Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (647)

Search Parameters:
Keywords = pneumatic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4845 KiB  
Article
Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
by Wei Qin, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang and Zaiman Wang
Agriculture 2025, 15(15), 1681; https://doi.org/10.3390/agriculture15151681 - 3 Aug 2025
Viewed by 55
Abstract
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system [...] Read more.
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system consists of a main pipe, a header, and ten branch pipes. The main pipe is vertically installed at the center of the header in a straight-line configuration. The ten branch pipes are symmetrically and evenly spaced along the axial direction of the header, distributed on both sides of the main pipe. The outlet directions of the branch pipes are arranged in a 180° orientation opposite to the inlet direction of the main pipe, forming a symmetric multi-branch configuration. Firstly, this study investigated the flow characteristics within the multi-branch pipeline of the pneumatic system and elaborated on the mechanism of flow division in the pipeline. The key geometric factors affecting airflow were identified. Secondly, from a microscopic perspective, CFD simulations were employed to analyze the fundamental causes of pressure loss in the multi-branch pipeline system. Finally, from a macroscopic perspective, a dimensional analysis method was used to establish an empirical equation describing the relationship between the pressure loss (P) and several influencing factors, including the air density (ρ), air’s dynamic viscosity (μ), closed-end length of the header (Δl), branch pipe 1’s flow rate (Q), main pipe’s inner diameter (D), header’s inner diameter (γ), branch pipe’s inner diameter (d), and the spacing of the branch pipe (δ). The results of the bench tests indicate that when 0.0018 m3·s−1Q ≤ 0.0045 m3·s−1, 0.0272 m < d ≤ 0.036 m, 0.225 m < δ ≤ 0.26 m, 0.057 m ≤ γ ≤ 0.0814 m, and 0.0426 m ≤ D ≤ 0.0536 m, the prediction accuracy of the empirical equation can be controlled within 10%. Therefore, the equation provides a reference for the structural design and optimization of pneumatic seeders’ multi-branch pipelines. Full article
Show Figures

Figure 1

17 pages, 6494 KiB  
Article
Evaluation of a Passive-Assist Exoskeleton Under Different Assistive Force Profiles in Agricultural Working Postures
by Naoki Saito, Takumi Kobayashi, Kohei Akimoto, Toshiyuki Satoh and Norihiko Saga
Actuators 2025, 14(8), 381; https://doi.org/10.3390/act14080381 - 1 Aug 2025
Viewed by 148
Abstract
To enable the practical application of passive back-support exoskeletons employing pneumatic artificial muscles (PAMs) in tasks such as agricultural work, we evaluated their assistive effectiveness in a half-squatting posture with a staggered stance. In this context, assistive force profiles were adjusted according to [...] Read more.
To enable the practical application of passive back-support exoskeletons employing pneumatic artificial muscles (PAMs) in tasks such as agricultural work, we evaluated their assistive effectiveness in a half-squatting posture with a staggered stance. In this context, assistive force profiles were adjusted according to body posture to achieve more effective support. The targeted assistive force profile was designed to be continuously active from the standing to the half-squatting position, with minimal variation across this range. The assistive force profile was developed based on a PAM contractile force model and implemented using a cam mechanism. The effectiveness of assistance was assessed by measuring body flexion angles and erector spinae muscle activity during lifting and carrying tasks. The results showed that the assistive effect was greater on the side with the forward leg. Compared to the condition without exoskeleton assistance, the conventional pulley-based system reduced muscle activity by approximately 20% whereas the cam-based system achieved a reduction of approximately 30%. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

23 pages, 6498 KiB  
Article
Design and Testing of Miniaturized Electrically Driven Plug Seedling Transplanter
by Meng Chen, Yang Xu, Changjie Han, Desheng Li, Binning Yang, Shilong Qiu, Yan Luo, Hanping Mao and Xu Ma
Agriculture 2025, 15(15), 1589; https://doi.org/10.3390/agriculture15151589 - 24 Jul 2025
Viewed by 327
Abstract
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement [...] Read more.
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement that the width of the single-row transplanter must be less than 62.5 cm, a three-dimensional transplanter model was constructed. The transplanter comprises a coaxially installed dual-layer seedling conveying device and a sector-expanding automatic seedling picking and depositing device. The structural dimensions, drive configurations, and driving forces of the transplanter were also determined. Finally, the circuit and pneumatic system were designed, and the transplanter was assembled. Both bench and field tests were conducted to select the optimal working parameters. The test results demonstrated that the seedling picking and depositing mechanism met the required operational efficiency. In static seedling picking and depositing tests, at three transplanting speeds of 120 plants/min, 160 plants/min, and 200 plants/min, the success rates of seedling picking and depositing were 100%, 100%, and 97.5%, respectively. In the field test, at three transplanting speeds of 80 plants/min, 100 plants/min, and 120 plants/min, the transplanting success rates were 94.17%, 90.83%, and 88.33%, respectively. These results illustrate that the compact, electric-driven seedling conveying and picking and depositing devices meet the operational demands of automatic transplanting, providing a reference for the miniaturization and electrification of transplanters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 310
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

12 pages, 459 KiB  
Article
Effects of Air Splints on Sensorimotor Disturbances of the Affected Upper Extremity and Trunk Control in Adult Post-Stroke Patients
by Ana Isabel Useros-Olmo, Roberto Cano-de-la-Cuerda, Jesús Rodríguez-Herranz, Alfonso Gil-Martínez and Alicia Hernando-Rosado
J. Clin. Med. 2025, 14(15), 5185; https://doi.org/10.3390/jcm14155185 - 22 Jul 2025
Viewed by 190
Abstract
Background: The present study aimed to determine whether the protocolized use of pneumatic splints within neurodevelopmental therapeutic approaches produces a positive effect on sensorimotor impairments of the hemiplegic upper extremity in patients. Methods: A randomized clinical single-blind trial was conducted. Stroke patients were [...] Read more.
Background: The present study aimed to determine whether the protocolized use of pneumatic splints within neurodevelopmental therapeutic approaches produces a positive effect on sensorimotor impairments of the hemiplegic upper extremity in patients. Methods: A randomized clinical single-blind trial was conducted. Stroke patients were recruited and randomized into an experimental group, which completed a treatment protocol of splinting plus physiotherapy for 45 min per session, two sessions per week for four weeks; or a control group, which received the same type of conventional physiotherapy treatment for the same period of time. The patients were evaluated by Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) and the Trunk Control Scale. Secondary variables were Mini-BEStest, the modified Ashworth scale for ankle flexors, and computerized measurements of upper limb functional parameters performed by Armeo Spring® robotic systems and Amadeo®. All variables were measured pre- and post-treatment. Results: Twenty stroke patients with subacute and chronic stroke completed the protocol. Mann–Whitney U tests showed statistically significant differences between groups for the FM sensation variable (Z = −2.19; p = 0.03). The rest of the variables studied in the comparison between the two study groups did not present statistically significant differences (p > 0.05). Conclusions: The use of air splints in combination with physiotherapy treatment produced improvements in exteroceptive and proprioceptive sensitivity in post-stroke adult patients in the subacute and chronic phases. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

16 pages, 3616 KiB  
Article
Alleviating Soil Compaction in an Asian Pear Orchard Using a Commercial Hand-Held Pneumatic Cultivator
by Hao-Ting Lin and Syuan-You Lin
Agronomy 2025, 15(7), 1743; https://doi.org/10.3390/agronomy15071743 - 19 Jul 2025
Viewed by 362
Abstract
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates [...] Read more.
Soil compaction is a critical challenge in perennial fruit production, limiting root growth, water infiltration, and nutrient uptake—factors essential for climate-resilient and sustainable orchard systems. In subtropical Asian pear (Pyrus pyrifolia Nakai) orchards under the annual top-working system, intensive machinery traffic exacerbates subsurface hardpan formation and tree performance. This study evaluated the effectiveness of pneumatic subsoiling, a minimally invasive method using high-pressure air injection, in alleviating soil compaction without disturbing orchard surface integrity. Four treatments varying in radial distance from the trunk and pneumatic application were tested in a mature orchard in central Taiwan. Pneumatic subsoiling 120 cm away from the trunk significantly reduced soil penetration resistance by 15.4% at 34 days after treatment (2,302,888 Pa) compared to the control (2,724,423 Pa). However, this reduction was not sustained at later assessment dates, and no significant improvements in vegetative growth, fruit yield, and fruit quality were observed within the first season post-treatment. These results suggest that while pneumatic subsoiling can modify subsurface soil physical conditions with minimal surface disturbance, its agronomic benefits may require longer-term evaluation under varying moisture and management regimes. Overall, this study highlights pneumatic subsoiling may be a potential low-disturbance strategy to contribute to longer-term soil physical resilience. Full article
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
Marginal Design of a Pneumatic Stage Position Using Filtered Right Coprime Factorization and PPC-SMC
by Tomoya Hoshina, Yusaku Tanabata and Mingcong Deng
Axioms 2025, 14(7), 534; https://doi.org/10.3390/axioms14070534 - 15 Jul 2025
Viewed by 169
Abstract
In recent years, pneumatic stages have attracted attention as stages for semiconductor manufacturing equipment due to their low cost and minimal maintenance requirements. However, pneumatic stages include nonlinear elements such as friction and air compressibility, making precise control challenging. To address this issue, [...] Read more.
In recent years, pneumatic stages have attracted attention as stages for semiconductor manufacturing equipment due to their low cost and minimal maintenance requirements. However, pneumatic stages include nonlinear elements such as friction and air compressibility, making precise control challenging. To address this issue, this paper aims to achieve high-precision positioning by applying a nonlinear position control method to pneumatic stages. To achieve this, we propose a control method that combines filtered right coprime factorization and Prescribed Performance Control–Sliding Mode Control (PPC-SMC). Filtered right coprime factorization not only stabilizes and simplifies the plant but also reduces noise. Furthermore, PPC-SMC enables safer and faster control by constraining the system state within a switching surface that imposes limits on the error range. Through experiments on the actual system, it was confirmed that the proposed method achieves dramatically higher precision and faster tracking compared to conventional methods. Full article
(This article belongs to the Special Issue New Perspectives in Control Theory)
Show Figures

Figure 1

27 pages, 2375 KiB  
Review
Pulmonary Embolism in Acute Ischaemic Stroke: Evolving Evidence, Diagnostic Challenges, and a Novel Thromboinflammatory Axis Hypothesis
by Darryl Chen and Sonu M. M. Bhaskar
Int. J. Mol. Sci. 2025, 26(14), 6733; https://doi.org/10.3390/ijms26146733 - 14 Jul 2025
Viewed by 508
Abstract
Pulmonary embolism (PE) is an under-recognised yet serious complication in patients with acute ischaemic stroke (AIS), contributing significantly to morbidity and mortality. The interplay of traditional risk factors—such as immobility, endothelial dysfunction, and hypercoagulability—with AIS-specific conditions, including atrial fibrillation, malignancy, and reperfusion therapies, [...] Read more.
Pulmonary embolism (PE) is an under-recognised yet serious complication in patients with acute ischaemic stroke (AIS), contributing significantly to morbidity and mortality. The interplay of traditional risk factors—such as immobility, endothelial dysfunction, and hypercoagulability—with AIS-specific conditions, including atrial fibrillation, malignancy, and reperfusion therapies, complicates both diagnosis and management. Despite available prophylactic strategies, including low-molecular-weight heparin and intermittent pneumatic compression, their use remains limited by bleeding concerns and a lack of tailored guidelines. This review synthesises the current evidence on the incidence, risk factors, pathophysiology, diagnostic approaches, and preventive strategies for PE in AIS, identifying critical gaps in risk stratification and clinical decision-making. We propose a novel mechanistic framework—the Brain–Lung Thromboinflammatory Axis Hypothesis—which posits that stroke-induced systemic inflammation, neutrophil extracellular trap (NET) formation, and pulmonary endothelial activation may drive in situ pulmonary thrombosis independent of deep vein thrombosis. This conceptual model highlights new diagnostic and therapeutic targets and underscores the need for stroke-specific VTE risk calculators, biomarker-guided prophylaxis, and prospective trials to optimise prevention and outcomes in this vulnerable population. Full article
(This article belongs to the Special Issue New Therapies, Pathogenetic and Inflammatory Mechanisms in Thrombosis)
Show Figures

Figure 1

25 pages, 2159 KiB  
Article
Model Predictive Control for Pneumatic Manipulator via Receding-Horizon-Based Extended State Observers
by Yang Xu, Xiaohui Hao, Dongjie Zhu, Liangchao Wu and Peng Li
Actuators 2025, 14(7), 343; https://doi.org/10.3390/act14070343 - 10 Jul 2025
Viewed by 381
Abstract
This paper presents a model predictive control (MPC)-enabled disturbance-rejection controller approach for a pneumatic manipulator system subjected to complex nonlinear terms within the system. To facilitate the handling of the complex nonlinear terms, they are modeled as disturbances. To address these disturbances, a [...] Read more.
This paper presents a model predictive control (MPC)-enabled disturbance-rejection controller approach for a pneumatic manipulator system subjected to complex nonlinear terms within the system. To facilitate the handling of the complex nonlinear terms, they are modeled as disturbances. To address these disturbances, a receding-horizon-based extended state observer (RH-ESO) incorporating a decision variable is developed. The optimal disturbance estimation error is determined through a receding-horizon optimization procedure, which provides the best estimate of the disturbance. Using this optimal estimate, the MPC-enabled disturbance-rejection controller is proposed for the pneumatic manipulator system to achieve angle tracking control. Moreover, the proposed approach ensures both the recursive feasibility of the optimization problem and the uniform boundedness of the closed-loop system. The simulation results further demonstrate the effectiveness and validity of the proposed methodology. Full article
(This article belongs to the Special Issue Actuators in Robotic Control—3rd Edition)
Show Figures

Figure 1

24 pages, 13673 KiB  
Article
Autonomous Textile Sorting Facility and Digital Twin Utilizing an AI-Reinforced Collaborative Robot
by Torbjørn Seim Halvorsen, Ilya Tyapin and Ajit Jha
Electronics 2025, 14(13), 2706; https://doi.org/10.3390/electronics14132706 - 4 Jul 2025
Viewed by 450
Abstract
This paper presents the design and implementation of an autonomous robotic facility for textile sorting and recycling, leveraging advanced computer vision and machine learning technologies. The system enables real-time textile classification, localization, and sorting on a dynamically moving conveyor belt. A custom-designed pneumatic [...] Read more.
This paper presents the design and implementation of an autonomous robotic facility for textile sorting and recycling, leveraging advanced computer vision and machine learning technologies. The system enables real-time textile classification, localization, and sorting on a dynamically moving conveyor belt. A custom-designed pneumatic gripper is developed for versatile textile handling, optimizing autonomous picking and placing operations. Additionally, digital simulation techniques are utilized to refine robotic motion and enhance overall system reliability before real-world deployment. The multi-threaded architecture facilitates the concurrent and efficient execution of textile classification, robotic manipulation, and conveyor belt operations. Key contributions include (a) dynamic and real-time textile detection and localization, (b) the development and integration of a specialized robotic gripper, (c) real-time autonomous robotic picking from a moving conveyor, and (d) scalability in sorting operations for recycling automation across various industry scales. The system progressively incorporates enhancements, such as queuing management for continuous operation and multi-thread optimization. Advanced material detection techniques are also integrated to ensure compliance with the stringent performance requirements of industrial recycling applications. Full article
(This article belongs to the Special Issue New Insights Into Smart and Intelligent Sensors)
Show Figures

Figure 1

23 pages, 1678 KiB  
Article
Development of Digital Training Twins in the Aircraft Maintenance Ecosystem
by Igor Kabashkin
Algorithms 2025, 18(7), 411; https://doi.org/10.3390/a18070411 - 3 Jul 2025
Viewed by 358
Abstract
This paper presents an integrated digital training twin framework for adaptive aircraft maintenance education, combining real-time competence modeling, algorithmic orchestration, and cloud–edge deployment architectures. The proposed system dynamically evaluates learner skill gaps and assigns individualized training resources through a multi-objective optimization function that [...] Read more.
This paper presents an integrated digital training twin framework for adaptive aircraft maintenance education, combining real-time competence modeling, algorithmic orchestration, and cloud–edge deployment architectures. The proposed system dynamically evaluates learner skill gaps and assigns individualized training resources through a multi-objective optimization function that balances skill alignment, Bloom’s cognitive level, fidelity tier, and time efficiency. A modular orchestration engine incorporates reinforcement learning agents for policy refinement, federated learning for privacy-preserving skill analytics, and knowledge graph-based curriculum models for dependency management. Simulation results were conducted on the Pneumatic Systems training module. The system’s validation matrix provides full-cycle traceability of instructional decisions, supporting regulatory audit-readiness and institutional reporting. The digital training twin ecosystem offers a scalable, regulation-compliant, and data-driven solution for next-generation aviation maintenance training, with demonstrated operational efficiency, instructional precision, and extensibility for future expansion. Full article
Show Figures

Graphical abstract

20 pages, 4574 KiB  
Article
Experimental and Numerical Flow Assessment of the Main and Additional Tract of Prototype Differential Brake Valve
by Marcin Kisiel and Dariusz Szpica
Appl. Sci. 2025, 15(13), 7483; https://doi.org/10.3390/app15137483 - 3 Jul 2025
Viewed by 218
Abstract
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was [...] Read more.
The throughput of the pneumatic brake valve is a key parameter in ensuring fast and safe vehicle braking. The instantaneous value of this parameter determines the short response time of the system to an operator’s force. The scientific objective of this paper was to determine the throughput of brake valve tracts using numerical and experimental methods. These tracts are supposed to provide the tracking and acceleration function of the valve depending on the setting of the correction system. The first numerical method was based on polyhedral meshes using computational fluid dynamics (CFD) and Ansys Fluent software. The second research method—experimental tests on the author’s bench using the reservoir method—consisted of identifying throughputs based on pressure waveforms in the measurement tanks. The determined throughputs were averaged over the range of pressure differences tested and allowed the final calculation of the mass flow rate. The analysis of the obtained results showed an average discrepancy between the two research methods for both tracts, in which the flow in both directions was considered to be 9.43%, taking into account the use of a polyhedral numerical mesh ensuring high-quality results with an optimal simulation duration. The analysis of the pressure distribution inside the working chambers showed local areas of increased pressure and negative pressure resulting from the acceleration of the flow in narrow flow channels and the occurrence of the Venturi effect. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 2524 KiB  
Article
Design of a Hierarchical Control Architecture for Fully-Driven Multi-Fingered Dexterous Hand
by Yinan Jin, Hujiang Wang, Han Ge and Guanjun Bao
Biomimetics 2025, 10(7), 422; https://doi.org/10.3390/biomimetics10070422 - 30 Jun 2025
Viewed by 462
Abstract
Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created [...] Read more.
Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created to replicate the compliant and adaptable features of biological hands. Nonetheless, PAMs have inherent nonlinear and hysteresis behaviors that create considerable challenges to achieving real-time control accuracy and stability in dexterous hands. In order to address these challenges, this paper proposes a hierarchical control architecture that employs a fuzzy PID strategy to optimize the nonlinear control of pneumatic artificial muscles (PAMs). The FPGA-based hardware integrates a multi-channel digital-to-analog converter (DAC) and a multiplexed acquisition module, facilitating the independent actuation of 20 PAMs and the real-time monitoring of 20 joints. The software implements a fuzzy PID algorithm that dynamically adjusts PID parameters based on both the error and the error rate, thereby effectively managing the nonlinear behaviors of the hand. Experimental results demonstrate that the designed control system achieves high precision in controlling the angle of a single finger joint, with errors maintained within ±1°. In scenarios involving multi-finger cooperative grasping and biomimetic motion demonstrations, the system exhibits excellent synchronization and real-time performance. These results validate the efficacy of the fuzzy PID control strategy and confirm that the proposed system fulfills the precision and stability requirements for complex operational tasks, providing robust support for the application of PAM-driven multi-fingered dexterous hands. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

33 pages, 7235 KiB  
Review
Hysteresis Modeling of Soft Pneumatic Actuators: An Experimental Review
by Jesús de la Morena, Francisco Ramos and Andrés S. Vázquez
Actuators 2025, 14(7), 321; https://doi.org/10.3390/act14070321 - 27 Jun 2025
Viewed by 845
Abstract
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable [...] Read more.
Hysteresis is a nonlinear phenomenon found in many physical systems, including soft viscoelastic actuators, where it poses significant challenges to their application and performance. Consequently, developing accurate hysteresis models is essential for the effective design and optimization of soft actuators. Moreover, a reliable model can be used to design compensators that mitigate the negative effects of hysteresis, improving closed-loop control accuracy and expanding the applicability of soft actuators in robotics. Physics-based approaches for modeling hysteresis in soft actuators offer valuable insights into the underlying material behavior. Nevertheless, they are often highly complex, making them impractical for real-world applications. Instead, phenomenological models provide a more feasible solution by representing hysteresis through input–output mappings based on experimental data. To effectively fit these phenomenological models, it is essential to rely on sensing data collected from real actuators. In this context, the primary objective of this work is a comprehensive comparative evaluation of the efficiency and performance of representative phenomenological hysteresis models (e.g., Bouc–Wen and Prandtl-Ishlinskii) using experimental data obtained from a pneumatic bending actuator made of a viscoelastic material. This evaluation suggests that the Generalized Prandtl–Ishlinskii model achieves the highest modeling accuracy, while the Preisach model with a probabilistic density function formulation excels in terms of parameter compactness. Full article
(This article belongs to the Special Issue Advanced Mechanism Design and Sensing for Soft Robotics)
Show Figures

Figure 1

37 pages, 5015 KiB  
Article
Water Hammer Mitigation Using Hydro-Pneumatic Tanks: A Multi-Criteria Evaluation of Simulation Tools and Machine Learning Modelling
by Óscar J. Burgos-Méndez, Oscar E. Coronado-Hernández, Helena M. Ramos, Alfonso Arrieta-Pastrana and Modesto Pérez-Sánchez
Water 2025, 17(13), 1883; https://doi.org/10.3390/w17131883 - 24 Jun 2025
Viewed by 987
Abstract
The water hammer phenomenon represents a significant challenge to the safe and efficient operation of pressurised water systems. This study investigates the application of hydro-pneumatic tanks (HPTs) as protective devices against transient flow events, with a particular focus on their integration into simplified [...] Read more.
The water hammer phenomenon represents a significant challenge to the safe and efficient operation of pressurised water systems. This study investigates the application of hydro-pneumatic tanks (HPTs) as protective devices against transient flow events, with a particular focus on their integration into simplified modelling frameworks. Rigid and elastic water column models are examined, and their performance is evaluated through a representative case study. A multi-criteria decision matrix was employed to select a suitable simulation tool, leading to the adoption of the ALLIEVI software for implementing both modelling approaches. Comparative results indicate that the rigid water column model offers a favourable compromise between accuracy and computational efficiency under appropriate conditions. This supports its practical application in installing HPTs in design and operational scenarios. To further assess the predictive capacity of each model, a confusion matrix analysis was conducted across 57 scenarios. This approach proved effective in evaluating the models’ ability to anticipate pipeline rupture based on the initial configuration of the hydraulic installation. The elastic model achieved accuracy levels ranging from 90.7% to 100%, whereas the rigid water column model exhibited a slightly broader accuracy range, from 76.7% to 97.7%. These findings suggest that integrating machine learning techniques could enhance the rapid assessment of failure risks in water utility networks. Such tools may enable operators to determine in advance whether a given operating condition will likely lead to system failure, thus improving resilience and decision-making in managing pressurised pipeline systems. Full article
Show Figures

Figure 1

Back to TopTop