Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,398)

Search Parameters:
Keywords = point cloud analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

32 pages, 8202 KiB  
Article
A Machine Learning-Based Method for Lithology Identification of Outcrops Using TLS-Derived Spectral and Geometric Features
by Yanlin Shao, Peijin Li, Ran Jing, Yaxiong Shao, Lang Liu, Kunpeng Zhao, Binqing Gan, Xiaolei Duan and Longfan Li
Remote Sens. 2025, 17(14), 2434; https://doi.org/10.3390/rs17142434 - 14 Jul 2025
Viewed by 115
Abstract
Lithological identification of outcrops in complex geological settings plays a crucial role in hydrocarbon exploration and geological modeling. To address the limitations of traditional field surveys, such as low efficiency and high risk, we proposed an intelligent lithology recognition method, SG-RFGeo, for terrestrial [...] Read more.
Lithological identification of outcrops in complex geological settings plays a crucial role in hydrocarbon exploration and geological modeling. To address the limitations of traditional field surveys, such as low efficiency and high risk, we proposed an intelligent lithology recognition method, SG-RFGeo, for terrestrial laser scanning (TLS) outcrop point clouds, which integrates spectral and geometric features. The workflow involves several key steps. First, lithological recognition units are created through regular grid segmentation. From these units, spectral reflectance statistics (e.g., mean, standard deviation, kurtosis, and other related metrics), and geometric morphological features (e.g., surface variation rate, curvature, planarity, among others) are extracted. Next, a double-layer random forest model is employed for lithology identification. In the shallow layer, the Gini index is used to select relevant features for a coarse classification of vegetation, conglomerate, and mud–sandstone. The deep-layer module applies an optimized feature set to further classify thinly interbedded sandstone and mudstone. Geological prior knowledge, such as stratigraphic attitudes, is incorporated to spatially constrain and post-process the classification results, enhancing their geological plausibility. The method was tested on a TLS dataset from the Yueyawan outcrop of the Qingshuihe Formation, located on the southern margin of the Junggar Basin in China. Results demonstrate that the integration of spectral and geometric features significantly improves classification performance, with the Macro F1-score increasing from 0.65 (with single-feature input) to 0.82. Further, post-processing with stratigraphic constraints boosts the overall classification accuracy to 93%, outperforming SVM (59.2%), XGBoost (67.8%), and PointNet (75.3%). These findings demonstrate that integrating multi-source features and geological prior constraints effectively addresses the challenges of lithological identification in complex outcrops, providing a novel approach for high-precision geological modeling and exploration. Full article
Show Figures

Figure 1

24 pages, 10779 KiB  
Article
Digital Measurement Method for Main Arch Rib of Concrete-Filled Steel Tube Arch Bridge Based on Laser Point Cloud
by Zhiguan Huang, Chuanli Kang, Junli Liu and Hongjian Zhou
Infrastructures 2025, 10(7), 185; https://doi.org/10.3390/infrastructures10070185 - 12 Jul 2025
Viewed by 158
Abstract
Aiming to address the problem of low efficiency in the traditional manual measurement of the main arch rib components of concrete-filled steel tube (CFST) arch bridges, this study proposes a digital measurement technology based on the integration of geometric parameters and computer-aided design [...] Read more.
Aiming to address the problem of low efficiency in the traditional manual measurement of the main arch rib components of concrete-filled steel tube (CFST) arch bridges, this study proposes a digital measurement technology based on the integration of geometric parameters and computer-aided design (CAD) models. In this method, first, we perform the high-precision registration of the preprocessed scanned point cloud of the CFST arch rib components with the discretized design point cloud of the standardized CAD model. Then, in view of the fact that the fitting of point cloud geometric parameters is susceptible to the influence of sparse or uneven massive point clouds, these points are treated as outliers for elimination. We propose a method incorporating slicing to solve the interference of outliers and improve the fitting accuracy. Finally, the evaluation of quality, accuracy, and efficiency is carried out based on distance deviation analysis and geometric parameter comparison. The experimental results show that, for the experimental data, the fitting error of this method is reduced by 76.32% compared with the traditional method, which can improve the problems with measurement and fitting seen with the traditional method. At the same time, the measurement efficiency is increased by 5% compared with the traditional manual method. Full article
Show Figures

Figure 1

16 pages, 7396 KiB  
Article
Analysis of Doline Microtopography in Karst Mountainous Terrain Using UAV LiDAR: A Case Study of ‘Gulneomjae’ in Mungyeong City, South Korea
by Juneseok Kim and Ilyoung Hong
Sensors 2025, 25(14), 4350; https://doi.org/10.3390/s25144350 - 11 Jul 2025
Viewed by 182
Abstract
This study utilizes UAV-based LiDAR to analyze doline microtopography within a karst mountainous terrain. The study area, ‘Gulneomjae’ in Mungyeong City, South Korea, features steep slopes, limited accessibility, and abundant vegetation—conditions that traditionally hinder accurate topographic surveying. UAV LiDAR data were acquired using [...] Read more.
This study utilizes UAV-based LiDAR to analyze doline microtopography within a karst mountainous terrain. The study area, ‘Gulneomjae’ in Mungyeong City, South Korea, features steep slopes, limited accessibility, and abundant vegetation—conditions that traditionally hinder accurate topographic surveying. UAV LiDAR data were acquired using the DJI Matrice 300 RTK equipped with a Zenmuse L2 sensor, enabling high-density point cloud generation (98 points/m2). The point clouds were processed to remove non-ground points and generate a 0.25 m resolution DEM using TIN interpolation. A total of seven dolines were detected and delineated, and their morphometric characteristics—including area, perimeter, major and minor axes, and elevation—were analyzed. These results were compared with a 1:5000-scale DEM derived from the 2013 National Basic Map. Visual and numerical comparisons highlighted significant improvements in spatial resolution and feature delineation using UAV LiDAR. Although the 1:5000-scale DEM enables general doline detection, UAV LiDAR facilitates more precise boundary extraction and morphometric analysis. The study demonstrates the effectiveness of UAV LiDAR for detailed topographic mapping in complex karst terrains and offers a foundation for future automated classification and temporal change analysis. Full article
Show Figures

Figure 1

21 pages, 12122 KiB  
Article
RA3T: An Innovative Region-Aligned 3D Transformer for Self-Supervised Sim-to-Real Adaptation in Low-Altitude UAV Vision
by Xingrao Ma, Jie Xie, Di Shao, Aiting Yao and Chengzu Dong
Electronics 2025, 14(14), 2797; https://doi.org/10.3390/electronics14142797 - 11 Jul 2025
Viewed by 157
Abstract
Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-Real Gap, where models trained exclusively on simulation data degrade under real-world variations in lighting, texture, and weather. To address this problem, we propose RA3T (Region-Aligned 3D Transformer), a novel self-supervised framework [...] Read more.
Low-altitude unmanned aerial vehicle (UAV) vision is critically hindered by the Sim-to-Real Gap, where models trained exclusively on simulation data degrade under real-world variations in lighting, texture, and weather. To address this problem, we propose RA3T (Region-Aligned 3D Transformer), a novel self-supervised framework that enables robust Sim-to-Real adaptation. Specifically, we first develop a dual-branch strategy for self-supervised feature learning, integrating Masked Autoencoders and contrastive learning. This approach extracts domain-invariant representations from unlabeled simulated imagery to enhance robustness against occlusion while reducing annotation dependency. Leveraging these learned features, we then introduce a 3D Transformer fusion module that unifies multi-view RGB and LiDAR point clouds through cross-modal attention. By explicitly modeling spatial layouts and height differentials, this component significantly improves recognition of small and occluded targets in complex low-altitude environments. To address persistent fine-grained domain shifts, we finally design region-level adversarial calibration that deploys local discriminators on partitioned feature maps. This mechanism directly aligns texture, shadow, and illumination discrepancies which challenge conventional global alignment methods. Extensive experiments on UAV benchmarks VisDrone and DOTA demonstrate the effectiveness of RA3T. The framework achieves +5.1% mAP on VisDrone and +7.4% mAP on DOTA over the 2D adversarial baseline, particularly on small objects and sparse occlusions, while maintaining real-time performance of 17 FPS at 1024 × 1024 resolution on an RTX 4080 GPU. Visual analysis confirms that the synergistic integration of 3D geometric encoding and local adversarial alignment effectively mitigates domain gaps caused by uneven illumination and perspective variations, establishing an efficient pathway for simulation-to-reality UAV perception. Full article
(This article belongs to the Special Issue Innovative Technologies and Services for Unmanned Aerial Vehicles)
Show Figures

Figure 1

22 pages, 4083 KiB  
Article
Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain
by Alberto López-Amoedo, Henrique Lorenzo, Carolina Acuña-Alonso and Xana Álvarez
Forests 2025, 16(7), 1140; https://doi.org/10.3390/f16071140 - 10 Jul 2025
Viewed by 159
Abstract
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. [...] Read more.
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. This study proposes a cost-effective strategy using open-access tools and data to characterize and estimate wood volume in these plantations. Two stratification approaches—classical and cluster-based—were compared to a modeling method based on Principal Component Analysis (PCA). Data came from open-access national LiDAR point clouds, acquired using manned aerial vehicles under the Spanish National Aerial Orthophoto Plan (PNOA). Moreover, two volume estimation methods were applied: one from the Xunta de Galicia (XdG) and another from Spain’s central administration (4IFN). A Generalized Linear Model (GLM) was also fitted using PCA-derived variables with logarithmic transformation. The results show that although overall volume estimates are similar across methods, cluster-based stratification yielded significantly lower absolute errors per hectare (XdG: 28.04 m3/ha vs. 44.07 m3/ha; 4IFN: 25.64 m3/ha vs. 38.22 m3/ha), improving accuracy by 7% over classical stratification. Moreover, it does not require precise field parcel locations, unlike PCA modeling. Both official volume estimation methods tended to overestimate stock by about 10% compared to PCA. These results confirm that clustering offers a practical, low-cost alternative that improves estimation accuracy by up to 18 m3/ha in fragmented forest landscapes. Full article
Show Figures

Figure 1

17 pages, 1952 KiB  
Article
Feasibility and Safety of Early Cardiac Rehabilitation Using Remote Electrocardiogram Monitoring in Patients with Cardiac Surgery: A Pilot Study
by Yeon Mi Kim, Bo Ryun Kim, Sung Bom Pyun, Jae Seung Jung, Hee Jung Kim and Ho Sung Son
J. Clin. Med. 2025, 14(14), 4887; https://doi.org/10.3390/jcm14144887 - 10 Jul 2025
Viewed by 295
Abstract
Purpose: We aimed to evaluate the safety and feasibility of a remote electrocardiogram (ECG) monitoring-based cardiac rehabilitation (CR) program during an early postoperative period in patients who underwent cardiac surgery. Methods: Five days after cardiac surgery, patients were referred to a [...] Read more.
Purpose: We aimed to evaluate the safety and feasibility of a remote electrocardiogram (ECG) monitoring-based cardiac rehabilitation (CR) program during an early postoperative period in patients who underwent cardiac surgery. Methods: Five days after cardiac surgery, patients were referred to a CR department and participated in a low-intensity inpatient CR program while wearing an ECG monitoring device. Prior to discharge, the patients underwent a cardiopulmonary exercise test (CPET) and squat endurance test to determine the suitable intensity and target heart rate (HR) for home-based CR (HBCR). During 2 weeks of the HBCR period after discharge, patients participated in aerobic and resistance exercises. Electrocardiogram data were transmitted to a cloud, where researchers closely monitored them through a website and provided feedback to the patients via telephone calls. Grip strength (GS), 6 min walk distance (6 MWD), EuroQol-5 dimension (EQ-5D), short-form 36-item health survey (SF-36), and Korean Activity Scale/Index (KASI) were measured at three different time points: 5 d post-surgery (T1), pre-discharge (T2), and 2 weeks after discharge (T3). Squat endurance tests and CPET were performed only at T2 and T3. Result: Sixteen patients completed the study, seven (44%) of whom underwent coronary artery bypass graft surgery (CABG). During the study period between T2 and T3, peak VO2 improved from 12.39 ± 0.57 to 17.93 ± 1.25 mL/kg/min (p < 0.01). The squat endurance test improved from 16.69 ± 2.31 to 21.81 ± 2.31 (p < 0.01). In a comparison of values of time points between T1 and T3, the GS improved from 28.30 ± 1.66 to 30.40 ± 1.70 kg (p = 0.02) and 6 MWD increased from 249.33 ± 20.92 to 387.02 ± 22.77 m (p < 0.01). The EQ-5D and SF-36 improved from 0.59 ± 0.03 to 0.82 ± 0.03 (p < 0.01) and from 83.99 ± 3.40 to 122.82 ± 6.06 (p < 0.01), and KASI improved from 5.44 ± 0.58 to 26.11 ± 2.70 (p < 0.01). In a subgroup analysis, the CABG group demonstrated a greater increase in 6 MWD (102.29 m, p < 0.01) than the non-CABG group. At the end of the study, 75% of the patients expressed satisfaction with the early CR program guided by remote ECG monitoring. Conclusions: Our findings suggest that early remote ECG monitoring-based CR programs are safe and feasible for patients who have undergone cardiac surgery. Additionally, the program improved aerobic capacity, functional status, and quality of life. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

22 pages, 10490 KiB  
Article
DFPS: An Efficient Downsampling Algorithm Designed for the Global Feature Preservation of Large-Scale Point Cloud Data
by Jiahui Dong, Maoyi Tian, Jiayong Yu, Guoyu Li, Yunfei Wang and Yuxin Su
Sensors 2025, 25(14), 4279; https://doi.org/10.3390/s25144279 - 9 Jul 2025
Viewed by 197
Abstract
This paper introduces an efficient 3D point cloud downsampling algorithm (DFPS) based on adaptive multi-level grid partitioning. By leveraging an adaptive hierarchical grid partitioning mechanism, the algorithm dynamically adjusts computational intensity in accordance with terrain complexity. This approach effectively balances the global feature [...] Read more.
This paper introduces an efficient 3D point cloud downsampling algorithm (DFPS) based on adaptive multi-level grid partitioning. By leveraging an adaptive hierarchical grid partitioning mechanism, the algorithm dynamically adjusts computational intensity in accordance with terrain complexity. This approach effectively balances the global feature retention of point cloud data with computational efficiency, making it highly adaptable to the growing trend of large-scale 3D point cloud datasets. DFPS is designed with a multithreaded parallel acceleration architecture, which significantly enhances processing speed. Experimental results demonstrate that, for a point cloud dataset containing millions of points, DFPS reduces processing time from approximately 161,665 s using the original FPS method to approximately 71.64 s at a 12.5% sampling rate, achieving an efficiency improvement of over 2200 times. As the sampling rate decreases, the performance advantage becomes more pronounced: at a 3.125% sampling rate, the efficiency improves by nearly 10,000 times. By employing visual observation and quantitative analysis (with the chamfer distance as the measurement index), it is evident that DFPS can effectively preserve global feature information. Notably, DFPS does not depend on GPU-based heterogeneous computing, enabling seamless deployment in resource-constrained environments such as airborne and mobile devices, which makes DFPS an effective and lightweighting tool for providing high-quality input data for subsequent algorithms, including point cloud registration and semantic segmentation. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

23 pages, 4005 KiB  
Article
Exploring Unconventional 3D Geovisualization Methods for Land Suitability Assessment: A Case Study of Jihlava City
by Oldrich Bittner, Jakub Zejdlik, Jaroslav Burian and Vit Vozenilek
ISPRS Int. J. Geo-Inf. 2025, 14(7), 269; https://doi.org/10.3390/ijgi14070269 - 8 Jul 2025
Viewed by 218
Abstract
Effective management of urban development requires robust decision-support tools, including land suitability analysis and its visual communication. This study introduces and evaluates seven 3D geovisualization methods—Horizontal Planes, Point Cloud, 3D Surface, Vertical Planes, 3D Graduated Symbols, Prism Map, and Voxels—for visualizing land suitability [...] Read more.
Effective management of urban development requires robust decision-support tools, including land suitability analysis and its visual communication. This study introduces and evaluates seven 3D geovisualization methods—Horizontal Planes, Point Cloud, 3D Surface, Vertical Planes, 3D Graduated Symbols, Prism Map, and Voxels—for visualizing land suitability for residential development in Jihlava, Czechia. Using five raster-based data layers derived from a multi-criteria evaluation (Urban Planner methodology) across three time horizons (2023, 2028, 2033), the visualizations were implemented in ArcGIS Online and assessed by 19 domain experts via a structured questionnaire. The evaluation focused on clarity, usability, and accuracy in interpreting land suitability values, with the methods being rated on a five-point scale. Results show that the Horizontal Planes method was rated highest in terms of interpretability and user satisfaction, while 3D Surface and Vertical Planes were considered the least effective. The study demonstrates that visualization methods employing visual variables (e.g., color and transparency) are better suited for land suitability communication. The methodological contribution lies in systematically comparing 3D visualization techniques for thematic spatial data, providing guidance for their application in planning practice. The results are primarily intended for urban planners, designers, and local government representatives as supportive tools for efficient planning of future built-up area development. Full article
Show Figures

Figure 1

19 pages, 5353 KiB  
Article
Adaptive Symmetry Self-Matching for 3D Point Cloud Completion of Occluded Tomato Fruits in Complex Canopy Environments
by Wenqin Wang, Chengda Lin, Haiyu Shui, Ke Zhang and Ruifang Zhai
Plants 2025, 14(13), 2080; https://doi.org/10.3390/plants14132080 - 7 Jul 2025
Viewed by 292
Abstract
As a globally important cash crop, the optimization of tomato yield and quality is strategically significant for food security and sustainable agricultural development. In order to address the problem of missing point cloud data on fruits in a facility agriculture environment due to [...] Read more.
As a globally important cash crop, the optimization of tomato yield and quality is strategically significant for food security and sustainable agricultural development. In order to address the problem of missing point cloud data on fruits in a facility agriculture environment due to complex canopy structure, leaf shading and limited collection viewpoints, the traditional geometric fitting method makes it difficult to restore the real morphology of fruits due to the dependence on data integrity. This study proposes an adaptive symmetry self-matching (ASSM) algorithm. It dynamically adjusts symmetry planes by detecting defect region characteristics in real time, implements point cloud completion under multi-symmetry constraints and constructs a triple-orthogonal symmetry plane system to adapt to multi-directional heterogeneous structures under complex occlusion. Experiments conducted on 150 tomato fruits with 5–70% occlusion rates demonstrate that ASSM achieved coefficient of determination (R2) values of 0.9914 (length), 0.9880 (width) and 0.9349 (height) under high occlusion, reducing the root mean square error (RMSE) by 23.51–56.10% compared with traditional ellipsoid fitting. Further validation on eggplant fruits confirmed the cross-crop adaptability of the method. The proposed ASSM method overcomes conventional techniques’ data integrity dependency, providing high-precision three-dimensional (3D) data for monitoring plant growth and enabling accurate phenotyping in smart agricultural systems. Full article
(This article belongs to the Special Issue Modeling of Plants Phenotyping and Biomass)
Show Figures

Figure 1

33 pages, 20725 KiB  
Article
Data Quality, Semantics, and Classification Features: Assessment and Optimization of Supervised ML-AI Classification Approaches for Historical Heritage
by Valeria Cera, Giuseppe Antuono, Massimiliano Campi and Pierpaolo D’Agostino
Heritage 2025, 8(7), 265; https://doi.org/10.3390/heritage8070265 - 4 Jul 2025
Viewed by 218
Abstract
In recent years, automatic segmentation and classification of data from digital surveys have taken a central role in built heritage studies. However, the application of Machine and Deep Learning (ML and DL) techniques for semantic segmentation of point clouds is complex in the [...] Read more.
In recent years, automatic segmentation and classification of data from digital surveys have taken a central role in built heritage studies. However, the application of Machine and Deep Learning (ML and DL) techniques for semantic segmentation of point clouds is complex in the context of historic architecture because it is characterized by high geometric and semantic variability. Data quality, subjectivity in manual labeling, and difficulty in defining consistent categories may compromise the effectiveness and reproducibility of the results. This study analyzes the influence of three key factors—annotator specialization, point cloud density, and sensor type—in the supervised classification of architectural elements by applying the Random Forest (RF) algorithm to datasets related to the architectural typology of the Franciscan cloister. The main innovation of the study lies in the development of an advanced feature selection technique, based on multibeam statistical analysis and evaluation of the p-value of each feature with respect to the target classes. The procedure makes it possible to identify the optimal radius for each feature, maximizing separability between classes and reducing semantic ambiguities. The approach, entirely in Python, automates the process of feature extraction, selection, and application, improving semantic consistency and classification accuracy. Full article
Show Figures

Figure 1

20 pages, 4036 KiB  
Article
Shell Model Reconstruction of Thin-Walled Structures from Point Clouds for Finite Element Modelling of Existing Steel Bridges
by Tomoya Nakamizo and Mayuko Nishio
Sensors 2025, 25(13), 4167; https://doi.org/10.3390/s25134167 - 4 Jul 2025
Viewed by 263
Abstract
Digital twin models utilising point cloud data have received significant attention for efficient bridge maintenance and performance assessment. There are some studies that show finite element (FE) models from point cloud data. While most of those approaches focus on modelling by solid elements, [...] Read more.
Digital twin models utilising point cloud data have received significant attention for efficient bridge maintenance and performance assessment. There are some studies that show finite element (FE) models from point cloud data. While most of those approaches focus on modelling by solid elements, modelling of some civil structures, such as bridges, requires various uses of beam and shell elements. This study proposes a systematic approach for constructing shell element FE models from point cloud data of thin-walled structural members. The proposed methodology involves k-means clustering for point cloud segmentation into individual plates, principal component analysis for neutral plane estimation, and edge detection based on normal vector variations for geometric structure determination. Validation experiments using point cloud data of a steel corner specimen revealed dimensional errors up to 5 mm and angular errors up to 6°, but static load analysis demonstrated good accuracy with maximum displacement errors within 3.8% and maximum stress errors within 7.7% compared to nominal models. Additionally, the influence of point cloud data quality on FE model geometry and analysis results was evaluated based on geometric accuracy and point cloud density metrics, revealing that significant variations in density within the same surface lead to reduced neutral plane estimation accuracy. Furthermore, toward practical application to actual bridge structures, on-site measurements and quality evaluation of point cloud data from a steel plate girder bridge were conducted. The results showed that thickness errors in the bridge data reached up to 2 mm, while surface deviation RMSE ranged from 3 to 5 mm. This research contributes to establishing practical FE modelling procedures from point cloud data and providing a model validation framework that ensures appropriate abstraction in structural analysis. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 6042 KiB  
Article
SPA-Net: An Offset-Free Proposal Network for Individual Tree Segmentation from TLS Data
by Yunjie Zhu, Zhihao Wang, Qiaolin Ye, Lifeng Pang, Qian Wang, Xiaolong Zheng and Chunhua Hu
Remote Sens. 2025, 17(13), 2292; https://doi.org/10.3390/rs17132292 - 4 Jul 2025
Viewed by 282
Abstract
Individual tree segmentation (ITS) from terrestrial laser scanning (TLS) point clouds is foundational for deriving detailed forest structural parameters, crucial for precision forestry, biomass calculation, and carbon accounting. Conventional ITS algorithms often struggle in complex forest stands due to reliance on heuristic rules [...] Read more.
Individual tree segmentation (ITS) from terrestrial laser scanning (TLS) point clouds is foundational for deriving detailed forest structural parameters, crucial for precision forestry, biomass calculation, and carbon accounting. Conventional ITS algorithms often struggle in complex forest stands due to reliance on heuristic rules and manual feature engineering. Deep learning methodologies proffer more efficacious and automated solutions, but their segmentation accuracy is restricted by imprecise center offset predictions, particularly in intricate forest environments. To address this issue, we proposed a deep learning method, SPA-Net, for achieving tree instance segmentation of forest point clouds. Unlike methods heavily reliant on potentially error-prone global offset vector predictions, SPA-Net employs a novel sampling-shifting-grouping paradigm within its sparse geometric proposal (SGP) module to directly generate initial proposal candidates from raw point data, aiming to reduce dependence on the offset branch. Subsequently, an affinity aggregation (AA) module robustly refines these proposals by assessing inter-proposal relationships and merging fragmented segments, effectively mitigating oversegmentation of large or complex trees; integrating with SGP eliminates the postprocessing step of scoring/NMS. SPA-Net was rigorously validated on two different forest datasets. On both BaiMa and Hong-Tes Lake datasets, the approach demonstrated superior performance compared to several contemporary segmentation approaches evaluated under the same conditions. It achieved 95.8% precision, 96.3% recall, and 92.9% coverage on BaiMa dataset, and achieved 92.6% precision, 94.8% recall, and 88.8% coverage on the Hong-Tes Lake dataset. This study provides a robust tool for individual tree analysis, advancing the accuracy of individual tree segmentation in challenging forest environments. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Graphical abstract

25 pages, 8255 KiB  
Article
A Practical Methodology for Accuracy and Quality Evaluation of Structured Light Systems in Automotive Inspection
by Antonio Lagudi, Umberto Severino, Loris Barbieri and Fabio Bruno
Machines 2025, 13(7), 576; https://doi.org/10.3390/machines13070576 - 2 Jul 2025
Viewed by 200
Abstract
In the integration of structured light systems (SLSs) into automotive manufacturing pipelines, achieving reliable 3D reconstruction under industrial conditions remains a critical challenge. Factors such as environmental variability, surface reflectivity, and optical configuration often compromise dimensional accuracy and point cloud quality, limiting the [...] Read more.
In the integration of structured light systems (SLSs) into automotive manufacturing pipelines, achieving reliable 3D reconstruction under industrial conditions remains a critical challenge. Factors such as environmental variability, surface reflectivity, and optical configuration often compromise dimensional accuracy and point cloud quality, limiting the deployment of SLSs for inspection tasks. This paper presents a practical metric-based methodology for evaluating the dimensional accuracy and point cloud quality of SLSs targeted at automotive inspection applications. Unlike existing approaches focused primarily on theoretical or hardware-specific parameters, the proposed methodology considers all phases of the acquisition–reconstruction pipeline, including calibration, environmental variability, and image enhancement strategies, to practically guide engineers step-by-step in adapting SLSs to real-world operational constraints. The methodology was experimentally validated through a case study in an automotive production setting, where it enabled the detection of reconstruction biases caused by surface reflectivity and viewing angle. It also demonstrated the ability to quantify improvements obtained through image enhancement algorithms. These results confirm the methodology’s capacity to expose critical performance trade-offs and guide optimization choices in practical inspection scenarios. By offering a repeatable and application-oriented evaluation framework, the methodology supports the robust integration of digital vision systems in industrial workflows, facilitating more informed decisions for system designers, process engineers, and quality control professionals. Full article
Show Figures

Figure 1

33 pages, 15773 KiB  
Article
Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis
by Abdurahman Yasin Yiğit and Halil İbrahim Şenol
Drones 2025, 9(7), 472; https://doi.org/10.3390/drones9070472 - 2 Jul 2025
Cited by 1 | Viewed by 477
Abstract
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 [...] Read more.
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 and 2025, high-resolution images were combined with dense point clouds produced by Structure from Motion (SfM) methods. Iterative Closest Point (ICP) registration (RMSE = 2.09 cm) and Multiscale Model-to-Model Cloud Comparison (M3C2) analysis was used to quantify the surface changes. The study found a volumetric increase of 7744.04 m3 in the dump zones accompanied by an excavation loss of 8359.72 m3, so producing a net difference of almost 615.68 m3. Surface risk factors were evaluated holistically using a variety of morphometric criteria. These measures covered surface variation in several respects: their degree of homogeneity, presence of any unevenness or texture, verticality, planarity, and linearity. Surface variation > 0.20, roughness > 0.15, and verticality > 0.25 help one to identify zones of increased instability. Point cloud modeling derived from UAVs and GIS-based spatial analysis were integrated to show that morphological anomalies are spatially correlated with possible failure zones. Full article
Show Figures

Figure 1

Back to TopTop