Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = pleuropneumonia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 737 KiB  
Article
Hematologic Ratios in Donkeys: Reference Intervals and Response to Experimentally Induced Endotoxemia
by Carmen Davias, Francisco J. Mendoza, Adelaida De Las Heras, Carlos Gonzalez-De-Cara, Antonio Buzon-Cuevas and Alejandro Perez-Ecija
Animals 2025, 15(15), 2272; https://doi.org/10.3390/ani15152272 - 4 Aug 2025
Viewed by 137
Abstract
Endotoxemia is commonly observed in donkeys, secondary to colic, pleuropneumonia, or diarrhea among other disorders. Hematologic ratios are new biomarkers widely used in the diagnosis and prognosis of multiple conditions in human medicine, including sepsis. While the utility of these ratios has been [...] Read more.
Endotoxemia is commonly observed in donkeys, secondary to colic, pleuropneumonia, or diarrhea among other disorders. Hematologic ratios are new biomarkers widely used in the diagnosis and prognosis of multiple conditions in human medicine, including sepsis. While the utility of these ratios has been proved in septic foals, no data are available on donkeys. Moreover, reference intervals (RIs) have not been studied in this species. In this study, RIs of the most commonly reported hematologic ratios were determined in 73 healthy adult donkeys. In addition, variations in these ratios in response to LPS infusion were also evaluated in six healthy adult donkeys. Most of the ratios evaluated showed significant variations after induced endotoxemia, with most of them showing values outside of the established RIs. Similarly to septic foals, the neutrophil to lymphocyte ratio was significantly reduced after LPS infusion. No significant changes were observed in the red cell distribution width to platelet ratio, contrary to reports on septic foals. Previously reported cut-off values for both of these ratios should not be extrapolated to donkeys. Future studies evaluating these ratios in natural endotoxemia or other diseases in donkeys, as well as establishing species-specific cut-off values, are necessary. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules)
Show Figures

Figure 1

27 pages, 5312 KiB  
Article
Evaluating the Immunogenic Potential of ApxI and ApxII from Actinobacillus pleuropneumoniae: An Immunoinformatics-Driven Study on mRNA Candidates
by Yi Deng, Jia-Yong Chen, Yuhan Wang, Yu-Luo Wang, Jiale Liu, Zhiling Peng, Jiayu Zhou, Kun Lu, Xin Wen, Xizhu Chen, Siyu Pang, Dan Wang, Miaohan Li, Senyan Du, San-Jie Cao and Qin Zhao
Vet. Sci. 2025, 12(5), 414; https://doi.org/10.3390/vetsci12050414 - 27 Apr 2025
Viewed by 654
Abstract
Porcine infectious pleuropneumonia (PCP) caused by Actinobacillus pleuropneumoniae (APP) leads to severe economic losses in swine production. Commercial vaccines offer limited cross-protection for the 19 serotypes, while APP mRNA vaccines remain unexplored. This study evaluated eight candidate APP proteins (ApxI-IV, OlmA, TbpB, GalT, [...] Read more.
Porcine infectious pleuropneumonia (PCP) caused by Actinobacillus pleuropneumoniae (APP) leads to severe economic losses in swine production. Commercial vaccines offer limited cross-protection for the 19 serotypes, while APP mRNA vaccines remain unexplored. This study evaluated eight candidate APP proteins (ApxI-IV, OlmA, TbpB, GalT, and GalU) using immunobioinformatics tools, and their immunogenicity and cross-protection were assessed in a mouse model. The results revealed that ApxI and ApxII excel due to their stability, strong antigenicity, non-sensitization, and high immune receptor affinity. Compared to the PBS group, both ApxI and ApxII induced higher serum IgG, IL-2, IL-4, and IFN-γ levels. Following challenge with the two most prevalent APP strains in Mainland China, APP 5b and APP 1, the survival rates for ApxI (71.4% and 62.5%) and ApxII (75% and 71.4%) were measured, with notably reduced lung lesions and neutrophil infiltration. These findings highlight ApxI and ApxII’s potential in mRNA vaccine development as a promising approach to overcome current vaccine limitations. Future research should focus on creating APP mRNA vaccines and testing their efficacy in swine. This study is the first to combine immunoinformatics with experimental validation for APP mRNA vaccine antigens, representing a novel contribution. Full article
Show Figures

Graphical abstract

15 pages, 2692 KiB  
Article
Isolation, Antimicrobial Susceptibility, and Genotypes of Three Pasteurellaeae Species Prevalent on Pig Farms in China Between 2021 and 2023
by Fangxin Li, Xin Zong, Guosheng Chen, Yu Zhang, Qi Cao, Lu Li, Huanchun Chen, Zhong Peng and Chen Tan
Microorganisms 2025, 13(4), 938; https://doi.org/10.3390/microorganisms13040938 - 18 Apr 2025
Cited by 1 | Viewed by 543
Abstract
Pasteurella multocida (PM), Glaesserella parasuis (GPS), and Actinobacillus pleuropneumoniae (APP) are among the species with the top five isolation rates on Chinese pig farms annually. To understand the antimicrobial susceptibility and genotypes of these three pathogens that are currently prevalent on pig farms, [...] Read more.
Pasteurella multocida (PM), Glaesserella parasuis (GPS), and Actinobacillus pleuropneumoniae (APP) are among the species with the top five isolation rates on Chinese pig farms annually. To understand the antimicrobial susceptibility and genotypes of these three pathogens that are currently prevalent on pig farms, we investigated 151 bacterial strains (64 PM, 48 GPS, and 39 APP) isolated from 4190 samples from farms in 12 Chinese provinces between 2021 and 2023. The prevalent serotypes were PM type D (50.0%), GPS type 5/12 (47.92%), and APP type 7 (35.90%). A relatively high proportion of PM and APP were resistant to ampicillin (PM, 93.75%; APP, 71.79%), tilmicosin (PM, 64.06%; APP, 58.97%), tetracycline (PM, 43.75%; APP, 61.54%), and enrofloxacin (PM, 34.38%; APP, 10.26%). Ampicillin, tetracycline, and enrofloxacin exhibited low MIC90 values against GPS (8 µg/mL), while sulfamethoxazole-trimethoprim had a high MIC90 value (512 µg/mL). A total of 18 genes conferring resistance to various antimicrobial classes were identified, and tet(L), tet(M), tet(A), blaTEM, sul2, aph(3′)-Ia, dfrA12, qnrS1, strA, sul3, and mef(B) exhibited a high frequency of identification (≥70%). The analysis of regular virulence factor genes showed that several genes, including fimB, fimA, fimD, fimF, and fepG, were found in all PM, GPS, and APP strains. However, certain genes exhibited species-specific preferences, even if they belonged to the same category. Full article
Show Figures

Figure 1

21 pages, 6143 KiB  
Article
Development and Characterization of a Recombinant galT-galU Protein for Broad-Spectrum Immunoprotection Against Porcine Contagious Pleuropneumonia
by Jia-Yong Chen, Yi Deng, Jiale Liu, Xin Wen, Yu-Qin Cao, Yu Mu, Mengke Sun, Chang Miao, Zhiling Peng, Kun Lu, Yu-Luo Wang, Xizhu Chen, Siyu Pang, Dan Wang, Jiayu Zhou, Miaohan Li, Yiping Wen, Rui Wu, Shan Zhao, Yi-Fei Lang, Qi-Gui Yan, Xiaobo Huang, Senyan Du, Yiping Wang, Xinfeng Han, San-Jie Cao and Qin Zhaoadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(8), 3634; https://doi.org/10.3390/ijms26083634 - 11 Apr 2025
Viewed by 544
Abstract
Porcine contagious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly contagious disease that leads to significant economic losses in the swine industry. Current vaccines are ineffective due to the presence of multiple serotypes and the absence of a predominant seasonal serotype, [...] Read more.
Porcine contagious pleuropneumonia (PCP), caused by Actinobacillus pleuropneumoniae (APP), is a highly contagious disease that leads to significant economic losses in the swine industry. Current vaccines are ineffective due to the presence of multiple serotypes and the absence of a predominant seasonal serotype, underscoring the need for vaccines with broad-spectrum protection. Previous studies identified galT and galU as promising antigen candidates. In this study, we expressed and characterized a soluble recombinant galT-galU protein (rgalT-galU) from the pET-28a-galT-galU plasmid. The protein, with a molecular weight of 73 kDa, exhibited pronounced immunogenicity in murine models, as indicated by a significant elevation in IgG titers determined through an indirect ELISA. This immune response was further corroborated by substantial antigen-specific splenic lymphocyte proliferation, with a stimulation index of 51.5%. Immunization also resulted in elevated serum cytokines levels of IL-4, IL-12, and IFN-γ, as detected by cytokine assays. Vaccination with rgalT-galU provided immunoprotection against three predominant APP strains (APP1, APP5b, and APP7), achieving protection rates of 71.4%, 71.4%, and 85.7%, respectively. It also effectively mitigated pulmonary lesions and neutrophil infiltration, as verified by histopathological and immunohistochemical analyses. These results indicate that rgalT-galU is a promising candidate for developing cross-protective subunit vaccines against APP infection. Full article
Show Figures

Figure 1

11 pages, 1107 KiB  
Article
Field Evaluation of a Ready-to-Use Porcine Circovirus Type 2 and Mycoplasma hyopneumoniae Vaccine in Naturally Infected Farms in Taiwan
by Fu-Chun Hsueh, Chia-Yi Chien, Shu-Wei Chang, Bo-Rong Lian, Hong-Yao Lin, Leonardo Ellerma, Ming-Tang Chiou and Chao-Nan Lin
Vet. Sci. 2025, 12(4), 304; https://doi.org/10.3390/vetsci12040304 - 26 Mar 2025
Viewed by 588
Abstract
Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are both important and common pathogens in the pig industry. Both pathogens are major contributors to the porcine respiratory disease complex and serve to potentiate other bacterial infections such as Actinobacillus pleuropneumonia. This [...] Read more.
Porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHP) are both important and common pathogens in the pig industry. Both pathogens are major contributors to the porcine respiratory disease complex and serve to potentiate other bacterial infections such as Actinobacillus pleuropneumonia. This study aims to evaluate the efficacy of a ready-to-use bivalent PCV2 and MHP vaccine in the field under naturally PCV2-infected farms against existing monovalent options. We evaluated PCV2 viremia, PCV2 antibodies, and lung lesion scores in slaughtered pigs in our study across four farms in Taiwan. Our results found that in two out of four farms, the piglets vaccinated with Porcilis® PCV M Hyo had superior whole-life PCV2 viremia reduction compared to the existing vaccination program on farms. In the lung lesion scoring, the Porcilis® PCV M Hyo group had significantly lower Actinobacillus pleuropneumonia-type lesions in pigs than in the competitor group in two out of three farms evaluated. In this field trial, Porcilis® PCV M Hyo proved to be efficacious in protecting piglets against both PCV2 viremia and the impact of MHP secondary infection, in the context of a reduction in viremia and reduced APP-like lesions found at slaughter. Full article
Show Figures

Figure 1

16 pages, 4690 KiB  
Article
Novel Soluble apxIVA-Truncated Protein and Its Application to Rapid Detection and Distinction of Actinobacillus pleuropneumoniae Wild-Strain-Infected Samples from Those Vaccinated with apxIV-Partially Deleted Vaccine
by Jing Rao, Xiaoyu Liu, Xi Zhu, Yongle Qi, Huanchun Chen and Weicheng Bei
Vet. Sci. 2025, 12(3), 278; https://doi.org/10.3390/vetsci12030278 - 16 Mar 2025
Cited by 1 | Viewed by 777
Abstract
Actinobacillus pleuropneumoniae (APP) is a bacterial pathogen causing porcine pleuropneumonia, causing great economic loss to the global pig industry. Although natural apxIV contributes to the prevention and control of porcine pleuropneumonia, its isolation poses a great challenge, and recombinant soluble apxIV proteins tend [...] Read more.
Actinobacillus pleuropneumoniae (APP) is a bacterial pathogen causing porcine pleuropneumonia, causing great economic loss to the global pig industry. Although natural apxIV contributes to the prevention and control of porcine pleuropneumonia, its isolation poses a great challenge, and recombinant soluble apxIV proteins tend to carry large molecular weight tags. The traditional serologic methods tend not to accurately detect the apxIV-partially deleted vaccine (GDV). In this study, we screened the soluble protein apxIVA N2 (756 bp) from six apxIV-truncated proteins and applied it to the enzyme-linked immunosorbent assay (ELISA) and colloidal gold immunochromatographic strip for detecting the samples vaccinated with APP GDV. The results indicate that N2 was close to the natural apxIV protein in terms of structure and function as it only contained a single His (0.86 kDa) tag and a single S (2 kDa) tag. Among the six candidate proteins, N2 exhibited the best performance in distinguishing APP-infected samples from those vaccinated with the APP GDV. Both ELISA and colloidal gold immunochromatographic strips based on this protein exhibited an excellent performance in detecting and distinguishing wild-strain-infected samples from those vaccinated with the subunit vaccine or the GDV. In addition, three monoclonal antibodies against different antigenic epitopes were identified using these truncated proteins. Our studies are of great significance for further research on APP, the differential diagnosis of wild strains and vaccine strains, and pig control breeding, exhibiting a broad application prospect in the on-site diagnosis of APP, particularly in remote areas lacking detection instruments and professionals. Full article
Show Figures

Figure 1

32 pages, 383 KiB  
Review
Important Diseases of Small Ruminants in Sub-Saharan Africa: A Review with a Focus on Current Strategies for Treatment and Control in Smallholder Systems
by Peter Kimeli, Kennedy Mwacalimba, Raymond Tiernan, Erik Mijten, Tetiana Miroshnychenko and Barbara Poulsen Nautrup
Animals 2025, 15(5), 706; https://doi.org/10.3390/ani15050706 - 28 Feb 2025
Cited by 1 | Viewed by 1271
Abstract
Sheep and goats are an important source of livelihood for smallholder farmers in sub-Saharan Africa (SSA). These livestock are almost entirely managed by resource-poor, smallholder farmers and pastoralists. Despite the large number of sheep and goats in SSA, their productivity is low, mainly [...] Read more.
Sheep and goats are an important source of livelihood for smallholder farmers in sub-Saharan Africa (SSA). These livestock are almost entirely managed by resource-poor, smallholder farmers and pastoralists. Despite the large number of sheep and goats in SSA, their productivity is low, mainly due to diseases, poor feed, and inferior breeds. This review aims to summarize the most important diseases in small ruminants in SSA, with a focus on current treatment and control strategies. The following diseases were identified as the most significant constraints for small ruminant farmers: helminthoses, including gastrointestinal nematode infestation, lungworm infestation, fasciolosis, and cerebral coenurosis; viral diseases, such as peste des petits ruminants (PPR), sheep and goat pox, and contagious ecthyma (orf); bacterial diseases, including contagious caprine pleuropneumonia (CCPP), pneumonic pasteurellosis, and anthrax; as well as ectoparasite infestations. The diseases have significant economic implications due to mortality and production losses. Depending on the disease, they may also impact trade and export and hinder the introduction of new, more productive breeds. The ability to control diseases more efficiently is often limited due to financial constraints. In the case of infection with internal parasites, a lack of knowledge about the epidemiology of the disease, as well as the availability of appropriate anthelmintics and the development of resistance against commonly used anthelmintics, are often barriers. The control of viral diseases depends on the accessibility, quality, and handling of vaccines, whereas in bacterial diseases, increasing antibiotic resistance and inappropriate antimicrobial treatments pose challenges, as well as the availability of appropriate vaccines and their use. In the case of ectoparasitic infections, a strategic, regular, and appropriate antiparasitic treatment approach is often not achieved. Full article
(This article belongs to the Section Small Ruminants)
14 pages, 601 KiB  
Article
The Challenge of Developing a Test to Differentiate Actinobacillus pleuropneumoniae Serotypes 9 and 11
by José Luis Arnal Bernal, Ana Belén Fernández Ros, Sonia Lacouture, Janine T. Bossé, László Fodor, Hubert Gantelet, Luis Solans Bernad, Yanwen Li, Paul R. Langford and Marcelo Gottschalk
Microorganisms 2025, 13(2), 280; https://doi.org/10.3390/microorganisms13020280 - 26 Jan 2025
Cited by 2 | Viewed by 1306
Abstract
Actinobacillus pleuropneumoniae is a major swine pathogen, classified into 19 serotypes based on capsular polysaccharide (CPS) loci. This study aimed to improve the diagnostic method to differentiate between serotypes 9 and 11, which are challenging to distinguish using conventional serological and molecular methods. [...] Read more.
Actinobacillus pleuropneumoniae is a major swine pathogen, classified into 19 serotypes based on capsular polysaccharide (CPS) loci. This study aimed to improve the diagnostic method to differentiate between serotypes 9 and 11, which are challenging to distinguish using conventional serological and molecular methods. A novel qPCR assay based on locked nucleic acid (LNA) probes was developed and validated using a collection of reference strains representing all known 19 serotypes. The assay demonstrated specificity in detecting the nucleotide variation characteristic of the serotype 9 reference strain. However, the analysis of a clinical isolate collection identified discrepancies between LNA-qPCR and serological results, prompting further investigation of the cps and O-Ag loci. Subsequent nanopore sequencing and whole-genome sequencing of a collection of 31 European clinical isolates, previously identified as serotype 9, 11, or undifferentiated 9/11, revealed significant genetic variations in the cps and O-Ag loci. Ten isolates had a cpsF sequence identical to that of the serotype 11 reference strain, while six isolates had single-nucleotide polymorphisms that were unlikely to cause significant coding changes. In contrast, 15 isolates had interruptions in the cpsF gene, distinct from that found in the serotype 9 reference strain, potentially leading to a serotype 9 CPS structure. In the O-Ag loci, differences between serotypes 9 and 11 were minimal, although some isolates had mutations potentially affecting O-Ag expression. Overall, these findings suggest that multiple genetic events can lead to the formation of a serotype 9 CPS structure, hindering the development of a single qPCR assay capable of detecting all cpsF gene mutations. Our results suggest that, currently, a comprehensive analysis of the cpsF gene is necessary to accurately determine whether the capsule of an isolate corresponds to serotype 9 or 11. Although such analyses are feasible with the advent of third-generation sequencing technologies, their accessibility, cost, and time to result limit their use in routine diagnostic applications. Under these circumstances, the designation of the hybrid serovar 9/11 remains a valid approach. Full article
(This article belongs to the Special Issue The Pathogenic Epidemiology of Important Swine Diseases)
Show Figures

Figure 1

24 pages, 352 KiB  
Review
Diseases of Economic Importance in Feedlot Cattle in Sub-Saharan Africa: A Review with a Focus on Existing and Potential Options for Control
by Kennedy Mwacalimba, Peter Kimeli, Raymond Tiernan, Erik Mijten, Tetiana Miroshnychenko and Barbara Poulsen Nautrup
Animals 2025, 15(1), 97; https://doi.org/10.3390/ani15010097 - 4 Jan 2025
Cited by 1 | Viewed by 2184
Abstract
A large number of livestock are found in sub-Saharan Africa (SSA), including 20–25% of the world’s ruminants [...] Full article
(This article belongs to the Section Cattle)
18 pages, 1256 KiB  
Article
Health–Economic Impact Attributable to Occurrence of Pleurisy and Pneumonia Lesions in Finishing Pigs
by Clarisse S. Malcher, Fernando A. M. Petri, Laiza P. Arruda, Gabriel A. de Aguiar, Gabriel Y. Storino, Karina Sonalio, Leonardo T. Toledo, Flávio Hirose and Luís Guilherme de Oliveira
Vet. Sci. 2024, 11(12), 668; https://doi.org/10.3390/vetsci11120668 - 20 Dec 2024
Cited by 1 | Viewed by 2075
Abstract
Respiratory diseases, such as pleurisy and pneumonia, cause significant health and economic losses in pig production. This study evaluated 867 finishing pigs from a farm with a history of respiratory issues, using macroscopic lesion scoring (SPES and CVPC), histopathological analysis, qPCR diagnostics, and [...] Read more.
Respiratory diseases, such as pleurisy and pneumonia, cause significant health and economic losses in pig production. This study evaluated 867 finishing pigs from a farm with a history of respiratory issues, using macroscopic lesion scoring (SPES and CVPC), histopathological analysis, qPCR diagnostics, and economic modeling. Severe pleurisy (scores 3 and 4) was observed in 42.1% of carcasses and was strongly correlated with higher bacterial loads of Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, and Pasteurella multocida. Severe lesions reduced the average daily gain (ADG) and carcass weight, leading to increased production costs and lower profitability. Economic analysis revealed that pigs with higher pleurisy scores incurred an additional cost per kg (USD 1.29 vs. USD 1.32 for milder cases), reduced total revenue by 1.36%, and decreased return on investment (ROI) from 5.33% to 3.90%. These findings emphasize the critical impact of respiratory diseases on profitability and the necessity of robust health management strategies, including vaccination and enhanced biosecurity, to minimize economic losses in swine farming. Full article
Show Figures

Figure 1

13 pages, 2844 KiB  
Article
Hemodynamic Response to Lipopolysaccharide Infusion and Effect of Meloxicam Administration on Cardiac Function in Donkeys
by Francisco J. Mendoza, Antonio Buzon-Cuevas, Raul Aguilera-Aguilera, Carlos A. Gonzalez-De Cara, Adelaida De Las Heras and Alejandro Perez-Ecija
Animals 2024, 14(24), 3660; https://doi.org/10.3390/ani14243660 - 18 Dec 2024
Cited by 2 | Viewed by 918
Abstract
Systemic inflammatory response syndrome (SIRS) in donkeys is observed to be secondary to colic, diarrhea or pleuropneumonia, among other disorders. Horses with SIRS develop secondary disturbances such as hyperlipemia, laminitis, disseminated intravascular coagulopathy, and hemodynamic and cardiac derangements, which impair their prognosis and [...] Read more.
Systemic inflammatory response syndrome (SIRS) in donkeys is observed to be secondary to colic, diarrhea or pleuropneumonia, among other disorders. Horses with SIRS develop secondary disturbances such as hyperlipemia, laminitis, disseminated intravascular coagulopathy, and hemodynamic and cardiac derangements, which impair their prognosis and increase the mortality rate. In donkeys, no information is available on the effect of experimentally induced endotoxemia in the cardiovascular system. Acute experimental endotoxemia was induced by lipopolysaccharide (LPS) infusion in six healthy adult non-pregnant jennies. Physical signs, arterial (systolic, diastolic and mean) and central venous pressure were monitored during 360 min. Cardiac troponin I (cTnI) concentrations were measured in blood samples, and echocardiography was performed. LPS infusion caused an increase in cTnI, hypotension and diminution of central venous pressure, cardiac dysfunction, with a decrease in stroke volume (SV), cardiac output (CO) and cardiac index, and impairment of ultrasonographic ventricular function parameters. Intravenous meloxicam administration prevented the cTnI increase, hypotension, diminution of SV and CO, and changes in ultrasonographic parameters related to ventricular dysfunction. Thus, meloxicam could be proposed as an effective therapeutical option to control the hemodynamic and cardiac derangements observed in donkeys with SIRS. Full article
(This article belongs to the Special Issue Current Research on Donkeys and Mules)
Show Figures

Figure 1

10 pages, 261 KiB  
Article
Comparison of the Minimum Inhibitory and Mutant Prevention Drug Concentrations for Pradofloxacin and 7 Other Antimicrobial Agents Tested Against Swine Isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida
by Joseph M. Blondeau and Shantelle D. Fitch
Molecules 2024, 29(22), 5448; https://doi.org/10.3390/molecules29225448 - 19 Nov 2024
Cited by 2 | Viewed by 1410
Abstract
Pradofloxacin is a dual targeting, bactericidal fluoroquinolone recently approved for treating bacteria causing swine respiratory disease. Currently, an abundance of in vitro data does not exist for pradofloxacin. We determined the minimum inhibitory concentration (MIC) and mutant prevention concentrations (MPC) of pradofloxacin compared [...] Read more.
Pradofloxacin is a dual targeting, bactericidal fluoroquinolone recently approved for treating bacteria causing swine respiratory disease. Currently, an abundance of in vitro data does not exist for pradofloxacin. We determined the minimum inhibitory concentration (MIC) and mutant prevention concentrations (MPC) of pradofloxacin compared to ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin and tulathromycin against swine isolates of Actinobacillus pleuropneumoniae and Pasteurella multocida. Overall, pradofloxacin had the lowest MIC and MPC values as compared to the other agents tested. For example, pradofloxacin MIC values for 50%, 90% and 100% of A. pleuropneumoniae strains were ≤0.016 µg/mL, ≤0.016 µg/mL and ≤0.016 µg/mL and for P. multocida were ≤0.016 µg/mL, ≤0.016 µg/mL and 0.031 µg/mL, respectively. The MPC values for 50%, 90% and 100% of A. pleuropneumoniae strains were 0.031 µg/mL, 0.063 µg/mL and 0.125 µg/mL and for P. multocida were ≤0.016 µg/mL, 0.031 µg/mL and 0.0.063 µg/mL, respectively. By MPC testing, all strains were at or below the susceptibility breakpoint. Based on MPC testing, pradofloxacin appears to have a low likelihood for resistance selection. This study represents the most comprehensive in vitro comparison of the above noted drugs and the first report for pradofloxacin and tildipirosin. Full article
15 pages, 2799 KiB  
Article
Monitoring of Respiratory Disease Patterns in a Multimicrobially Infected Pig Population Using Artificial Intelligence and Aggregate Samples
by Matthias Eddicks, Franziska Feicht, Jochen Beckjunker, Marika Genzow, Carmen Alonso, Sven Reese, Mathias Ritzmann and Julia Stadler
Viruses 2024, 16(10), 1575; https://doi.org/10.3390/v16101575 - 6 Oct 2024
Cited by 1 | Viewed by 2078
Abstract
A 24/7 AI sound-based coughing monitoring system was applied in combination with oral fluids (OFs) and bioaerosol (AS)-based screening for respiratory pathogens in a conventional pig nursery. The objective was to assess the additional value of the AI to identify disease patterns in [...] Read more.
A 24/7 AI sound-based coughing monitoring system was applied in combination with oral fluids (OFs) and bioaerosol (AS)-based screening for respiratory pathogens in a conventional pig nursery. The objective was to assess the additional value of the AI to identify disease patterns in association with molecular diagnostics to gain information on the etiology of respiratory distress in a multimicrobially infected pig population. Respiratory distress was measured 24/7 by the AI and compared to human observations. Screening for swine influenza A virus (swIAV), porcine reproductive and respiratory disease virus (PRRSV), Mycoplasma (M.) hyopneumoniae, Actinobacillus (A.) pleuropneumoniae, and porcine circovirus 2 (PCV2) was conducted using qPCR. Except for M. hyopneumoniae, all of the investigated pathogens were detected within the study period. High swIAV-RNA loads in OFs and AS were significantly associated with a decrease in respiratory health, expressed by a respiratory health score calculated by the AI The odds of detecting PRRSV or A. pleuropneumoniae were significantly higher for OFs compared to AS. qPCR examinations of OFs revealed significantly lower Ct-values for swIAV and A. pleuropneumoniae compared to AS. In addition to acting as an early warning system, AI gained respiratory health data combined with laboratory diagnostics, can indicate the etiology of respiratory distress. Full article
Show Figures

Figure 1

13 pages, 1106 KiB  
Article
Exploring the Genetic Diversity of Mycoplasma hyopneumoniae in Pigs with Pneumonia and Pleurisy at Slaughter
by Ana Karolina Panneitz, Eduarda Ribeiro Braga, Fernando Antonio Moreira Petri, Jean Carlo Olivo Menegatt, David Driemeier, Dominiek Maes and Luís Guilherme de Oliveira
Microorganisms 2024, 12(10), 1988; https://doi.org/10.3390/microorganisms12101988 - 30 Sep 2024
Cited by 1 | Viewed by 1661
Abstract
Mycoplasma (M.) hyopneumoniae is the key pathogen of the porcine respiratory disease complex (PRDC) and contributes to pleurisy in pigs. Due to its limited metabolism and laborious cultivation, molecular tools are useful for diagnosis. This study investigated the genetic diversity of [...] Read more.
Mycoplasma (M.) hyopneumoniae is the key pathogen of the porcine respiratory disease complex (PRDC) and contributes to pleurisy in pigs. Due to its limited metabolism and laborious cultivation, molecular tools are useful for diagnosis. This study investigated the genetic diversity of M. hyopneumoniae in slaughter pigs with pneumonia and pleurisy, and it assessed co-infections by Pasteurella multocida type A (PM), Actinobacillus pleuropneumoniae (APP), and swine influenza virus A (sIVA). Lungs (n = 70) with different pleurisy scores and lesions compatible with M. hyopneumoniae infection were collected for convenience. Macroscopic and microscopic evaluations were performed. M. hyopneumoniae was detected using qPCR, and MLST was used for genetic characterization. Co-infections with PM and APP were also evaluated by qPCR, while the immunohistochemistry assessed sIVA infection. All lungs were positive for M. hyopneumoniae. Histopathology confirmed M. hyopneumoniae-associated lesions. MLST characterization was possible in 25 lungs and revealed 10 distinct allelic profiles, with none matching known sequence types in the public database. Co-infections were detected in 40% of the samples with APP and 32% with PM, with 12% showing both pathogens and 52% of the samples presenting microscopic lesions compatible with sIVA infection. The diverse genetic profiles found underscore the need for research on isolation and potential pathogenic variations. Full article
(This article belongs to the Special Issue Detection, Diagnosis, and Host Interactions of Animal Mycoplasmas)
Show Figures

Figure 1

11 pages, 996 KiB  
Article
Identification of Nonsynonymous SNPs in Immune-Related Genes Associated with Pneumonia Severity in Pigs
by Hiroki Shinkai, Kasumi Suzuki, Tomohito Itoh, Gou Yoshioka, Takato Takenouchi, Haruki Kitazawa and Hirohide Uenishi
Genes 2024, 15(8), 1103; https://doi.org/10.3390/genes15081103 - 21 Aug 2024
Cited by 1 | Viewed by 1483
Abstract
We previously showed that several polymorphisms in genes encoding pattern recognition receptors that cause amino acid substitutions alter pathogen recognition ability and disease susceptibility in pigs. In this study, we expanded our analysis to a wide range of immune-related genes and investigated polymorphism [...] Read more.
We previously showed that several polymorphisms in genes encoding pattern recognition receptors that cause amino acid substitutions alter pathogen recognition ability and disease susceptibility in pigs. In this study, we expanded our analysis to a wide range of immune-related genes and investigated polymorphism distribution and its influence on pneumonia in multiple commercial pig populations. Among the polymorphisms in 42 genes causing 634 amino acid substitutions extracted from the swine genome database, 80 in 24 genes were found to have a minor allele frequency of at least 10% in Japanese breeding stock pigs via targeted resequencing. Of these, 62 single nucleotide polymorphisms (SNPs) in 23 genes were successfully genotyped in 862 pigs belonging to four populations with data on pneumonia severity. Association analysis using a generalized linear mixed model revealed that 12 SNPs in nine genes were associated with pneumonia severity. In particular, SNPs in the cellular receptor for immunoglobulin G FCGR2B and the intracellular nucleic acid sensors IFI16 and LRRFIP1 were found to be associated with mycoplasmal pneumonia of swine or porcine pleuropneumonia in multiple populations and may therefore have wide applications in the improvement of disease resistance in pigs. Functional analyses at the cellular and animal levels are required to clarify the mechanisms underlying the effects of these SNPs on disease susceptibility. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop