNS hydrogel composite system further expands the practical application of photothermal sterilization. Altogether, chiral HNSs have achieved SERS detection of bacteria and efficient polarization photothermal sterilization, which helps further develop applications based on chiral nanomaterials. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

17 pages, 3307 KiB  
Article
Direct Generation and Non-Hermitian Regulation of Energy-Time-Polarization-Hyper-Entangled Quadphotons
by Rui Zhuang, Siqiang Zhang, Guobin Liu, Zhou Feng, Qingyu Chen, Sinong Liu and Yanpeng Zhang
Sensors 2025, 25(11), 3425; https://doi.org/10.3390/s25113425 - 29 May 2025
Viewed by 344
Abstract
Entangled multiphoton is an ideal resource for quantum information technology. Here, narrow-bandwidth hyper-entangled quadphoton is theoretically demonstrated by quantizing degenerate Zeeman sub states through spontaneous eight-wave mixing (EWM) in a hot 85Rb. Polarization-based energy-time entanglement (output) under multiple polarized dressings is presented [...] Read more.
Entangled multiphoton is an ideal resource for quantum information technology. Here, narrow-bandwidth hyper-entangled quadphoton is theoretically demonstrated by quantizing degenerate Zeeman sub states through spontaneous eight-wave mixing (EWM) in a hot 85Rb. Polarization-based energy-time entanglement (output) under multiple polarized dressings is presented in detail with uncorrelated photons and Raman scattering suppressed. High-dimensional entanglement is contrived by passive non-Hermitian characteristic, and EWM-based quadphoton is genuine quadphoton with quadripartite entanglement. High quadphoton production rate is achieved from co-action of four strong input fields, and electromagnetically induced transparency (EIT) slow light effect. Atomic passive non-Hermitian characteristic provides the system with acute coherent tunability around exceptional points (EPs). The results unveil multiple coherent channels (~8) inducing oscillations with multiple periods (~19) in quantum correlations, and high-dimensional (~8) four-body entangled quantum network (capacity ~65536). Coexistent hyper and high-dimensional entanglements facilitate high quantum information capacity. The system can be converted among three working states under regulating passive non-Hermitian characteristic via triple polarized dressing. The research provides a promising approach for applying hyper-entangled multiphoton to tunable quantum networks with high information capacity, whose multi-partite entanglement and multiple-degree-of-freedom properties help optimize the accuracy of quantum sensors. Full article
(This article belongs to the Special Issue Quantum-Enabled Optical Communications and Networks)
Show Figures

Figure 1

27 pages, 6361 KiB  
Article
Antineoplastic Activity of Podophyllotoxin and Juniper Extracts Encapsulated in MPEG-b-PLA Diblock Copolymer Micelles in Cutaneous Squamous Carcinoma Cells
by Radostina G. Kalinova, Ivaylo V. Dimitrov, Yana Ilieva, Dimitar B. Iliev, George A. Miloshev, Dessislava N. Staneva, Maya M. Zaharieva, Aleksandrina Nesheva, Galya Staneva, Diana I. Ivanova, George Angelov and Hristo M. Najdenski
Int. J. Mol. Sci. 2025, 26(11), 5167; https://doi.org/10.3390/ijms26115167 - 28 May 2025
Viewed by 454
Abstract
Nanotechnology offers alternative approaches to the discovery of anticancer drugs. Hydrophobic bioactive components can be included in the cores of amphiphilic nanocarriers, which leads to the formation of a water-dispersible product with improved bioavailability, facilitated excretion, and reduced systemic toxicity in the treated [...] Read more.
Nanotechnology offers alternative approaches to the discovery of anticancer drugs. Hydrophobic bioactive components can be included in the cores of amphiphilic nanocarriers, which leads to the formation of a water-dispersible product with improved bioavailability, facilitated excretion, and reduced systemic toxicity in the treated organisms. This study was aimed at the formation of polymer nanocarriers, loaded with anticancer drug precursor podophylotoxin (PPT) or PPT-containing juniper leaf extracts, seeking to study their antineoplastic activity in A-431 epidermoid carcinoma cells and HaCaT normal keratinocytes. The amphiphilic, biodegradable, and biocompatible MPEG-b-PLA diblock copolymer was self-assembled in aqueous media into nanosized particles, whose physicochemical characteristics were studied by dynamic light scattering, transmission electron microscopy, and other methods. High encapsulation efficiency was determined for the PPT component-loaded micelles. DNA fragmentation, cell cycle arrest, nuclear condensation, membrane lipid order assessment, reactive oxygen species, and apoptosis induction by the loaded nanocarriers in A-431 or HaCaT cells were analyzed by the comet assay, FACS, Hoechst DNA staining, Laurdan generalized polarization, and other methods. As a result of various cellular processes induced by the PPT component-loaded nanoparticles, effector caspase-3 and caspase-7 activation showed selectivity towards tumor cells compared to the normal cells. The newly obtained PPT-containing nanoparticles have applications as potential drugs in the prospective nanomedicine. Full article
(This article belongs to the Special Issue Recent Discovery and Mechanisms of Potential Anticancer Drugs)
Show Figures

Figure 1

22 pages, 3440 KiB  
Review
Coherent Vibrational Anti-Stokes Raman Spectroscopy Assisted by Pulse Shaping
by Kai Wang, James T. Florence, Xia Hua, Zehua Han, Yujie Shen, Jizhou Wang, Xi Wang and Alexei V. Sokolov
Molecules 2025, 30(10), 2243; https://doi.org/10.3390/molecules30102243 - 21 May 2025
Viewed by 924
Abstract
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopic technique widely used in biological imaging, chemical analysis, and combustion and flame diagnostics. The adoption of pulse shapers in CARS has emerged as a useful approach, offering precise control of optical waveforms. By [...] Read more.
Coherent anti-Stokes Raman scattering (CARS) is a powerful nonlinear spectroscopic technique widely used in biological imaging, chemical analysis, and combustion and flame diagnostics. The adoption of pulse shapers in CARS has emerged as a useful approach, offering precise control of optical waveforms. By tailoring the phase, amplitude, and polarization of laser pulses, the pulse shaping approach enables selective excitation, spectral resolution improvement, and non-resonant background suppression in CARS. This paper presents a comprehensive review of applying pulse shaping techniques in CARS spectroscopy for biophotonics. There are two different pulse shaping strategies: passive pulse shaping and active pulse shaping. Two passive pulse shaping techniques, hybrid CARS and spectral focusing CARS, are reviewed. Active pulse shaping using a programmable pulse shaper such as spatial light modulator (SLM) is discussed for CARS spectroscopy. Combining active pulse shaping and passive shaping, optimizing CARS with acousto-optic programmable dispersive filters (AOPDFs) is discussed and illustrated with experimental examples conducted in the authors’ laboratory. These results underscore pulse shapers in advancing CARS technology, enabling improved sensitivity, specificity, and broader applications across diverse scientific fields. Full article
Show Figures

Figure 1

10 pages, 2871 KiB  
Article
Characterization of Multi-Pass Enhanced Raman Spectroscopy for Gaseous Measurement
by Miao Fan, Huinan Yang and Jun Chen
Analytica 2025, 6(2), 13; https://doi.org/10.3390/analytica6020013 - 16 Apr 2025
Viewed by 742
Abstract
With the rise in global temperatures, it is of great significance to achieve rapid and accurate detection of greenhouse gases, such as carbon dioxide and methane. Raman spectroscopy not only overcomes the weakness of absorption spectroscopy in simultaneously measuring homonuclear diatomic molecules but [...] Read more.
With the rise in global temperatures, it is of great significance to achieve rapid and accurate detection of greenhouse gases, such as carbon dioxide and methane. Raman spectroscopy not only overcomes the weakness of absorption spectroscopy in simultaneously measuring homonuclear diatomic molecules but also enables the simultaneous detection of multiple gases using a single-wavelength laser. However, due to the small Raman scattering cross-section and weak intensity of molecules, its application in gas detection is limited. To enhance the intensity of Raman scattering, this paper designs and constructs a multi-pass enhanced Raman spectroscopy setup. This study focuses on the effects of Raman scattering collection geometry, laser multi-pass patterns, and laser polarization relative to the Raman collection direction on signal intensity. Investigations into Raman scattering collection angles of 30°, 60°, and 90° reveal that the Raman scattering signal intensity increases as the collection angle decreases. Different laser multi-pass patterns also impact the signal, with the near-concentric linear multi-pass pattern found to collect more signals. To minimize the influence of excitation light on the signal, a side collection system is employed. Experiments show that the Raman scattering signal is stronger when the laser polarization is perpendicular to the collection direction. This study achieves overall system performance enhancement through coordinated optimization of multiple physical mechanisms, including Raman scattering collection geometry, laser multi-pass patterns, and laser polarization characteristics. The optimized setup was employed to characterize the laser power dependence for nitrogen, oxygen, and carbon dioxide detection. The results showed that the Raman scattering intensity varied linearly with the laser power of the gases, with linear fitting goodness R2 values of 0.9902, 0.9848, and 0.9969, respectively. Finally, by configuring different concentrations of carbon dioxide gas using nitrogen, it was found that the Raman scattering intensity varied linearly with the concentration of carbon dioxide, with a linear fitting goodness R2 of 0.9812. The system achieves a CO2 detection limit of 500 ppm at 200 s integration time, meeting the requirements for greenhouse gas emission monitoring applications. Full article
(This article belongs to the Special Issue Green Analytical Techniques and Their Applications)
Show Figures

Figure 1

16 pages, 3298 KiB  
Article
Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue
by Ukashat Mamudu, Asset Kabyshev, Kenzhebatyr Bekmyrza, Kairat A. Kuterbekov, Aliya Baratova, Lukman Ahmed Omeiza and Ren Chong Lim
Molecules 2025, 30(7), 1622; https://doi.org/10.3390/molecules30071622 - 5 Apr 2025
Viewed by 863
Abstract
In this study, α-cellulose was extracted from lignocellulosic simpor leaf residue as a sustainable alternative to conventional cellulose sources. The extraction process involved the removal of hemicellulose, lignin, and other phytocompounds using alkali (NaOH) treatment and bleaching with hydrogen peroxide (H2O [...] Read more.
In this study, α-cellulose was extracted from lignocellulosic simpor leaf residue as a sustainable alternative to conventional cellulose sources. The extraction process involved the removal of hemicellulose, lignin, and other phytocompounds using alkali (NaOH) treatment and bleaching with hydrogen peroxide (H2O2). The nanocrystalline cellulose (NCC) was isolated from α-cellulose using sulfuric acid hydrolysis treatment followed by ultrasonication. The extracted α-cellulose and isolated NCC were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). The obtained results confirmed that the extracted NCC exhibited characteristic cellulose functional groups and a crystallinity index of 64.7%, indicating the effective removal of amorphous regions through sulfuric acid hydrolysis. The thermal stability of the extracted cellulose increased to 332 °C due to the elimination of extractives. DLS analysis showed that the extracted NCC exhibited high colloidal stability in polar solvents, characterized by a zeta potential of −70.8 mV and an average particle size of 251.7 nm. This study highlights an environmentally friendly approach for converting low-value biomass waste into high-value cellulose materials with potential applications in sustainable packaging, biomedical applications and composite reinforcement. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 3241 KiB  
Article
Synthesis and Characterization of Multilayer 3D Chiral Polymers with Enhanced Optical Properties
by Sai Zhang, Xiaobei Jin, Daixiang Chen, Qingzheng Xu, Tao Wang, Xiuyuan Qin, Jialing Mao, Yue Zhang, Shenghu Yan and Guigen Li
Molecules 2025, 30(7), 1567; https://doi.org/10.3390/molecules30071567 - 31 Mar 2025
Viewed by 481
Abstract
This study reports the synthesis of novel multilayer 3D chiral polymers using 2,2′-(2,7-Naphthalenediyl)bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] and 1,8-dibronaphthalene along with its derivatives as key precursors. Comprehensive characterization was performed using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), photoluminescence, ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), [...] Read more.
This study reports the synthesis of novel multilayer 3D chiral polymers using 2,2′-(2,7-Naphthalenediyl)bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] and 1,8-dibronaphthalene along with its derivatives as key precursors. Comprehensive characterization was performed using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), photoluminescence, ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), polarimetry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). Notably, the polymers exhibited remarkable aggregation-induced emission (AIE) and aggregation-induced polarization (AIP) phenomena, revealing enhanced luminescence and optical activity in aggregated states. These findings underscore the potential of these chiral polymers for applications in optoelectronics and advanced sensing technologies, highlighting the intricate relationship between molecular structure and optical behavior. Full article
Show Figures

Figure 1

13 pages, 6468 KiB  
Article
Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning
by Yu-Chen Chen, Shi-Xuan Mi, Ya-Ping Tian, Xiao-Bo Hu, Qi-Yao Yuan, Khian-Hooi Chew and Rui-Pin Chen
Sensors 2025, 25(6), 1803; https://doi.org/10.3390/s25061803 - 14 Mar 2025
Viewed by 646
Abstract
Imaging technologies based on vector optical fields hold significant potential in the biomedical field, particularly for non-invasive scattering imaging of anisotropic biological tissues. However, the dynamic and anisotropic nature of biological tissues poses severe challenges to the propagation and reconstruction of vector optical [...] Read more.
Imaging technologies based on vector optical fields hold significant potential in the biomedical field, particularly for non-invasive scattering imaging of anisotropic biological tissues. However, the dynamic and anisotropic nature of biological tissues poses severe challenges to the propagation and reconstruction of vector optical fields due to light scattering. To address this, we propose a deep learning-based polarization-resolved restoration method aimed at achieving the efficient and accurate imaging reconstruction from speckle patterns generated after passing through anisotropic and dynamic time-varying biological scattering media. By innovatively leveraging the two orthogonal polarization components of vector optical fields, our approach significantly enhances the robustness of imaging reconstruction in dynamic and anisotropic biological scattering media, benefiting from the additional information dimension of vectorial optical fields and the powerful learning capacity of a deep neural network. For the first time, a hybrid network model is designed that integrates convolutional neural networks (CNN) with a Transformer architecture for capturing local and global features of a speckle image, enabling adaptive vectorial restoration of dynamically time-varying speckle patterns. The experimental results demonstrate that the model exhibits excellent robustness and generalization capabilities in reconstructing the two orthogonal polarization components from dynamic speckle patterns behind anisotropic biological media. This study not only provides an efficient solution for scattering imaging of dynamic anisotropic biological tissues but also advances the application of vector optical fields in dynamic scattering environments through the integration of deep learning and optical technologies. Full article
(This article belongs to the Special Issue Computational Optical Sensing and Imaging)
Show Figures

Figure 1

13 pages, 3963 KiB  
Article
Quarter-Wave Plate Meta-Atom Metasurfaces for Continuous Longitudinal Polarization Modulation of Hybrid Poincaré Sphere Beams
by Yunxiao Li, Quanhong Feng, Gongzheng Fang, Haonan Sun, Xingyi Fan, Zhenghao Liu, Hao Wang, Yuexu Si, Shuhao Si, Xuran Li and Chen Cheng
Photonics 2025, 12(3), 242; https://doi.org/10.3390/photonics12030242 - 7 Mar 2025
Viewed by 934
Abstract
Quarter-wave plate (QWP) metasurfaces provide a novel approach for generating three-dimensional (3D) hybrid-order Poincaré sphere (HyOPS) beams and enabling longitudinal polarization modulation, owing to their unique spin-decoupling properties. In this work, we designed a set of QWP meta-atom metasurfaces that generate 3D HyOPS [...] Read more.
Quarter-wave plate (QWP) metasurfaces provide a novel approach for generating three-dimensional (3D) hybrid-order Poincaré sphere (HyOPS) beams and enabling longitudinal polarization modulation, owing to their unique spin-decoupling properties. In this work, we designed a set of QWP meta-atom metasurfaces that generate 3D HyOPS beams with continuously varying polarization states along the propagation direction. The third-, fourth- and fifth-order HyOPS beams are generated by three metasurface devices, respectively. The HyOPS beams exhibit a focal depth of 30 μm, a stable longitudinal propagation, and a continuously evolving polarization state. Notably, complete polarization evolution along the equator of the HyOPS occurs within a depth of 20 μm. Numerical calculations in MATLAB R2022b validated the feasibility of the designed QWP metasurfaces. The finite-difference time-domain (FDTD) simulations further confirmed the stable propagation and continuous polarization evolution of the longitudinal light field. Additionally, the concentric arrangement of the QWP meta-atoms on the metasurface effectively mitigates scattering crosstalk caused by abrupt edge phase variations. This work offers new insights into the generation and control of HyOPS light fields and contributes significantly to the development of miniaturized, functionally integrated high-performance nanophotonics. Full article
Show Figures

Graphical abstract

16 pages, 5423 KiB  
Article
Optical Bacteria Recognition: Cross-Polarized Scattering
by Riccardo Pepino, Hamed Tari, Alessandro Bile, Arif Nabizada and Eugenio Fazio
Symmetry 2025, 17(3), 396; https://doi.org/10.3390/sym17030396 - 6 Mar 2025
Viewed by 681
Abstract
The rapid identification of bacteria is extremely important for controlling infections and enabling swift and effective action. Light scattering has proven to be a highly versatile technique for identifying bacteria, as it does not require long colony growth times. In this article, we [...] Read more.
The rapid identification of bacteria is extremely important for controlling infections and enabling swift and effective action. Light scattering has proven to be a highly versatile technique for identifying bacteria, as it does not require long colony growth times. In this article, we present a study on the use of cross-polarized optical scattering (CPS). Despite a relatively low scattering efficiency (10−5 to 10−6), working with cross-polarization enhances contrast by eliminating a highly intense background of scattered light. CPS has been applied to four bacteria, with three similar in shape. Moreover, two of them are Gram+ and two Gram-. The obtained images have been reduced in size down to a 16-bit images and camera noise has been added. Although bacteria are symmetrical in principle, in reality rotations of their orientation generate asymmetries in the CPS patterns that were exploited precisely to recognize and classify the different species. The classification of bacteria by a t-SNE algorithm in a reduced-dimension space shows that their features are grouped into specific clusters. However, such classification is not completely decisive due to partial cluster overlapping. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Neuromorphic and Intelligent Photonics)
Show Figures

Figure 1

16 pages, 4050 KiB  
Article
First-Principles Calculations of the Optical Properties of Bi4Si3O12: RE (RE = Ho3+, Tb3+, Eu3+, Gd3+, Sm3+, Tm3+) Crystals
by Yan Huang, Xuefeng Xiao, Yunlong Zhang, Xu Han, Jiahao Li, Yan Zhang, Jiashun Si, Shuaijie Liang, Qingyan Xu, Huan Zhang, Lingling Ma, Cui Yang, Xuefeng Zhang, Jiayue Xu, Tian Tian and Hui Shen
Crystals 2025, 15(3), 232; https://doi.org/10.3390/cryst15030232 - 28 Feb 2025
Cited by 1 | Viewed by 424
Abstract
This study employs the first-principles calculation method based on density functional theory to investigate and analyze the effects of doping various rare earthions on the optical properties of bismuth silicate (Bi4Si3O12, BSO) crystals. The results indicate that [...] Read more.
This study employs the first-principles calculation method based on density functional theory to investigate and analyze the effects of doping various rare earthions on the optical properties of bismuth silicate (Bi4Si3O12, BSO) crystals. The results indicate that the electronic structure variations of rare earth ions significantly influence the electronic structure and transition characteristics of BSO crystals, thereby altering their optical properties. Specifically, Tm3+ doping notably enhances the polarization capability and infrared responsiveness of BSO crystals, Ho3+ doping improves their absorption and scattering abilities in the visible light range, while Eu3+ doping enhances their ultraviolet absorption. Overall, Tm3+ doping and Ho3+ doping exhibit the most prominent effects on the optical performance of BSO crystals, providing theoretical guidance for designing and optimizing BSO crystals with specific optical properties. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop