Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue
Abstract
:1. Introduction
2. Results and Discussion
2.1. Functional Groups Characterization
2.1.1. Functional Groups of Lignocellulosic Simpor Leaves Residue
2.1.2. Functional Groups of α-Cellulose
2.1.3. Functional Groups of NCC
2.2. Crystal Structure Characterization
2.3. Thermal Stability Analysis
2.4. DLS Results
3. Materials and Methods
3.1. Materials
3.2. Extraction of Cellulose from Simpor Leaves Residue
3.3. Extraction of Cellulose from Lignocellulosic Simpor Leaves Residue
3.4. Isolation of Nanocrystalline Cellulose (NCC)
3.5. Characterizations
3.5.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
3.5.2. X-Ray Diffraction (XRD) Analysis
3.5.3. Thermogravimetric (TGA) Analysis
3.5.4. Dynamic Light Scattering Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fitriani, F.; Aprilia, S.; Arahman, N.; Bilad, M.R.; Amin, A.; Huda, N.; Roslan, J. Isolation and Characterization of Nanocrystalline Cellulose Isolated from Pineaple Crown Leaf Fiber Agricultural Wastes Unising Acid Hydrolysis. Polymers 2021, 13, 4188. [Google Scholar] [CrossRef]
- Mamudu, U.; Hussin, M.R.; Santos, J.H.; Lim, R.C. Synthesis and characterisation of sulfated-nanocrystalline cellulose in epoxy coatings for corrosion protection of mild steel from sodium chloride solution. Carbohydr. Polym. Technol. Appl. 2023, 5, 100306. [Google Scholar] [CrossRef]
- Md Salim, R.; Asik, J.; Sarjadi, M.S. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 2021, 55, 295–313. [Google Scholar] [CrossRef]
- Mamudu, U.; Santos, J.H.; Umoren, S.A.; Alnarabiji, M.S.; Lim, R.C. Investigations of corrosion inhibition of ethanolic extract of Dillenia suffruticosa leaves as a green corrosion inhibitor of mild steel in hydrochloric acid medium. Corros. Commun. 2024, 15, 52–62. [Google Scholar] [CrossRef]
- Armania, N.; Yazan, L.S.; Musa, S.N.; Ismail, I.S.; Foo, J.B.; Chan, K.W.; Noreen, H.; Hisyam, A.H.; Zulfahmi, S.; Ismail, M. Dillenia suffruticosa exhibited antioxidant and cytotoxic activity through induction of apoptosis and G2/M cell cycle arrest. J. Ethnopharmacol. 2013, 146, 525–535. [Google Scholar] [CrossRef]
- Mamudu, U.; Alnarabiji, M.S.; Lim, R.C. Adsorption Isotherm and Molecular Modeling of Phytoconstituents from Dillenia Suffruticosa Leaves for Corrosion Inhibition of Mild Steel in 1.0 M Hydrochloric Acid Solution. Results Surf. Interfaces 2023, 13, 100145. [Google Scholar] [CrossRef]
- Bergamasco, S.; Zikeli, F.; Vinciguerra, V.; Sobolev, A.P.; Scarnati, L.; Tofani, G.; Scarascia Mugnozza, G.; Romagnoli, M. Extraction and Characterization of Acidolysis Lignin from Turkey Oak (Quercus cerris L.) and Eucalypt (Eucalyptus camaldulensis Dehnh.) Wood from Population Stands in Italy. Polymers 2023, 15, 3591. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Abdullah, R.; Ueda, K.; Saka, S. Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water. J. Wood Sci. 2014, 60, 278–286. [Google Scholar] [CrossRef]
- Bellesia, T.; Carullo, D.; Fachin, A.; Caneva, E.; Farris, S. A soft processing technology for the extraction of cellulose from plant residues and agri-food wastes. Food Biosci. 2024, 62, 105141. [Google Scholar] [CrossRef]
- Sumaiyah, S.; Hasibuan, P.A.Z.; Syahputra, H.; Lubis, M.F. The Nanocrystalline Cellulose from Ananas Comosus Leaf Wastes: An Overview to Extraction, Purification, and Applications as Curcumin Drug Delivery System. J. Appl. Pharm. Sci. 2024, 14, 165–173. [Google Scholar] [CrossRef]
- Chowdhury, Z.Z.; Hamid, S.B.A. Preparation and Characterization of Nanocrystalline Cellulose using Ultrasonication Combined with a Microwave-assisted Pretreatment Process. BioResources 2016, 11, 3397–3415. [Google Scholar] [CrossRef]
- Oyohwose, U.A.; Omoko, I.V. Extraction and Characterization of Nanocrystalline Cellulose from Sugarcane Bagasse. Int. J. Nov. Res. Dev. 2023, 8, 789–797, ISSN: 2456-4184. [Google Scholar]
- Bolio-López, G.I.; Cadenas-Madrigal, G.; Veleva, L.; Falconi, R.; de la Cruz-Burelo, P.; Hernández-Villegas, M.M.; Pelayo-Muñoz, L. Extraction of Cellulose Fibers from to Leaf Petioles (Calathea Lutea) and Characterization. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 977–981. [Google Scholar]
- Al-Dabash, B.M.; Al-Kahali, M.S. Nanocellulose from Banana Pseudostem for Pb2+ and Cd2+ Ions Removal from Aqueous Solutions. Bioresour. Environ. 2025, 3, 14–36. [Google Scholar]
- Parikka, M. Global biomass fuel resources. Biomass Bioenergy 2004, 27, 613–620. [Google Scholar] [CrossRef]
- Kulic, G.J.; Radojicic, V.B. Analysis of Cellulose Content in Stalks and Leaves of Large Leaf Tobacco. J. Agric. Sci. 2011, 56, 207–215. [Google Scholar] [CrossRef]
- Kuterbekov, K.A.; Omeiza, L.A.; Kubenova, M.M.; Bekmyrza, K.Zh.; Baratova, A.A.; Aidarbekov, N.K.; Kabyshev, A.M. Method for Obtaining Perovskite Material//Patent for Utility Model. Kazakhstan Patent No. 10322, 20 March 2025. [Google Scholar]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Huang, S.; Zhou, L.; Li, M.-C.; Wu, Q.; Zhou, D. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis. Materials 2017, 10, 80. [Google Scholar] [CrossRef]
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 2012, 37, 93–99. [Google Scholar] [CrossRef]
- Almutairi, M.S.; Ali, M. Direct detection of saponins in crude extracts of soapnuts by FTIR. Nat. Prod. Res. 2015, 29, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, Z. Structure characteristics of self-bonding boards during hot press for leukaemia inhibition. Saudi Pharm. J. 2016, 24, 312–317. [Google Scholar] [CrossRef]
- Chen, Y.W.; Lee, H.V.; Abd Hamid, S.B. Preparation and Characterization of Cellulose Crystallites via Fe(III)-, Co(II)- and Ni(II)-Assisted Dilute Sulfuric Acid Catalyzed Hydrolysis Process. J. Nano Res. 2016, 41, 96–109. [Google Scholar] [CrossRef]
- Hishikawa, Y.; Togawa, E.; Kondo, T. Characterization of Individual Hydrogen Bonds in Crystalline Regenerated Cellulose Using Resolved Polarized FTIR Spectra. ACS Omega 2017, 2, 1469–1476. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Abd-Eladl, M.; Abou-Baker, N.H. Lignocellulosic biomass for the preparation of cellulose-based hydrogel and its use for optimizing water resources in agriculture. J. Appl. Polym. Sci. 2015, 132, 42652. [Google Scholar] [CrossRef]
- Maiti, S.; Jayaramudu, J.; Das, K.; Reddy, S.M.; Sadiku, R.; Ray, S.S.; Liu, D. Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr. Polym. 2013, 98, 562–567. [Google Scholar] [CrossRef]
- Shankar, S.; Rhim, J.-W. Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr. Polym. 2016, 135, 18–26. [Google Scholar] [CrossRef]
- da Silveira, J.H.; Dorneles, R.H.T.; Sebben, V.H.A.; Gasparin, F.P.; da Silva Ries, L.A. Characterization of residual biomass from the harvest of Eucalyptus saligna for thermal conversion processes. Rev. Eletrônica Gestão Educ. Tecnol. Ambient. 2020, 24, e13. [Google Scholar] [CrossRef]
- Petito, N.D.L.; Devens, J.M.; Falcão, D.Q.; Dantas, F.M.L.; Passos, T.S.; Araujo, K.G.D.L. Nanoencapsulation of Red Bell Pepper Carotenoids: Comparison of Encapsulating Agents in an Emulsion Based System. Colorants 2022, 1, 132–148. [Google Scholar] [CrossRef]
- Lim, K.Y.; Foo, K.Y. Facile synthesis of nanocrystalline cellulose from rice husk by microwave heating: Evaluation of morphological architectures from the macro-to-nano dimensions. Cellulose 2024, 31, 9661–9679. [Google Scholar] [CrossRef]
- Mamudu, U.; Dufresne, A.; Lim, R.C. Synthesis and characterization of phosphorylated cellulose nanocrystals for enhanced UV stability of epoxy nanocomposite films. Compos. Part C Open Access 2023, 12, 100393. [Google Scholar] [CrossRef]
- Tofani, G.; Cornet, I.; Tavernier, S. Estimation of hydrogen peroxide effectivity during bleaching using the Kappa number. Chem. Pap. 2021, 75, 5749–5758. [Google Scholar] [CrossRef]
- Ju, X.; Bowden, M.; Brown, E.E.; Zhang, X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr. Polym. 2015, 123, 476–481. [Google Scholar] [CrossRef] [PubMed]
Sample | XRD Results | Thermogravimetric Results | DLS Results | |||
---|---|---|---|---|---|---|
Crystallinity Index (C.I) (%) | Crystalline Size of D200 (nm) | TGA (TO (°C)) | DTG (Tmax (°C)) | Zeta Potential (mV) | Z-Average Particle Size (nm) | |
Simpor leaf residue | 51.3 | 0.67 | 230 | 315 | - | - |
α-cellulose | 52.4 | 1.67 | 290 | 332 | - | - |
NCC | 64.7 | 1.82 | 288 | 325 | −70.8 | 251.7 |
Biomass | Extraction Protocol | Acid Concentration | Hydrolysis Time (Minutes) | Hydrolysis Temperature (°C) | Crystallinity Index (%) | Reference |
---|---|---|---|---|---|---|
Dried stalk of Corchorus olitorius | Acid hydrolysis | 1 M sulfuric acid | 35 | 90 | 88.32 | [12] |
Sugarcane bagasse | Acid hydrolysis | 64% w/w sulfuric acid | 45 | 55 | 77. | [13]. |
Pineapple crown leaf fiber | Acid hydrolysis | 1 M sulfuric acid | 60 | 45 | 63.34 | [1] |
Ananas comosus leaf wastes | Acid hydrolysis | 40% w/w sulfuric acid | 25 | 45 | 75.89 | [11] |
Rice husk | Acid hydrolysis | 10 molL−1 sulfuric acid | 40 | 50 | 59.0 | [23] |
Simpor leaf residue | Acid hydrolysis | 40% w/w sulfuric acid | 45 | 60 | 64.7 | This study |
List of Chemicals and Equipment | Roles |
---|---|
Hydrogen peroxide (H2O2) | Bleaching |
Sodium hydroxide (NaOH) | Increase stiffness of cellulose while removing impurities such as lignin and hemicellulose |
Absolute ethanol | Washing of extractives from cellulose |
Analytical grade of sulfuric acid | Hydrolysis of cellulose |
Soxhlet apparatus | phytocompounds removal from the residue |
Oven | Drying of the extracted cellulose and NCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamudu, U.; Kabyshev, A.; Bekmyrza, K.; Kuterbekov, K.A.; Baratova, A.; Omeiza, L.A.; Lim, R.C. Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue. Molecules 2025, 30, 1622. https://doi.org/10.3390/molecules30071622
Mamudu U, Kabyshev A, Bekmyrza K, Kuterbekov KA, Baratova A, Omeiza LA, Lim RC. Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue. Molecules. 2025; 30(7):1622. https://doi.org/10.3390/molecules30071622
Chicago/Turabian StyleMamudu, Ukashat, Asset Kabyshev, Kenzhebatyr Bekmyrza, Kairat A. Kuterbekov, Aliya Baratova, Lukman Ahmed Omeiza, and Ren Chong Lim. 2025. "Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue" Molecules 30, no. 7: 1622. https://doi.org/10.3390/molecules30071622
APA StyleMamudu, U., Kabyshev, A., Bekmyrza, K., Kuterbekov, K. A., Baratova, A., Omeiza, L. A., & Lim, R. C. (2025). Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue. Molecules, 30(7), 1622. https://doi.org/10.3390/molecules30071622