Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,021)

Search Parameters:
Keywords = polarization-maintaining

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2292 KB  
Article
Comprehensive LC-ESI-HRMS/MS Profiling and Assessment of Texture, Predicted Glycaemic Index, Antioxidant Activity and Digestive Enzyme Inhibition of Gluten- and Lactose-Free Cookies Enriched with Pomegranate By-Products
by Roberta Pino, Rosa Tundis, Vincenzo Sicari, Antonio Mincione, Antonio Gattuso, Chiara La Torre, Alessia Fazio, Sonia Piacente, Milena Masullo, Antonietta Cerulli and Monica Rosa Loizzo
Foods 2026, 15(3), 457; https://doi.org/10.3390/foods15030457 - 28 Jan 2026
Abstract
This study investigated gluten- and lactose-free cookies enriched with pomegranate seed flour (PSF, 5 and 10% w/w), a sustainable by-product of juice processing. LC-ESI/HRMS/MS analysis of PSF identified 36 bioactive compounds, mainly flavonoids, phenolic acids, hydrolysable tannins, and polar lipids. [...] Read more.
This study investigated gluten- and lactose-free cookies enriched with pomegranate seed flour (PSF, 5 and 10% w/w), a sustainable by-product of juice processing. LC-ESI/HRMS/MS analysis of PSF identified 36 bioactive compounds, mainly flavonoids, phenolic acids, hydrolysable tannins, and polar lipids. PSF incorporation significantly affected colour and texture, increasing friability, as evidenced by a reduction in breaking force from 35.37 N in the control cookie to 21.72 N in cookies enriched with 10% PSF, while maintaining good sensory acceptability. Total phenol (≈1.60–1.82 mg GAE/g) and flavonoid contents were only slightly affected by PSF addition; however, antioxidant activity markedly increased, with FRAP values rising from 55.8 to 67.82 μM Fe (II)/g and DPPH IC50 values decreasing from 31.38 to 12.72 μg/mL in the 10% PSF-enriched cookies. The enriched cookies inhibited pancreatic lipase, α-amylase, and α-glucosidase in a clear concentration-dependent manner and showed a reduced predicted glycaemic index (pGI 46.80 vs. 50.08 in the control). Multivariate analysis confirmed a clear dose-dependent effect of PSF on functional, textural, and sensory properties. Overall, pomegranate seed flour proved to be an effective upcycled ingredient for enhancing the functional profile of gluten- and lactose-free bakery products. Further studies using digestion models and in vivo or clinical approaches are needed to clarify the nutritional relevance and health effects of PSF-enriched foods. Full article
(This article belongs to the Special Issue High-Value Processing and Utilization of Agro-Food Resources)
Show Figures

Figure 1

23 pages, 965 KB  
Article
Smart Protection Relay for Power Transformers Using Time-Domain Feature Recognition
by Hengchu Shi, Hao You, Xiaofan Chen, Ruisi Li, Shoudong Xu, Jianqiao Zhang and Ruiwen He
Processes 2026, 14(3), 449; https://doi.org/10.3390/pr14030449 - 27 Jan 2026
Abstract
Conventional transformer protection schemes are limited by the difficulty in distinguishing inrush currents from internal and external faults, which restricts operational accuracy to below 70%. Existing solutions are constrained by a trade-off: sensitivity is compromised when setting values are increased, while speed is [...] Read more.
Conventional transformer protection schemes are limited by the difficulty in distinguishing inrush currents from internal and external faults, which restricts operational accuracy to below 70%. Existing solutions are constrained by a trade-off: sensitivity is compromised when setting values are increased, while speed is sacrificed when time delays are introduced. To address these limitations, a novel deep learning-based method for transformer fault identification is proposed. First, a feature model is constructed utilizing the time-domain sum of voltage and current fault components alongside current polarity characteristics. Subsequently, a channel attention-based Capsule Network (SE-CapsuleNet) is employed to automatically extract deep features across normal operation, inrush currents, and fault types. Simulation results demonstrate that inrush conditions are accurately differentiated from fault states. Robustness is maintained under high fault resistance (400 Ω) and 20 dB noise interference, while immunity to current transformer (CT) saturation and core residual magnetism is exhibited. The proposed protection relay simultaneously meets the requirements of rapid response, high sensitivity, and safety stability. Full article
(This article belongs to the Special Issue Adaptive Control and Optimization in Power Grids)
26 pages, 5622 KB  
Article
Phase-Controlled Bidirectional Circularly Polarized Dual 4-Port SIW MIMO Antenna with Enhanced Isolation for Sub-6 GHz Vehicular Communications
by Kamepalli Dharani, M. Sujatha, Samineni Peddakrishna and Jayendra Kumar
Electronics 2026, 15(3), 539; https://doi.org/10.3390/electronics15030539 - 27 Jan 2026
Abstract
This paper presents a dual four-port circularly polarized (CP) MIMO antenna based on substrate integrated waveguide (SIW) technology for sub-6 GHz applications. The design consists of two identical four-port SIW-based CP-MIMO antennas arranged in a mirror-symmetric configuration with an air gap of 15 [...] Read more.
This paper presents a dual four-port circularly polarized (CP) MIMO antenna based on substrate integrated waveguide (SIW) technology for sub-6 GHz applications. The design consists of two identical four-port SIW-based CP-MIMO antennas arranged in a mirror-symmetric configuration with an air gap of 15 mm. Each antenna employs four symmetrically arranged cross-shaped SIW patches excited by coaxial probes. Bidirectional radiation is achieved by applying a 180° phase difference between corresponding ports of the mirror symmetric configuration, referred to as the Backward-Radiating Unit (BRU) and the Forward-Radiating Unit (FRU). The bidirectional radiation mechanism is supported by array-factor-based theoretical modelling, which explains the constructive and destructive interference under phase-controlled excitation. To ensure high isolation and stable polarization performance, the antenna design incorporates defected ground structures, inter-element decoupling strips, and vertical metallic vias. Simulations indicate an operating band from 5.1 to 5.4 GHz. Measurements show a −10 dB bandwidth from 5.25 to 5.55 GHz, with the frequency shift attributed to fabrication tolerances and measurement uncertainties. The antenna achieves inter-port isolation better than −15 dB. A 3 dB axial-ratio bandwidth is maintained across the operating band. Measured axial-ratio values remain below 3 dB from 5.25 to 5.55 GHz, while simulations predict a corresponding range from 5.1 to 5.4 GHz. The proposed configuration achieves a peak gain exceeding 4 dBi and maintains an envelope correlation coefficient below 0.05. These results confirm its suitability for CP-MIMO systems with controlled spatial coverage. With a physical size of 0.733λ0 × 0.733λ0 per array, the proposed antenna is well-suited for vehicular and space-constrained wireless systems requiring bidirectional CP-MIMO coverage. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 15015 KB  
Article
Irf5 Knockdown in Bone Marrow-Derived Macrophages Favors M1-to-M2 Transition
by Elizaveta Petrova, Ekaterina Sherstyukova, Snezhanna Kandrashina, Vladimir Inozemtsev, Alexandra Tsitrina, Viktoriya Fedorova, Mikhail Shvedov, Artem Kuzovlev, Maxim Dokukin, Yuri Kotelevtsev, Arsen Mikaelyan and Viktoria Sergunova
Cells 2026, 15(3), 238; https://doi.org/10.3390/cells15030238 - 26 Jan 2026
Viewed by 18
Abstract
The transcription factor IRF5 maintains macrophages in the pro-inflammatory M1 state. We assessed the effects of siRNA-mediated knockdown of Irf5 on murine bone marrow-derived macrophages (BMDM) in M0, M1 and M2 states. Knockdown of Irf5 in M1 macrophages made them phenotypically similar to [...] Read more.
The transcription factor IRF5 maintains macrophages in the pro-inflammatory M1 state. We assessed the effects of siRNA-mediated knockdown of Irf5 on murine bone marrow-derived macrophages (BMDM) in M0, M1 and M2 states. Knockdown of Irf5 in M1 macrophages made them phenotypically similar to M2 macrophages, which was reflected in the decreased expression of the M1 marker iNOS, increased expression of the M2 marker CD206, increased mitochondrial content and respective morphological changes. Interestingly, the M2 phenotype was also affected by the reduction in Irf5. Using atomic force microscopy (AFM), we showed that Irf5 knockdown increases plasma membrane roughness, particularly in M2 macrophages. AFM-based stiffness measurements indicated that Irf5 knockdown altered macrophage elasticity, potentially influencing their functional behavior. Our data suggest a complex role of IRF5 in macrophage polarization, supporting its dual role as a transcriptional activator and repressor both in M1 and M2 states, and highlight the importance of IRF5 in the maintenance of metabolic and functional properties of macrophages. Full article
(This article belongs to the Special Issue Advances in Scanning Probe Microscopy in Cell Biology)
Show Figures

Figure 1

19 pages, 11282 KB  
Article
Bamboo Derived Charcoal for Highly-Efficient Photothermal Evaporation Materials
by Wenmu Feng, Shushan Yuan, Junyao Dai, Jiran Wu, Bing Li and Yue Wang
Separations 2026, 13(2), 44; https://doi.org/10.3390/separations13020044 - 26 Jan 2026
Viewed by 30
Abstract
Bamboo-derived biochar (BC) is promising for high-salinity wastewater treatment through photothermal evaporation. This study systematically evaluated BCs synthesized at 400–800 °C with residence times of 40 or 70 min. Pyrolysis temperature proved dominant, with 600 °C representing a critical threshold. Below this temperature, [...] Read more.
Bamboo-derived biochar (BC) is promising for high-salinity wastewater treatment through photothermal evaporation. This study systematically evaluated BCs synthesized at 400–800 °C with residence times of 40 or 70 min. Pyrolysis temperature proved dominant, with 600 °C representing a critical threshold. Below this temperature, BCs maintained high carbon content and polar functional groups but exhibited limited porosity. Above it, structural reorganization enhanced pore development and aromaticity while reducing polar surface groups. Residence time primarily influenced volatile retention, and prolonged pyrolysis led to pore collapse. The optimal BC—produced at 800 °C for 40 min—combined hierarchical porosity with balanced surface chemistry, achieving an evaporation rate of 1.21 kg/m2·h and a photothermal efficiency of 70.45% under high-salinity conditions. Mechanistic analysis indicates that short, high-temperature pyrolysis preserves structural integrity and interfacial activity with minimal energy input. These results establish a thermal processing approach that reconciles carbon stability with surface functionality, offering practical guidance for scaling efficient and sustainable biochar-based wastewater treatment systems. Full article
(This article belongs to the Special Issue Separation Process for Sustainable Utilization of Bioresources)
Show Figures

Figure 1

26 pages, 6805 KB  
Article
Danthron Attenuates Intestinal Inflammation by Modulating Oxidative Stress via the EGFR-PI3K-AKT and Nrf2-HO-1 Pathways
by Chujun Ni, Haiqing Liu, Haiyang Jiang, Zexing Lin, Kangjian Wu, Runnan Wang, Huan Yang, Weijie Li, Chaogang Fan and Yun Zhao
Antioxidants 2026, 15(2), 157; https://doi.org/10.3390/antiox15020157 - 23 Jan 2026
Viewed by 191
Abstract
Inflammatory bowel disease (IBD) is characterized by excessive oxidative stress, mitochondrial dysfunction, and persistent activation of pro-inflammatory signaling pathways. Danthron, a natural anthraquinone derivative from rhubarb, has been reported to possess anti-inflammatory and antioxidant properties, yet its regulatory mechanisms in intestinal inflammation remain [...] Read more.
Inflammatory bowel disease (IBD) is characterized by excessive oxidative stress, mitochondrial dysfunction, and persistent activation of pro-inflammatory signaling pathways. Danthron, a natural anthraquinone derivative from rhubarb, has been reported to possess anti-inflammatory and antioxidant properties, yet its regulatory mechanisms in intestinal inflammation remain unclear. In this study, we combined network pharmacology, transcriptomic profiling, cell-based assays, intestinal organoids, and a dextran sulfate sodium (DSS)-induced colitis model to determine the protective effects of Danthron against oxidative injury. Integrated target prediction and RNA-seq analysis identified EGFR–PI3K–AKT and Nrf2–HO-1 as key signaling axes modulated by Danthron. In macrophages and intestinal epithelial cells, Danthron markedly suppressed LPS- or H2O2-induced ROS accumulation, lipid peroxidation, and mitochondrial membrane potential collapse, while restoring superoxide dismutase activity and reducing malondialdehyde levels. Danthron also inhibited M1 macrophage polarization, preserved epithelial tight-junction proteins, and maintained transepithelial electrical resistance. CETSA, DARTS, and molecular docking confirmed direct engagement of Danthron with components of both the EGFR–PI3K–AKT and Nrf2–HO-1 pathways. In vivo, Danthron significantly ameliorated DSS-induced colitis, reducing inflammatory cytokines, epithelial apoptosis, oxidative stress, and myeloid cell infiltration while improving mucosal architecture and enhancing organoid regenerative capacity. These findings demonstrate that Danthron exerts potent antioxidant and anti-inflammatory effects through coordinated inhibition of EGFR–PI3K–AKT signaling and activation of the Nrf2–HO-1 axis, suggesting its promise as a multi-target therapeutic candidate for IBD. Full article
Show Figures

Figure 1

16 pages, 1456 KB  
Article
Cell Density-Dependent Suppression of Perlecan and Biglycan Expression by Gold Nanocluster in Vascular Endothelial Cells
by Takato Hara, Misato Saeki, Misaki Shirai, Yuichi Negishi, Chika Yamamoto and Toshiyuki Kaji
Cells 2026, 15(2), 209; https://doi.org/10.3390/cells15020209 - 22 Jan 2026
Viewed by 193
Abstract
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and [...] Read more.
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and that organic–inorganic hybrid molecules, such as metal complexes and organometallic compounds, serve as useful tools to analyze proteoglycan synthesis mechanisms. However, the effects of metal compounds lacking electrophilicity on proteoglycan synthesis remain unclear. Au25(SG)18, a nanoscale gold cluster consisting of a metal core protected by gold–glutathione complexes, exhibits extremely low intramolecular polarity. In this study, we investigated the effect of Au25(SG)18 on proteoglycan synthesis in vascular endothelial cells. Au25(SG)18 accumulated significantly in vascular endothelial cells at low cell density and suppressed the expression of perlecan, a major heparan sulfate proteoglycan in cells, by inactivating ADP-ribosylation factor 6 (Arf6). Additionally, Au25(SG)18 reduced the expression of biglycan, a small dermatan sulfate proteoglycan, in vascular endothelial cells at low cell density; however, the underlying mechanisms remain unclear. Overall, our findings suggest that organic–inorganic hybrid molecules regulate the activity of Arf6-mediated protein transport to the extracellular space and that perlecan is regulated through this mechanism, highlighting the importance of Arf6-mediated extracellular transport for maintaining vascular homeostasis. Full article
(This article belongs to the Special Issue Molecular Signaling and Mechanism on Vascular Remodeling)
Show Figures

Graphical abstract

23 pages, 1967 KB  
Review
Retinal Astrocytes: Key Coordinators of Developmental Angiogenesis and Neurovascular Homeostasis in Health and Disease
by Yi-Yang Zhang, Qi-Fan Sun, Wen Bai and Jin Yao
Biology 2026, 15(2), 201; https://doi.org/10.3390/biology15020201 - 22 Jan 2026
Viewed by 77
Abstract
Retinal astrocytes reside mainly in the nerve fiber layer and are central to shaping retinal vessels and maintaining neurovascular balance. Derived from the optic nerve head, they spread across the inner retina to form a meshwork that both supports and instructs the emerging [...] Read more.
Retinal astrocytes reside mainly in the nerve fiber layer and are central to shaping retinal vessels and maintaining neurovascular balance. Derived from the optic nerve head, they spread across the inner retina to form a meshwork that both supports and instructs the emerging superficial vascular plexus. Immature astrocytes supply vascular endothelial growth factor-A(VEGF-A) to guide endothelial sprouting, while signals from growing vessels promote astrocyte maturation and strengthen the blood–retinal barrier. In disorders such as diabetic retinopathy and neovascular age-related macular degeneration, these cells show marked plasticity. Reactive astrogliosis can sustain VEGF and inflammation, favoring fragile, leaky neovessels, whereas alternative astrocyte states help reinforce barrier function and release anti-angiogenic factors. Located at the core of the neurovascular unit, astrocytes communicate continuously with endothelial cells, pericytes and neurons. This review integrates data from single-cell profiling and advanced imaging to outline astrocyte development, morphology and key signaling pathways (VEGF, PDGF, Wnt/Norrin, Eph/ephrin), and considers how tuning astrocyte polarization might be exploited to preserve retinal vascular integrity. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

20 pages, 1579 KB  
Article
Phthalimide Derivatives as Anti-Inflammatory Agents: In Silico COX-2 Targeting and In Vitro Inhibition of PGE2 Production
by Héctor M. Heras Martínez, Blanca Sánchez-Ramírez, Linda-Lucila Landeros-Martínez, David Rodríguez-Guerrero, José C. Espinoza-Hicks, Gerardo Zaragoza-Galán, Alejandro Bugarin and David Chávez-Flores
Pharmaceutics 2026, 18(1), 129; https://doi.org/10.3390/pharmaceutics18010129 - 20 Jan 2026
Viewed by 234
Abstract
Background/Objectives: The development of specific inhibitors for cyclooxygenase-2 (COX-2) is a challenge for public health. A series of 17 N-phthalimide hybrids was evaluated using a functional M06 meta-GGA hybrid in combination with a polarized 6-311G (d, p) basis set. The top [...] Read more.
Background/Objectives: The development of specific inhibitors for cyclooxygenase-2 (COX-2) is a challenge for public health. A series of 17 N-phthalimide hybrids was evaluated using a functional M06 meta-GGA hybrid in combination with a polarized 6-311G (d, p) basis set. The top three candidates (6, 10, and 17) were synthesized and evaluated as selective COX-2 inhibitors of PGE-2 using an integrated in silico–in vitro approach. Methods: Molecular docking against COX-2 (PDB 5KIR) and COX-1 (PDB 6Y3C), supported by homology modeling and DFT geometry optimization (B3LYP/6-31G*), revealed that the phthalimide carbonyl groups and the 3,4,5-trimethoxyphenyl or geranyl-derived moieties establish key hydrogen bonds and hydrophobic contacts with Arg120, Tyr355, Tyr385, and Ser530 in the COX-2 active site, conferring predicted selectivity ΔGCOX−2 vs. COX−1 = −1.4 to −2.8 kcal/mol. Results: The compounds complied with Lipinski’s and Veber’s rules and displayed favorable ADMET profiles. In vitro assessment in LPS-stimulated J774A.1 murine macrophages confirmed potent inhibition of PGE2 production, 3.05 µg/mL, with compound 17 exhibiting the highest efficacy, 97.79 ± 5.02% inhibition at 50 µg/mL, and 10 showing 95.22 ± 6.03% inhibition at 50 µg/mL. Notably, all derivatives maintained >90% cell viability up to 250 µg/mL by resazurin assay and showed no evidence of cytotoxicity or mitosis potential in the tests at 24 h. Conclusions: These results demonstrate that strategic hybridization of phthalimide with natural and synthetic product-derived fragments yields highly potential PGE2 inhibitors. Therefore, compounds 6, 10, and 17 are promising lead candidates for the development of safer anti-inflammatory agents. Full article
(This article belongs to the Special Issue Natural Pharmaceuticals Focused on Anti-inflammatory Activities)
Show Figures

Graphical abstract

23 pages, 3882 KB  
Article
Thermomechanics and Thermophysics of Optical Fiber Polymer Coating
by Aleksandr N. Trufanov, Anna A. Kamenskikh and Yulia I. Lesnikova
Polymers 2026, 18(2), 271; https://doi.org/10.3390/polym18020271 - 20 Jan 2026
Viewed by 304
Abstract
The viscoelastic properties of ultraviolet radiation-curable polymer coatings of optical fibers were studied experimentally and numerically. The test setup was completed, and a series of natural experiments were conducted for an extended temperature range from −110 °C to +120 °C using a dynamic [...] Read more.
The viscoelastic properties of ultraviolet radiation-curable polymer coatings of optical fibers were studied experimentally and numerically. The test setup was completed, and a series of natural experiments were conducted for an extended temperature range from −110 °C to +120 °C using a dynamic mechanical analyzer (DMA). Discrete dependencies of the complex modulus on temperature and frequency of kinematic loading were obtained. The problem of multiparametric optimization was solved. Defining relations were obtained for protective coating polymers, making it possible to describe the thermomechanical behavior of the glass-forming materials under consideration in a wide temperature range, including relaxation transition. The optimal solution was found for 18 series terms at the selected reference temperature Tr = −70 °C, C1 = 20.036, and C2 = 32.666 for the DeSolite 3471-1-152A material. The optimal solution was found for 60 series terms at the selected reference temperature Tr = 0 °C, C1 = 40,242.2827, and C2 = 267,448.888 for the DeSolite DS-2015 material. The models were verified according to the data of creep experiments. The capabilities of the viscoelastic model were demonstrated by the example of a numerical experiment on free thermal heating/cooling of a Panda-type optical fiber. Full article
(This article belongs to the Special Issue Polymer Thin Films and Their Applications)
Show Figures

Graphical abstract

16 pages, 3808 KB  
Article
Graphene/Chalcogenide Heterojunctions for Enhanced Electric-Field-Sensitive Dielectric Performance: Combining DFT and Experimental Study
by Bo Li, Nanhui Zhang, Yuxing Lei, Mengmeng Zhu and Haitao Yang
Nanomaterials 2026, 16(2), 128; https://doi.org/10.3390/nano16020128 - 18 Jan 2026
Viewed by 195
Abstract
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) [...] Read more.
Electric-field-sensitive dielectrics play a crucial role in electric field induction sensing and related capacitive conversion, with interfacial polarization and charge accumulation largely determining the signal output. This paper introduces graphene/transition metal dichalcogenide (TMD) (MoSe2, MoS2, and WS2) heterojunctions as functional fillers to enhance the dielectric response and electric-field-induced voltage output of flexible polydimethylsiloxane (PDMS) composites. Density functional theory (DFT) calculations were used to evaluate the stability of the heterojunctions and interfacial electronic modulation, including binding behavior, charge redistribution, and Fermi level-referenced band structure/total density of states (TDOS) characteristics. The calculations show that the graphene/TMD interface is primarily controlled by van der Waals forces, exhibiting negative binding energy and significant interfacial charge rearrangement. Based on these theoretical results, graphene/TMD heterojunction powders were synthesized and incorporated into polydimethylsiloxane (PDMS). Structural characterization confirmed the presence of face-to-face interfacial contacts and consistent elemental co-localization within the heterojunction filler. Dielectric spectroscopy analysis revealed an overall improvement in the dielectric constant of the composite materials while maintaining a stable loss trend within the studied frequency range. More importantly, calibrated electric field induction tests (based on pure PDMS) showed a significant enhancement in the voltage response of all heterojunction composite materials, with the WS2-G/PDMS system exhibiting the best performance, exhibiting an electric-field-induced voltage amplitude 7.607% higher than that of pure PDMS. This work establishes a microscopic-to-macroscopic correlation between interfacial electronic modulation and electric-field-sensitive dielectric properties, providing a feasible interface engineering strategy for high-performance flexible dielectric sensing materials. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

20 pages, 4237 KB  
Article
Systematic Measurement and Analysis of Beam Degree of Polarization Under Diverse Atmospheric Turbulence Conditions
by Chenghu Ke, Yan Shu, Meimiao Han and Xizheng Ke
Photonics 2026, 13(1), 82; https://doi.org/10.3390/photonics13010082 - 18 Jan 2026
Viewed by 81
Abstract
Atmospheric turbulence-induced random fluctuations in the refractive index can lead to the degradation of the polarization of polarized light. In accordance with the unified theory of coherent polarization, a comprehensive investigation was undertaken to explore the variation in the degree of polarization (DOP) [...] Read more.
Atmospheric turbulence-induced random fluctuations in the refractive index can lead to the degradation of the polarization of polarized light. In accordance with the unified theory of coherent polarization, a comprehensive investigation was undertaken to explore the variation in the degree of polarization (DOP) of laser beams propagating through atmospheric turbulence channels under diverse weather conditions. This investigation involved both theoretical analyses and experimental validations, providing a multifaceted approach to understanding the dynamics of laser beam propagation in atmospheric turbulence. To this end, numerical simulations were performed to analyze the polarization-maintaining characteristics of laser beams with varying wavelengths, turbulence intensities, and initial DOP values. To validate the simulation results for various weather scenarios, three experimental links with different propagation distances were constructed. The experimental results demonstrated that as the turbulence intensity increased, the average DOP of the beam continuously decreased until it reached a threshold value. Furthermore, the polarization fluctuations exhibited a distance-threshold effect, wherein the polarization parameters tended to saturate beyond a critical propagation distance. Full article
Show Figures

Figure 1

18 pages, 5093 KB  
Article
Compact IC-Fed Cavity-Backed CP Crossed-Dipole Antenna with Wide Bandwidth and Wide Beamwidth for SatCom Mobile Terminals
by Kunshan Mo, Xing Jiang, Ling Peng, Qiushou Liu, Zhengde Li, Rui Fang and Qixiang Zhao
Sensors 2026, 26(2), 647; https://doi.org/10.3390/s26020647 - 18 Jan 2026
Viewed by 139
Abstract
This paper presents a compact wide bandwidth, wide beamwidth circularly polarized (CP) antenna for satellite communication (SatCom) mobile terminals. The radiator is based on a cavity-backed crossed dipole, while a commercial quadrature power-divider/phase-shifter IC replaces conventional quarter-wavelength phase-delay lines to suppress dispersion-induced phase [...] Read more.
This paper presents a compact wide bandwidth, wide beamwidth circularly polarized (CP) antenna for satellite communication (SatCom) mobile terminals. The radiator is based on a cavity-backed crossed dipole, while a commercial quadrature power-divider/phase-shifter IC replaces conventional quarter-wavelength phase-delay lines to suppress dispersion-induced phase errors and maintain stable CP performance over a broad frequency range. To broaden the beam, a tightly coupled arc-shaped parasitic strip encircles the tapered semicircular arms, and the cavity cross-section is reduced to enhance lateral radiation. In addition, the cavity sidewalls are electrically connected to the parasitic element to increase the effective electrical length, downshift the operating frequency, and enable miniaturization. A prototype was fabricated and measured. The measured impedance bandwidth (IMBW, |S11| < −10 dB) is 1.76–3.08 GHz, fully covered by the AR < 3 dB bandwidth. The peak gain remains above 2 dBic over 1.7–3.1 GHz, while the half-power beamwidth (HPBW) stays around 114–142° and the 3 dB axial-ratio beamwidth (ARBW, AR < 3 dB) is around 114–144° across the entire operating band. These results indicate that the proposed antenna is a promising candidate for integrated multi-band SatCom terminals requiring wide bandwidth operation and wide-angle coverage. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

25 pages, 4723 KB  
Article
Multiphysics Modelling Flow Disturbance Optimization of Proton Exchange Membrane Water Electrolysis Under Bubble Effects
by Chengming Du, Bo Huang, Ziqing Wang, Luhaibo Zhao, Haibo Wu, Shen Xu, Guoliang Wang and Zhiyong Tang
Energies 2026, 19(2), 437; https://doi.org/10.3390/en19020437 - 15 Jan 2026
Viewed by 225
Abstract
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model [...] Read more.
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model of the electrolysis was developed and experimentally validated. Four different configurations of rectangular turbulence promoters were designed within the anode serpentine flow field and compared with a conventional serpentine flow field (SFF) in terms of their multi-physics distribution characteristics. The results showed that, in the double-row rectangular block serpentine flow field (DRB SFF), the uniformity of liquid water saturation, temperature, and current density improved by 16.6%, 0.49% and 40.8%, respectively. The normal mass transfer coefficient increased by a factor of 6.3, and polarization performance improved by 6.98%. A cross-arranged turbulence promoter structure was further proposed. This design maintains effective turbulence while reducing flow resistance and pressure drop, thereby enhancing mass transfer efficiency and overall electrolysis performance through improved bubble fragmentation. Full article
Show Figures

Figure 1

14 pages, 5048 KB  
Article
Transmissive Multilayer Geometric Phase Gratings Using Water-Soluble Alignment Material
by Fatemeh Abbasi, Kristiaan Neyts, Inge Nys and Jeroen Beeckman
Crystals 2026, 16(1), 62; https://doi.org/10.3390/cryst16010062 - 15 Jan 2026
Viewed by 182
Abstract
Multilayer liquid crystal devices can offer enhanced optical functionalities for augmented reality and photonic applications, but fabrication remains severely limited by solvent incompatibility between photoalignment materials and underlying polymerized layers. Conventional photoalignment agents use aggressive solvents like N,N-dimethylformamide that damage polymerized substrates, necessitating [...] Read more.
Multilayer liquid crystal devices can offer enhanced optical functionalities for augmented reality and photonic applications, but fabrication remains severely limited by solvent incompatibility between photoalignment materials and underlying polymerized layers. Conventional photoalignment agents use aggressive solvents like N,N-dimethylformamide that damage polymerized substrates, necessitating protective interlayers. This study demonstrates a water-soluble photoalignment approach using AbA-2522 that eliminates these fabrication barriers. The water-soluble alignment material enables direct multilayer processing without layer damage while maintaining alignment quality equivalent to conventional materials. We successfully fabricate compact transmissive devices integrating liquid crystal polarization gratings with quarter-wave plates, achieving a first-order diffraction efficiency of 65.4% for 9 μm period gratings for linearly polarized incident light (λ = 457 nm). The multilayer structure exhibits highly selective polarization-dependent diffraction with efficiency ratios exceeding 10:1 between preferred and suppressed orders, eliminating external polarization control elements. Polarized optical microscopy confirms excellent alignment uniformity, while the fabrication process offers environmental benefits and reduced complexity. This approach establishes a practical pathway for advanced multilayer photonic devices critical for next-generation augmented reality systems and photonic integration, addressing fundamental challenges that have limited multilayer liquid crystal device development. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Graphical abstract

Back to TopTop