Circulating Progranulin: A Promising Novel Diagnostic and Prognostic Biomarker in Canine Oncology
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Serum Sampling
2.3. Enzyme-Linked Immunosorbent Assay (ELISA)
2.4. Statistical Analyses
3. Results
3.1. Caseload
3.2. Serum PGRN Concentrations in Tumor and Control Groups
3.3. Comparison of PGRN Levels Among Tumor Types Based on Tissue or Cell Origin
3.4. Comparison of PGRN Levels According to the Malignancy of Tumors
3.5. Comparison of PGRN Levels Based on the Presence of Tumor Metastasis
3.6. Comparison of Diagnostic Accuracy Through Receiver Operating Characteristic (ROC) Curve Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
AUC | Area under curve |
ELISA | Enzyme-linked immunosorbent assay |
FNA | Fine needle aspiration |
GP88 | 88-kDa glycoprotein |
HLS | Hematopoietic and lymphoreticular system |
HRP | Horseradish peroxidase |
MGT | Mammary gland tumor |
PARR | Polymerase Chain Reaction for Antigen Receptor Rearrangement |
PGRN | Progranulin |
ROC | Receiver operating characteristic |
References
- Schiffman, J.D.; Breen, M. Comparative oncology: What dogs and other species can teach us about humans with cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140231. [Google Scholar] [CrossRef] [PubMed]
- Dhein, E.S.; Heikkilä, U.; Oevermann, A.; Blatter, S.; Meier, D.; Hartnack, S.; Guscetti, F. Incidence rates of the most common canine tumors based on data from the Swiss Canine Cancer Registry (2008 to 2020). PLoS ONE 2024, 19, e0302231. [Google Scholar] [CrossRef] [PubMed]
- Baioni, E.; Scanziani, E.; Vincenti, M.C.; Leschiera, M.; Bozzetta, E.; Pezzolato, M.; Desiato, R.; Caramelli, M.; Ru, G. Estimating canine cancer incidence: Findings from a population-based tumour registry in northwestern Italy. BMC Vet. Res. 2017, 13, 203. [Google Scholar] [CrossRef]
- Kim, Y.; Park, J.; Kim, B.; Yu, K.R.; Kim, H.S.; Oh, Y.; Seo, K.; Ryu, M.; Park, C.; Bhang, D.; et al. Serum thymidine kinase 1 protein concentrations and presence of its autoantibody as biomarkers for screening dogs with malignant tumors. J. Vet. Intern. Med. 2024, 38, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Bhang, D.H.; Choi, U.S.; Kim, B.G.; Lee, S.N.; Lee, S.; Roh, H.S.; Chung, W.J.; Jeon, K.O.; Song, W.J.; Youn, H.Y.; et al. Characteristics of extracellular cyclic AMP-dependent protein kinase as a biomarker of cancer in dogs. Vet. Comp. Oncol. 2017, 15, 1585–1589. [Google Scholar] [CrossRef]
- Lee, J.E.; Song, W.J.; Lee, H.; Kim, B.G.; Kim, T.; Lee, C.; Jang, B.; Youn, H.Y.; Choi, U.S.; Bhang, D.H. AniScan using extracellular cyclic AMP-dependent protein kinase A as a serum biomarker assay for the diagnosis of malignant tumors in dogs. Sensors 2020, 20, 4075. [Google Scholar] [CrossRef]
- Arechavaleta-Velasco, F.; Perez-Juarez, C.E.; Gerton, G.L.; Diaz-Cueto, L. Progranulin and its biological effects in cancer. Med. Oncol. 2017, 34, 194. [Google Scholar] [CrossRef]
- Ventura, E.; Ducci, G.; Benot Dominguez, R.; Ruggiero, V.; Belfiore, A.; Sacco, E.; Vanoni, M.; Iozzo, R.V.; Giordano, A.; Morrione, A. Progranulin oncogenic network in solid tumors. Cancers 2023, 15, 1706. [Google Scholar] [CrossRef]
- Serrero, G.; Hawkins, D.M.; Yue, B.; Ioffe, O.; Bejarano, P.; Phillips, J.T.; Head, J.F.; Elliott, R.L.; Tkaczuk, K.R.; Godwin, A.K.; et al. Progranulin (GP88) tumor tissue expression is associated with increased risk of recurrence in breast cancer patients diagnosed with estrogen receptor positive invasive ductal carcinoma. Breast Cancer Res. 2012, 14, R26. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Yin, J.; Lin, T.; Zhang, J. Progranulin overexpression predicts overall survival in patients with glioblastoma. Med. Oncol. 2012, 29, 2423–2431. [Google Scholar] [CrossRef]
- Pan, C.X.; Kinch, M.S.; Kiener, P.A.; Langermann, S.; Perry, K.K.; Luo, J.; Wang, L.; Cochran, B.H.; Sweeney, C.J.; Shapiro, L.H. PC cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin. Cancer Res. 2004, 10, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Donald, C.D.; Laddu, A.; Chandham, P.; Lim, S.D.; Cohen, C.; Amin, M.B.; Morrison, C.D.; Finstad, C.L.; Johnston, D.; Wei, J.; et al. Expression of progranulin and the epithelin/granulin precursor acrogranin correlates with neoplastic state in renal epithelium. Anticancer Res. 2001, 21, 3739–3742. [Google Scholar] [PubMed]
- Kim, J.H.; Do, I.G.; Kim, K.; Sohn, J.H.; Kim, H.J.; Jeon, W.K.; Lee, S.R.; Son, B.H.; Shin, J.H.; Nam, H.; et al. Progranulin as a predictive factor of response to chemotherapy in advanced biliary tract carcinoma. Cancer Chemother. Pharmacol. 2016, 78, 1085–1092. [Google Scholar] [CrossRef]
- Carlson, A.M.; Maurer, M.J.; Goergen, K.M.; Kalli, K.R.; Erskine, C.L.; Behrens, M.D.; Keeney, G.L.; Haluska, P.; Peethambaram, P.P.; Oberg, A.L.; et al. Utility of progranulin and serum leukocyte protease inhibitor as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1730–1735. [Google Scholar] [CrossRef] [PubMed]
- Selmy, M.A.; Ibrahim, G.H.; El Serafi, T.I.; Ghobeish, A.A. Evaluation of urinary proepithelin as a potential biomarker for bladder cancer detection and prognosis in Egyptian patients. Cancer Biomark. 2010, 7, 163–170. [Google Scholar] [CrossRef]
- Edelman, M.J.; Feliciano, J.; Yue, B.; Bejarano, P.; Ioffe, O.; Reisman, D.; Hawkins, D.; Gai, Q.; Hicks, D.; Serrero, G. GP88 (progranulin): A novel tissue and circulating biomarker for non-small cell lung carcinoma. Hum. Pathol. 2014, 45, 1893–1899. [Google Scholar] [CrossRef]
- Kamstock, D.A.; Russell, D.S.; Powers, B.E. The Pathology of Neoplasia. In Withrow & MacEwen’s Small Animal Clinical Oncology, 6th ed.; Withrow, S.J., Vail, D.M., Page, R.L., Eds.; Elsevier: St. Louis, MO, USA, 2020; pp. 61–80. [Google Scholar]
- Yamamoto, Y.; Takemura, M.; Serrero, G.; Hayashi, J.; Yue, B.; Tsuboi, A.; Kubo, H.; Mitsuhashi, T.; Mannami, K.; Sato, M.; et al. Increased serum GP88 (Progranulin) concentrations in rheumatoid arthritis. Inflammation 2014, 37, 1806–1813. [Google Scholar] [CrossRef]
- Swamydas, M.; Nguyen, D.; Allen, L.D.; Eddy, J.; Dreau, D. Progranulin stimulated by LPA promotes the migration of aggressive breast cancer cells. Cell Commun. Adhes. 2011, 18, 119–130. [Google Scholar] [CrossRef]
- Cuevas-Antonio, R.; Cancino, C.; Arechavaleta-Velasco, F.; Andrade, A.; Barron, L.; Estrada, I.; Fernández, R.L.; Olguín, V.; Ruiz, S. Expression of progranulin (Acrogranin/PCDGF/Granulin-Epithelin precursor) in benign and malignant ovarian tumors and activation of MAPK signaling in ovarian cancer cell line. Cancer Investig. 2010, 28, 452–458. [Google Scholar] [CrossRef]
- Göbel, M.; Eisele, L.; Möllmann, M.; Hüttmann, A.; Johansson, P.; Scholtysik, R.; Bergmann, M.; Busch, R.; Dührsen, U.; Dürig, J. Progranulin is a novel independent predictor of disease progression and overall survival in chronic lymphocytic leukemia. PLoS ONE 2013, 8, e72107. [Google Scholar] [CrossRef]
- El-Ghammaz, A.M.S.; Azzazi, M.O.; Mostafa, N.; Hegab, H.M.; Mahmoud, A.A. Prognostic significance of serum progranulin level in de novo adult acute lymphoblastic leukemia patients. Clin. Exp. Med. 2020, 20, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Goto, N.; Takemura, M.; Yamasuge, W.; Yabe, K.; Takami, T.; Miyazaki, T.; Takeuchi, T.; Shiraki, M.; Shimizu, M.; et al. Association between increased serum GP88 (progranulin) concentrations and prognosis in patients with malignant lymphomas. Clin. Chim. Acta 2017, 473, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Ryu, M.O.; Kim, B.G.; Choi, U.S.; Baek, K.H.; Song, Y.K.; Li, Q.; Bhang, D.H. Extracellular cyclic adenosine monophosphate-dependent protein kinase A autoantibody and C-reactive protein as serum biomarkers for diagnosis of cancer in dogs. Vet. Comp. Oncol. 2019, 17, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Mandai, M.; Miyanishi, M.; Fukuhara, K.; Baba, T.; Higuchi, T.; Kariya, M.; Takakura, K.; Fujii, S. Oncogenic property of acrogranin in human uterine leiomyosarcoma: Direct evidence of genetic contribution in in vivo tumorigenesis. Clin. Cancer Res. 2006, 12, 1402–1411. [Google Scholar] [CrossRef]
- Miyanishi, M.; Mandai, M.; Matsumura, N.; Yamaguchi, K.; Hamanishi, J.; Higuchi, T.; Takakura, K.; Fujii, S. Immortalized ovarian surface epithelial cells acquire tumorigenicity by Acrogranin gene overexpression. Oncol. Rep. 2007, 17, 329–333. [Google Scholar] [CrossRef]
- Lu, Y.; Zheng, L.; Zhang, W.; Feng, T.; Liu, J.; Wang, X.; Yu, Y.; Qi, M.; Zhao, W.; Yu, X.; et al. Growth factor progranulin contributes to cervical cancer cell proliferation and transformation in vivo and in vitro. Gynecol. Oncol. 2014, 134, 364–371. [Google Scholar] [CrossRef]
- Prieto-García, E.; Díaz-García, C.V.; García-Ruiz, I.; Agulló-Ortuño, M.T. Epithelial-to-mesenchymal transition in tumor progression. Med. Oncol. 2017, 34, 122. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.L.; Dong, T.T.; Shen, Y.H.; Guo, X.S.; Liu, C.Y.; Liu, J.; Zhang, P. Progranulin promotes colorectal cancer proliferation and angiogenesis through TNFR2/Akt and ERK signaling pathways. Am. J. Cancer Res. 2015, 5, 3085–3097. [Google Scholar]
- Tangkeangsirisin, W.; Serrero, G. PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis 2004, 25, 1587–1592. [Google Scholar] [CrossRef]
- Monami, G.; Gonzalez, E.M.; Hellman, M.; Gomella, L.G.; Baffa, R.; Iozzo, R.V.; Morrione, A. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res. 2006, 66, 7103–7110. [Google Scholar] [CrossRef]
- Tkaczuk, K.R.; Yue, B.; Zhan, M.; Tait, N.; Yarlagadda, L.; Dai, H.; Serrero, G. Increased circulating level of the survival factor GP88 (Progranulin) in the serum of breast cancer patients when compared to healthy subjects. Breast Cancer 2011, 5, 155–162. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Bateman, A. Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res. 1999, 59, 3222–3229. [Google Scholar] [PubMed]
- Wang, W.; Hayashi, J.; Kim, W.E.; Serrero, G. PC cell-derived growth factor (granulin precursor) expression and action in human multiple myeloma. Clin. Cancer Res. 2003, 9, 2221–2228. [Google Scholar] [PubMed]
- Kong, W.J.; Zhang, S.L.; Chen, X.; Zhang, S.; Wang, Y.J.; Zhang, D. PC cell-derived growth factor overexpression promotes proliferation and survival of laryngeal carcinoma. Anticancer Drugs 2007, 18, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Monami, G.; Emiliozzi, V.; Bitto, A.; Lovat, F.; Xu, S.Q.; Goldoni, S.; Fassan, M.; Serrero, G.; Gomella, L.G.; Baffa, R.; et al. Proepithelin regulates prostate cancer cell biology by promoting cell growth, migration, and anchorage-independent growth. Am. J. Pathol. 2009, 174, 1037–1047. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Pan, Z.X.; Liu, H.; Yu, J.L.; Li, G.X.; Wang, H.Y.; Liu, M.M. Effect of progranulin (PGRN) on the proliferation and senescence of cervical cancer cells. Genet. Mol. Res. 2015, 14, 14331–14338. [Google Scholar]
- Feng, T.; Zheng, L.; Liu, F.; Xu, X.; Mao, S.; Wang, X.; Liu, J.; Lu, Y.; Zhao, W.; Yu, X.; et al. Growth factor progranulin promotes tumorigenesis of cervical cancer via PI3K/Akt/mTOR signaling pathway. Oncotarget 2016, 7, 58381–58395. [Google Scholar] [CrossRef]
- Kim, W.E.; Yue, B.; Serrero, G. Signaling pathway of GP88 (Progranulin) in breast cancer cells: Upregulation and phosphorylation of c-myc by GP88/Progranulin in Her2-overexpressing breast cancer cells. Breast Cancer 2015, 9, 71–77. [Google Scholar] [CrossRef]
Signalment | Control | Tumor Types | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MGT | HLS | Mesenchymal | Epithelial | Neuroendocrine | ||||||
Benign | Malignant | Benign | Malignant | Benign | Malignant | Benign | Malignant | |||
Number | 30 | 45 | 0 | 20 | 3 | 13 | 4 | 15 | 1 | 3 |
Age (median [IQR]) | 8 [4–12] | 10 [9–12] | - | 8 [6–10.25] | 9 [7.5–10] | 11 [8–12] | 10 [9.75–11] | 11 [7–14.5] | 13 [13] | 10 [9.5–10.5] |
Sex | F (0), SF (12), M (1), MN (15) | F (27), SF (18), M (0), MN (0) | - | F (4), SF (5), M (3), MN (8) | F (0), SF (1), M (0), MN (2) | F (1), SF (7), M (2), MN (3) | F (0), SF (1), M (2), MN (1) | F (0), SF (5), M (3), MN (7) | F (0), SF (1), M (0), MN (0) | F (0), SF (0), M (0), MN (3) |
Breed | Beagle (1) Bichon Frise (4) Chihuahua (2) French Bulldog (2) Maltese (8) Mixed (7) Pomeranian (2) Poodle (2) Shih Tzu (1) Yorkshire Terrier (1) | Border Collie (1) Boston Terrier (1) Cocker Spaniel (2) Dachshund (1) Golden Retriever (1) Jindo Dog (2) Maltese (11) Miniature Pinscher (1) Mixed (9) Pomeranian (1) Poodle (8) Shih Tzu (5) Yorkshire Terrier (2) | - | Bichon Frise (1) Chihuahua (1) Cocker Spaniel (1) Maltese (3) Miniature Pinscher (1) Pompitz (2) Poodle (4) Shih Tzu (4) Yorkshire Terrier (3) | Bichon Frise (1) Mixed (1) Poodle (1) | Boston Terrier (3) Golden Retriever (2) Maltese (1) Miniature Schnauzer (2) Pomeranian (2) Schnauzer (1) Shih Tzu (1) Welsh Corgi (1) | Chihuahua (1) Doberman Pinscher (1) Maltese (1) Poodle (1) | Jindo Dog (2) Maltese (8) Mixed (1) Pompitz (2) Schnauzer (1) Shih Tzu (1) | Maltese (1) | Pomeranian (3) |
Mammary gland tumors (n = 45) |
|
Hematopoietic and lymphoreticular tumors (n = 20) |
Malignant (n = 20) |
|
Mesenchymal (n = 16) |
Benign (n = 3) |
|
Malignant (n = 13) |
|
Epithelial (n = 19) |
Benign (n = 4) |
|
Malignant (n = 15) |
|
Neuroendocrine (n = 4) |
Benign (n = 1) |
|
Malignant (n = 3) |
|
Total number of canine tumors (n = 104) |
Subjects of ROC Analysis (Best Cutoff Value) | AUC | Sensitivity (%) | Specificity (%) | p Value |
Tumor vs. control (1.956 ng/mL) | 0.7229 | 90.91% | 50% | 0.0002 |
MGT vs. control (1.956 ng/mL) | 0.7337 | 97.78% | 50% | 0.0006 |
HLS tumor vs. control (3.224 ng/mL) | 0.835 | 75% | 80% | <0.0001 |
Metastasis vs. no-metastasis (3.248 ng/mL) | 0.6514 | 71.88% | 64.1% | 0.0129 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Kim, Y.J.; Choi, C.H.; Do, Y.J.; Ro, W.B.; Lee, C.M. Circulating Progranulin: A Promising Novel Diagnostic and Prognostic Biomarker in Canine Oncology. Animals 2025, 15, 1605. https://doi.org/10.3390/ani15111605
Kim K, Kim YJ, Choi CH, Do YJ, Ro WB, Lee CM. Circulating Progranulin: A Promising Novel Diagnostic and Prognostic Biomarker in Canine Oncology. Animals. 2025; 15(11):1605. https://doi.org/10.3390/ani15111605
Chicago/Turabian StyleKim, Keon, Yeong Jun Kim, Chang Hyeon Choi, Yoon Jung Do, Woong Bin Ro, and Chang Min Lee. 2025. "Circulating Progranulin: A Promising Novel Diagnostic and Prognostic Biomarker in Canine Oncology" Animals 15, no. 11: 1605. https://doi.org/10.3390/ani15111605
APA StyleKim, K., Kim, Y. J., Choi, C. H., Do, Y. J., Ro, W. B., & Lee, C. M. (2025). Circulating Progranulin: A Promising Novel Diagnostic and Prognostic Biomarker in Canine Oncology. Animals, 15(11), 1605. https://doi.org/10.3390/ani15111605