Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (420)

Search Parameters:
Keywords = pluripotency markers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 528 KiB  
Review
Therapeutic and Prognostic Relevance of Cancer Stem Cell Populations in Endometrial Cancer: A Narrative Review
by Ioana Cristina Rotar, Elena Bernad, Liviu Moraru, Viviana Ivan, Adrian Apostol, Sandor Ianos Bernad, Daniel Muresan and Melinda-Ildiko Mitranovici
Diagnostics 2025, 15(15), 1872; https://doi.org/10.3390/diagnostics15151872 - 25 Jul 2025
Viewed by 243
Abstract
The biggest challenge in cancer therapy is tumor resistance to the classical approach. Thus, research interest has shifted toward the cancer stem cell population (CSC). CSCs are a small subpopulation of cancer cells within tumors with self-renewal, differentiation, and metastasis/malignant potential. They are [...] Read more.
The biggest challenge in cancer therapy is tumor resistance to the classical approach. Thus, research interest has shifted toward the cancer stem cell population (CSC). CSCs are a small subpopulation of cancer cells within tumors with self-renewal, differentiation, and metastasis/malignant potential. They are involved in tumor initiation and development, metastasis, and recurrence. Method. A narrative review of significant scientific publications related to the topic and its applicability in endometrial cancer (EC) was performed with the aim of identifying current knowledge about the identification of CSC populations in endometrial cancer, their biological significance, prognostic impact, and therapeutic targeting. Results: Therapy against the tumor population alone has no or negligible effect on CSCs. CSCs, due to their stemness and therapeutic resistance, cause tumor relapse. They target CSCs that may lead to noticeable persistent tumoral regression. Also, they can be used as a predictive marker for poor prognosis. Reverse transcription–polymerase chain reaction (RT-PCR) demonstrated that the cultured cells strongly expressed stemness-related genes, such as SOX-2 (sex-determining region Y-box 2), NANOG (Nanog homeobox), and Oct 4 (octamer-binding protein 4). The expression of surface markers CD133+ and CD44+ was found on CSC as stemness markers. Along with surface markers, transcription factors such as NF-kB, HIF-1a, and b-catenin were also considered therapeutic targets. Hypoxia is another vital feature of the tumor environment and aids in the maintenance of the stemness of CSCs. This involves the hypoxic activation of the WNT/b-catenin pathway, which promotes tumor survival and metastasis. Specific antibodies have been investigated against CSC markers; for example, anti-CD44 antibodies have been demonstrated to have potential against different CSCs in preclinical investigations. Anti-CD-133 antibodies have also been developed. Targeting the CSC microenvironment is a possible drug target for CSCs. Focusing on stemness-related genes, such as the transcription pluripotency factors SOX2, NANOG, and OCT4, is another therapeutic option. Conclusions: Stemness surface and gene markers can be potential prognostic biomarkers and management approaches for cases with drug-resistant endometrial cancers. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

15 pages, 766 KiB  
Article
Photobiomodulation Therapy Reduces Oxidative Stress and Inflammation to Alleviate the Cardiotoxic Effects of Doxorubicin in Human Stem Cell-Derived Ventricular Cardiomyocytes
by Guilherme Rabelo Nasuk, Leonardo Paroche de Matos, Allan Luís Barboza Atum, Bruna Calixto de Jesus, Julio Gustavo Cardoso Batista, Gabriel Almeida da Silva, Antonio Henrique Martins, Maria Laura Alchorne Trivelin, Cinthya Cosme Gutierrez Duran, Ana Paula Ligeiro de Oliveira, Renato de Araújo Prates, Rodrigo Labat Marcos, Stella Regina Zamuner, Ovidiu Constantin Baltatu and José Antônio Silva
Biomedicines 2025, 13(7), 1781; https://doi.org/10.3390/biomedicines13071781 - 21 Jul 2025
Viewed by 476
Abstract
Background/Objectives: Doxorubicin (DOX), a widely used anthracycline chemotherapeutic agent, is recognized for its efficacy in treating various malignancies. However, its clinical application is critically limited due to dose-dependent cardiotoxicity, predominantly induced by oxidative stress and compromised antioxidant defenses. Photobiomodulation (PBM), a non-invasive intervention [...] Read more.
Background/Objectives: Doxorubicin (DOX), a widely used anthracycline chemotherapeutic agent, is recognized for its efficacy in treating various malignancies. However, its clinical application is critically limited due to dose-dependent cardiotoxicity, predominantly induced by oxidative stress and compromised antioxidant defenses. Photobiomodulation (PBM), a non-invasive intervention that utilizes low-intensity light, has emerged as a promising therapeutic modality in regenerative medicine, demonstrating benefits such as enhanced tissue repair, reduced inflammation, and protection against oxidative damage. This investigation sought to evaluate the cardioprotective effects of PBM preconditioning in human-induced pluripotent stem cell-derived ventricular cardiomyocytes (hiPSC-vCMs) subjected to DOX-induced toxicity. Methods: Human iPSC-vCMs were allocated into three experimental groups: control cells (untreated), DOX-treated cells (exposed to 2 μM DOX for 24 h), and PBM+DOX-treated cells (preconditioned with PBM, utilizing 660 nm ±10 nm LED light at an intensity of 10 mW/cm2 for 500 s, delivering an energy dose of 5 J/cm2, followed by DOX exposure). Cell viability assessments were conducted in conjunction with evaluations of oxidative stress markers, including antioxidant enzyme activities and malondialdehyde (MDA) levels. Furthermore, transcriptional profiling of 40 genes implicated in cardiac dysfunction was performed using TaqMan quantitative polymerase chain reaction (qPCR), complemented by analyses of protein expression for markers of cardiac stress, inflammation, and apoptosis. Results: Exposure to DOX markedly reduced the viability of hiPSC-vCMs. The cells exhibited significant alterations in the expression of 32 out of 40 genes (80%) after DOX exposure, reflecting the upregulation of markers associated with apoptosis, inflammation, and adverse cardiac remodeling. PBM preconditioning partially restored the cell viability, modulating the expression of 20 genes (50%), effectively counteracting a substantial proportion of the dysregulation induced by DOX. Notably, PBM enhanced the expression of genes responsible for antioxidant defense, augmented antioxidant enzyme activity, and reduced oxidative stress indicators such as MDA levels. Additional benefits included downregulating stress-related mRNA markers (HSP1A1 and TNC) and apoptotic markers (BAX and TP53). PBM also demonstrated gene reprogramming effects in ventricular cells, encompassing regulatory changes in NPPA, NPPB, and MYH6. PBM reduced the protein expression levels of IL-6, TNF, and apoptotic markers in alignment with their corresponding mRNA expression profiles. Notably, PBM preconditioning showed a diminished expression of BNP, emphasizing its positive impact on mitigating cardiac stress. Conclusions: This study demonstrates that PBM preconditioning is an effective strategy for reducing DOX-induced chemotherapy-related cardiotoxicity by enhancing cell viability and modulating signaling pathways associated with oxidative stress, as well as inflammatory and hypertrophic markers. Full article
(This article belongs to the Special Issue Pathological Biomarkers in Precision Medicine)
Show Figures

Graphical abstract

25 pages, 4169 KiB  
Article
In Vitro Effects of Rumex confertus Extracts on Cell Viability and Molecular Pathways in MCF-7 Breast Cancer Cells
by Levent Gülüm, Emrah Güler, Fatma Lale Aktaş, Ayşe Büşranur Çelik, Hilal Yılmaz and Yusuf Tutar
Antioxidants 2025, 14(7), 879; https://doi.org/10.3390/antiox14070879 - 18 Jul 2025
Viewed by 501
Abstract
Rumex confertus (RC), a plant known for its traditional medicinal uses, has shown potential anticancer properties, particularly due to its rich phenolic content. Despite its promising bioactivity, its effects on breast cancer cells remain underexplored. Here, we investigated the cytotoxic effects of RC [...] Read more.
Rumex confertus (RC), a plant known for its traditional medicinal uses, has shown potential anticancer properties, particularly due to its rich phenolic content. Despite its promising bioactivity, its effects on breast cancer cells remain underexplored. Here, we investigated the cytotoxic effects of RC extracts on MCF-7 breast cancer cells, employing various solvents for extraction. This study revealed that the hexane extract significantly reduced the cell viability, with an IC50 of 9.40 µg/mL after 96 h. The gene expression analysis indicated a substantial modulation of transcriptional networks, including the upregulation of pluripotency-related genes and the downregulation of differentiation markers. The findings suggest that the RC extract may induce a shift towards a less differentiated, stem-like state in cancer cells, potentially enhancing malignancy resistance. This study underscores the potential of RC as a candidate for breast cancer treatment, and a further investigation into its therapeutic applications is suggested. Full article
(This article belongs to the Special Issue Anti-Cancer Potential of Plant-Based Antioxidants)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
Modeling Aberrant Angiogenesis in Arteriovenous Malformations Using Endothelial Cells and Organoids for Pharmacological Treatment
by Eun Jung Oh, Hyun Mi Kim, Suin Kwak and Ho Yun Chung
Cells 2025, 14(14), 1081; https://doi.org/10.3390/cells14141081 - 15 Jul 2025
Viewed by 375
Abstract
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism [...] Read more.
Arteriovenous malformations (AVMs) are congenital vascular anomalies defined by abnormal direct connections between arteries and veins due to their complex structure or endovascular approaches. Pharmacological strategies targeting the underlying molecular mechanisms are thus gaining increasing attention in an effort to determine the mechanism involved in AVM regulation. In this study, we examined 30 human tissue samples, comprising 10 vascular samples, 10 human fibroblasts derived from AVM tissue, and 10 vascular samples derived from healthy individuals. The pharmacological agents thalidomide, U0126, and rapamycin were applied to the isolated endothelial cells (ECs). The pharmacological treatments reduced the proliferation of AVM ECs and downregulated miR-135b-5p, a biomarker associated with AVMs. The expression levels of angiogenesis-related genes, including VEGF, ANG2, FSTL1, and MARCKS, decreased; in comparison, CSPG4, a gene related to capillary networks, was upregulated. Following analysis of these findings, skin samples from 10 AVM patients were reprogrammed into induced pluripotent stem cells (iPSCs) to generate AVM blood vessel organoids. Treatment of these AVM blood vessel organoids with thalidomide, U0126, and rapamycin resulted in a reduction in the expression of the EC markers CD31 and α-SMA. The establishment of AVM blood vessel organoids offers a physiologically relevant in vitro model for disease characterization and drug screening. The authors of future studies should aim to refine this model using advanced techniques, such as microfluidic systems, to more efficiently replicate AVMs’ pathology and support the development of personalized therapies. Full article
Show Figures

Figure 1

15 pages, 2532 KiB  
Article
Bioengineering a Human Dermal Equivalent Using Induced Pluripotent Stem Cell-Derived Fibroblasts to Support the Formation of a Full-Thickness Skin Construct
by Lucy Smith, David Bunton, Michael Finch and Stefan Przyborski
Cells 2025, 14(14), 1044; https://doi.org/10.3390/cells14141044 - 8 Jul 2025
Viewed by 500
Abstract
In vitro tissue models offer a flexible complementary study system for use alongside in vivo human tissue samples. Achieving accurate in vitro models relies on combining appropriate scaffolds, growth factors and cell populations to recreate human tissue complexity. Balancing a consistent cell supply [...] Read more.
In vitro tissue models offer a flexible complementary study system for use alongside in vivo human tissue samples. Achieving accurate in vitro models relies on combining appropriate scaffolds, growth factors and cell populations to recreate human tissue complexity. Balancing a consistent cell supply with the creation of healthy tissue models can be challenging; established cell lines are often cancerous, with altered cellular function compared to healthy populations, and primary cells require repeated isolation, with associated batch-to-batch variation. Pluripotent stem cell-derived populations offer a consistent supply, as well as the ability to model disease phenotypes through cell reprogramming using patient-derived cells. In this study, we have used an induced pluripotent stem cell-derived fibroblast population to develop a dermal equivalent model. These cells form a consistent tissue construct with a structure and composition similar to primary fibroblast controls, which are able to support an overlying epidermis. The resultant full-thickness skin model demonstrates the expression of various key skin-related markers, correctly localised within the organised epidermis, notably improving on previous models of a similar nature. Providing proof of concept using an established in vitro protocol, this study paves the way for future work developing consistent, customised, full-thickness human skin equivalents using iPSC-derived populations. Full article
Show Figures

Figure 1

14 pages, 3705 KiB  
Review
Yolk Sac Elements in Tumors Derived from Pluripotent Stem Cells: Borrowing Knowledge from Human Germ Cell Tumors
by Marnix van Soest, Joaquin Montilla-Rojo, Thomas F. Eleveld, Leendert H. J. Looijenga and Daniela C. F. Salvatori
Int. J. Mol. Sci. 2025, 26(13), 6464; https://doi.org/10.3390/ijms26136464 - 4 Jul 2025
Viewed by 429
Abstract
Pluripotent stem cell (PSC)-based therapies are currently in clinical trials. However, one of the main safety concerns includes the potential for cancer formation of the PSC-derived products. Currently, the teratoma in vivo assay is accepted by regulatory agencies for identifying whether PSCs have [...] Read more.
Pluripotent stem cell (PSC)-based therapies are currently in clinical trials. However, one of the main safety concerns includes the potential for cancer formation of the PSC-derived products. Currently, the teratoma in vivo assay is accepted by regulatory agencies for identifying whether PSCs have the potential to become malignant. Yolk sac elements (YSE) are one of the elements that could arise from PSC. Whereas the other malignant element, embryonal carcinoma, is thoroughly studied, this is not the case for YSE. Therefore, more research is needed to assess the nature of YSE. We propose that it is imperative to include the formation of YSE in the safety assessment of PSC due to their close resemblance to the clinical entity of yolk sac tumor (YST), a human malignant germ cell tumor (hGCT). In this review, we extrapolate knowledge from YST to better understand YSE derived from PSC. We demonstrate that both share a similar morphology and that the same characteristic immunohistochemical markers can be used for their identification. We discuss the risk these tumors pose, thereby touching upon genetic abnormalities and gene expression that characterize them, as well as possible disease mechanisms. Integrating the molecular and immunohistochemical markers identified in this review into future research will help to better address the potential malignancy associated with PSC. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Tumorigenesis of Human and Animal Stem Cells)
Show Figures

Figure 1

15 pages, 7842 KiB  
Article
Role of BMPR2 Mutation in Lung Organoid Differentiation
by Simin Jiang, Dian Chen, Liangliang Tian, Zihang Pan, Huanyu Long, Lanhe Chu, Weijing Kong, Qiyang Yao, Xiaojing Ma, Yun Zhao, Kai Wang and Yahong Chen
Biomedicines 2025, 13(7), 1623; https://doi.org/10.3390/biomedicines13071623 - 2 Jul 2025
Viewed by 420
Abstract
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, [...] Read more.
Background: The bone morphogenetic protein (BMP) signaling pathway is essential for lung development. BMP4, a key regulator, binds to type I (BMPR1) and type II (BMPR2) receptors to initiate downstream signaling. While the inactivation of Bmpr1a and Bmpr1b leads to tracheoesophageal fistulae, the role of BMPR2 mutations in lung epithelial development remains unclear. Methods: We generated induced pluripotent stem cells (iPSCs) from a patient carrying a BMPR2 mutation (c.631C>T), and gene-corrected isogenic controls were created using CRISPR/Cas9. These iPSCs were differentiated into lung progenitor cells and subsequently cultured to generate alveolar and airway organoids. The differentiation efficiency and epithelial lineage specification were assessed using immunofluorescence, flow cytometry, and qRT-PCR. Results: BMPR2-mutant iPSCs showed no impairment in forming a definitive or anterior foregut endoderm. However, a significant reduction in lung progenitor cell differentiation was observed. Further, while alveolar epithelial differentiation remained largely unaffected, airway organoids derived from BMPR2-mutant cells exhibited impaired goblet and ciliated cell development, with an increase in basal and club cell markers, indicating skewing toward undifferentiated airway cell populations. Conclusions: BMPR2 dysfunction selectively impairs late-stage lung progenitor specification and disrupts airway epithelial maturation, providing new insights into the developmental impacts of BMPR2 mutations. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 4508 KiB  
Article
Tension Force Stress Downregulates the Expression of Osteogenic Markers and Mineralization in Embryonic Stem-Cell-Derived Embryoid Bodies
by Ju-Hyeon An, Chun-Choo Kim, Junil Lee, Junhyeok Kim, Jeong-Chae Lee and Sung-Ho Kook
Cells 2025, 14(13), 991; https://doi.org/10.3390/cells14130991 - 28 Jun 2025
Viewed by 387
Abstract
Mechanical stresses affect a variety of cellular events in relation to the frequency, magnitude, and duration of the stimuli applied. Embryonic stem cell (ESC)-derived embryoid bodies (EBs) are pluripotent stem cell aggregates and comprise all somatic cells. Numerous studies have highlighted the effects [...] Read more.
Mechanical stresses affect a variety of cellular events in relation to the frequency, magnitude, and duration of the stimuli applied. Embryonic stem cell (ESC)-derived embryoid bodies (EBs) are pluripotent stem cell aggregates and comprise all somatic cells. Numerous studies have highlighted the effects of mechanosignals on stem cells, whereas their impact on EBs has been barely investigated. Here, we examined how cyclic tensile stress affects the behavior of EBs to differentiate into mineralized osteocytes by applying 2% elongation at 0.5 Hz frequency for 1 h once or 1 h every other day for 5 or 14 days in osteogenic medium. EBs that expressed undifferentiated markers, Oct4 and Sox2, were differentiated into mineralized cells, along with the accumulation of runt-related transcription factor 2 (RUNX2) and β-catenin in osteogenic medium. The application of tensile force inhibited EB’ mineralization via the downregulation of bone sialoprotein, osteocalcin, osterix, and RUNX2. While the transfection with si-β-catenin did not affect the osteogenic potency of EBs at a significant level, treatment with 10 μM of PD98059, but not of SP600125 or SB203580, diminished the mineralization of EBs and the expression of RUNX2 and RUNX2-regulated osteoblastic genes. The level of phosphorylated extracellular signal-regulated kinase-1 (p-ERK1) rather than p-ERK2 was more apparently diminished in tension-applied EBs. The transfection with si-ERK1, but not with si-ERK2, suppressed the mineralization of osteogenic medium-supplied EBs and the expression of osteoblast-specific genes. Collectively, this study demonstrates that tensile stress inhibits osteogenic potency of EBs by downregulating ERK1-mediated signaling and osteogenic gene expression. Full article
Show Figures

Figure 1

19 pages, 7009 KiB  
Article
Transcriptional Factors Related to Cellular Kinetics, Apoptosis, and Tumorigenicity in Equine Adipose-Derived Mesenchymal Stem Cells (ASCs) Are Influenced by the Age of the Donors
by Ekaterina Vachkova, Stefan Arnhold, Valeria Petrova, Manuela Heimann, Tsvetoslav Koynarski, Galina Simeonova and Paskal Piperkov
Animals 2025, 15(13), 1910; https://doi.org/10.3390/ani15131910 - 28 Jun 2025
Viewed by 284
Abstract
The impact of donor age on Adipose-derived mesenchymal stem cell (ASC) functionality and safety remains insufficiently characterized, particularly in equine models. This study investigates the influence of age on ASCs proliferation dynamics and the expression of tumorigenic and apoptosis-related markers. Equine ASCs were [...] Read more.
The impact of donor age on Adipose-derived mesenchymal stem cell (ASC) functionality and safety remains insufficiently characterized, particularly in equine models. This study investigates the influence of age on ASCs proliferation dynamics and the expression of tumorigenic and apoptosis-related markers. Equine ASCs were isolated from juvenile (<5 years), middle-aged (5–15 years), and geriatric (>15 years) horses and assayed across multiple passages. The relative mRNA expressions of pluripotency (Oct4), tumorigenic (CA9), and apoptosis-related (Bax and Bcl 2) markers were evaluated. The Gompertz growth model, population doubling time (PDT), and tissue non-specific ALP activity also followed. The expression of pluripotency and tumorigenic markers showed passage-dependent up-regulation, raising concerns about prolonged culture expansion. Apoptotic regulation displayed a shift with aging, as evidenced by alterations in the Bax/Bcl2 ratio, suggesting compromised cell survival in older ASCs. An age-associated decline in proliferation rates was established, as evidenced by declining alkaline phosphatase (ALP) activity. These findings underscore the necessity for stringent age-based selection criteria in equine stem cell therapies and the challenges associated with using autologous stem cells for regenerative therapies in aged horses. Future research should focus on molecular interventions to mitigate age-related functional decline, ensuring the safety and efficacy of ASCs-based regenerative medicine in equine practice. Full article
Show Figures

Figure 1

19 pages, 6401 KiB  
Article
Identification of Transcriptomic Differences in Induced Pluripotent Stem Cells and Neural Progenitors from Amyotrophic Lateral Sclerosis Patients Carrying Different Mutations: A Pilot Study
by Chiara Sgromo, Martina Tosi, Cristina Olgasi, Fabiola De Marchi, Francesco Favero, Giorgia Venturin, Beatrice Piola, Alessia Cucci, Lucia Corrado, Letizia Mazzini, Sandra D’Alfonso and Antonia Follenzi
Cells 2025, 14(13), 958; https://doi.org/10.3390/cells14130958 - 23 Jun 2025
Viewed by 527
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons with a phenotypic and genetic heterogeneity and elusive molecular mechanisms. With the present pilot study, we investigated different genetic mutations (C9orf72, TARDBP, and KIF5A) associated with ALS by generating induced pluripotent stem cells (iPSCs) from peripheral blood of ALS patients and healthy donors. iPSCs showed the typical morphology, expressed stem cell markers both at RNA (OCT4, SOX2, KLF4, and c-Myc) and protein (Oct4, Sox2, SSEA3, and Tra1-60) levels. Moreover, embryoid bodies expressing the three germ-layer markers and neurospheres expressing neural progenitor markers were generated. Importantly, the transcriptomic profiles of iPSCs and neurospheres were analyzed to highlight the differences between ALS patients and healthy controls. Interestingly, the differentially expressed genes (DEGs) shared across all ALS iPSCs are linked to extracellular matrix, highlighting its importance in ALS progression. In contrast, ALS neurospheres displayed widespread deficits in neuronal pathways, although these DEGs were varied among patients, reflecting the disease’s heterogeneity. Overall, we generated iPSC lines from ALS patients with diverse genetic backgrounds offering a tool for unravelling the intricate molecular landscape of ALS, paving the way for identifying key pathways implicated in pathogenesis and the disease’s phenotypic variability. Full article
(This article belongs to the Collection Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

17 pages, 10722 KiB  
Article
Fin Cells as a Promising Seed Cell Source for Sustainable Fish Meat Cultivation
by Zongyun Du, Jihui Lao, Yuyan Jiang, Jingyu Liu, Shili Liu, Jianbo Zheng, Fei Li, Yongyi Jia, Zhimin Gu, Jun Chen and Xiao Huang
Foods 2025, 14(12), 2075; https://doi.org/10.3390/foods14122075 - 12 Jun 2025
Viewed by 804
Abstract
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation [...] Read more.
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation efficiency and predictability are limited. Here, we developed TCCF2022, a novel caudal fin-derived cell line from Topmouth culter (Culter alburnus), which expresses pluripotency markers (AP, Oct4, Sox2, Klf4, and Nanog) and aggregated growth to form 3D spheroids. Forskolin supplementation enhanced pluripotency maintenance. The presence of adipogenic and myogenic lineage cells within the 3D spheroids was confirmed, demonstrating their potential as seed cells for cell-cultured meat. Using a small-molecule cocktail 5LRCF (5-Azacytidine, LY411575, RepSox, CHIR99021, and Forskolin), we successfully differentiated TCCF2022 cells into functional myotubes. Additionally, we established a method to induce the differentiation of TCCF2022 cells into adipocytes simultaneously. Thus, the TCCF2022 cell line can be used to improve muscle fiber formation and lipid composition, potentially enhancing the nutritional profile and flavor of cultured fish meat. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

55 pages, 1435 KiB  
Review
Induced Pluripotent (iPSC) and Mesenchymal (MSC) Stem Cells for In Vitro Disease Modeling and Regenerative Medicine
by Egor Panferov, Maria Dodina, Vasiliy Reshetnikov, Anastasia Ryapolova, Roman Ivanov, Alexander Karabelsky and Ekaterina Minskaia
Int. J. Mol. Sci. 2025, 26(12), 5617; https://doi.org/10.3390/ijms26125617 - 11 Jun 2025
Viewed by 1193
Abstract
In vitro disease modeling can be used both for understanding the development of pathology and for screening various therapies, such as gene therapies. This approach decreases costs, shortens research timelines, reduces animal testing, and may be more accurate in replicating the disease phenotype [...] Read more.
In vitro disease modeling can be used both for understanding the development of pathology and for screening various therapies, such as gene therapies. This approach decreases costs, shortens research timelines, reduces animal testing, and may be more accurate in replicating the disease phenotype compared to animal models. This review focuses on the two types of stem cells: induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs), which can be used for this purpose. Special attention is given to the impact of the isolation source and the variable expression of certain phenotypic markers on the differentiation capacity of these cells. Both similarities and critical differences between iPSCs and MSCs, as well as the outcomes of past and ongoing clinical trials, are discussed in order to gain insight and understanding as to which of these two cell types can be more suitable for the particular biomedical application. Full article
Show Figures

Figure 1

16 pages, 23006 KiB  
Article
Towards Personalized Medicine: Microdevice-Assisted Evaluation of Cancer Stem Cell Dynamics and Treatment Response
by Eduardo Imanol Agüero, Silvia María Gómez López, Ana Belén Peñaherrera-Pazmiño, Matías Tellado, Maximiliano Sebastián Pérez, Betiana Lerner, Denise Belgorosky and Ana María Eiján
Cancers 2025, 17(12), 1922; https://doi.org/10.3390/cancers17121922 - 10 Jun 2025
Cited by 1 | Viewed by 1312
Abstract
Background/Objectives: Cancer stem cells (CSCs) represent a minor yet critical subpopulation within tumors, endowed with self-renewal and differentiation capacities, and are implicated in tumor initiation, progression, metastasis, therapeutic resistance, and recurrence. Reliable in vitro functional assays to characterize CSCs are pivotal for the [...] Read more.
Background/Objectives: Cancer stem cells (CSCs) represent a minor yet critical subpopulation within tumors, endowed with self-renewal and differentiation capacities, and are implicated in tumor initiation, progression, metastasis, therapeutic resistance, and recurrence. Reliable in vitro functional assays to characterize CSCs are pivotal for the development of personalized oncology strategies. This study sought to establish and validate a microfluidic device (MD) platform for the enrichment, functional assessment, and therapeutic evaluation of CSC populations derived from experimental models and primary tumor samples. Methods: Murine (LM38LP) and human (BPR6) breast cancer cell lines were cultured within MDs to promote sphere formation. CSC enrichment was confirmed through the expression analysis of pluripotency-associated genes (Oct4, Sox2, Nanog, and CD44) by quantitative PCR (qPCR) and immunofluorescence. Sphere number, size, and gene expression profiles were quantitatively assessed before (control) and after chemotherapeutic exposure. To validate the MD platform against conventional scale, parallel experiments were performed in 12 well plates. To extend translational relevance, three primary canine tumor samples (solid thyroid carcinoma, simple tubular carcinoma, and reactive lymph node) were mechanically disaggregated and processed within MDs for CSC characterization. Results: The MD platform enabled the consistent enrichment of CSC populations, showing significant modulation of sphere growth parameters and stemness marker expression following chemotherapeutic treatment. Beyond its comparability with conventional culture, the MD also supported immunofluorescence staining and allowed real-time monitoring of individual cell growth. Sphere formation efficiency (SFE) and CSC marker expression were similarly demonstrated in primary veterinary tumor cultures, highlighting the device’s cross-species applicability. Conclusions: Microfluidic-based sphere assays represent a robust, reproducible, and scalable platform for the functional interrogation of CSC dynamics and therapeutic responses. This methodology holds great promise for advancing CSC-targeted therapies and supporting personalized oncology in both human and veterinary settings. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

15 pages, 1531 KiB  
Article
Circulating Progranulin: A Promising Novel Diagnostic and Prognostic Biomarker in Canine Oncology
by Keon Kim, Yeong Jun Kim, Chang Hyeon Choi, Yoon Jung Do, Woong Bin Ro and Chang Min Lee
Animals 2025, 15(11), 1605; https://doi.org/10.3390/ani15111605 - 30 May 2025
Viewed by 518
Abstract
Progranulin (PGRN) is a pluripotent growth factor that has shown promise as a diagnostic and prognostic biomarker for various neoplastic conditions in humans. This study aims to explore the PGRN as a novel biomarker for diagnosing and predicting the prognosis in canine tumors. [...] Read more.
Progranulin (PGRN) is a pluripotent growth factor that has shown promise as a diagnostic and prognostic biomarker for various neoplastic conditions in humans. This study aims to explore the PGRN as a novel biomarker for diagnosing and predicting the prognosis in canine tumors. Dogs (n = 104) with tumors as the chief complaint were selected and classified based on clinical categorization, malignancy, and metastasis. The control group (n = 30) consisted of healthy dogs with no evidence of neoplastic diseases. Serum PGRN levels were quantified using enzyme-linked immunosorbent assay (ELISA). Dogs with tumors exhibited significantly elevated PGRN levels compared to control dogs (p < 0.0001), with a high sensitivity of 90.91%. Malignant tumors demonstrated markedly higher PGRN levels relative to the control group (p = 0.0012), while no significant difference was found between benign tumors and the control group. Additionally, serum PGRN was identified as a significant marker for differentiating metastatic tumors from non-metastatic ones (p = 0.0264). PGRN exhibited high sensitivity for tumor detection, suggesting that it may serve as a screening biomarker. Prognostically, increased PGRN correlated with unfavorable outcomes, notably linked to malignancy and metastasis. This study underscores the potential of PGRN as a novel biomarker with early diagnostic and prognostic value in canine oncology. Full article
(This article belongs to the Special Issue Cancer Immunotherapy Research in Veterinary Medicine)
Show Figures

Figure 1

16 pages, 4133 KiB  
Protocol
The Optimization of a Protocol for the Directed Differentiation of Induced Pluripotent Stem Cells into Liver Progenitor Cells and the Delivery of Transgenes
by Irina Panchuk, Valeriia Kovalskaia, Natalia Balinova, Oxana Ryzhkova and Svetlana Smirnikhina
Biology 2025, 14(6), 586; https://doi.org/10.3390/biology14060586 - 22 May 2025
Viewed by 920
Abstract
The liver plays a pivotal role in metabolism, detoxification, and protein synthesis and comprises several cell types, including hepatocytes and cholangiocytes. Primary human hepatocytes in 2D cultures rapidly dedifferentiate and lose their function, making their use as a reliable cell model challenging. Therefore, [...] Read more.
The liver plays a pivotal role in metabolism, detoxification, and protein synthesis and comprises several cell types, including hepatocytes and cholangiocytes. Primary human hepatocytes in 2D cultures rapidly dedifferentiate and lose their function, making their use as a reliable cell model challenging. Therefore, developing robust three-dimensional cell culture models is crucial, especially for diseases lacking reliable animal models. The aim of this study was to optimize a protocol for the directed differentiation of induced pluripotent stem cells into liver progenitor cells, achieving the high-level expression of specific markers. As a result, we established a 2D culture of liver progenitor cells capable of differentiating into three cell types: a 3D organoid culture containing hepatocyte- and cholangiocyte-like cells and a 2D cell culture comprising stellate-like cells. To evaluate gene delivery efficiency, liver progenitor cells were transduced with various rAAV serotypes carrying an eGFP reporter cassette at different multiplicities of infection (MOIs). Our results revealed that rAAV serotype 2/2 at MOI of 100,000 achieved the highest transduction efficiency of 93.6%, while electroporation demonstrated a plasmid delivery efficiency of 54.3%. These findings suggest that liver progenitor cells are a promising tissue-like cell model for regenerative medicine and demonstrate high amenability to genetic manipulation, underscoring their potential in gene therapy and genome editing studies. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Graphical abstract

Back to TopTop