Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (377)

Search Parameters:
Keywords = plasmonic crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3554 KiB  
Article
A Composite Substrate of Ag Nanoparticle-Decorated Inverse Opal Polydimethylsiloxane for Surface Raman Fluorescence Dual Enhancement
by Zilun Tang, Hongping Liang, Zhangyang Chen, Jianpeng Li, Jianyu Wu, Xianfeng Li and Dingshu Xiao
Polymers 2025, 17(14), 1995; https://doi.org/10.3390/polym17141995 - 21 Jul 2025
Viewed by 330
Abstract
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual [...] Read more.
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual enhancement. The well-designed Ag nanoparticle (Ag NP)-decorated inverse opal PDMS (AIOP) composite substrate is fabricated using the polystyrene (PS) photonic crystal method and the sensitization reduction technique. The inverse opal PDMS enhances the electromagnetic (EM) field by increasing the loading of Ag NPs and plasmonic coupling of Ag NPs, leading to SERS activity. The thin shell layer of polyvinyl pyrrolidone (PVP) in core–shell Ag NPs isolates the detected molecule from the Ag core to prevent the fluorescence resonance energy transfer and charge transfer to eliminate fluorescence quenching and enable SEF performance. Based on the blockage of the core–shell structure and the enhanced EM field originating from the inverse opal structure, the as-fabricated AIOP composite substrate shows dual enhancement in surface Raman fluorescence. The AIOP composite substrate in this work, which combines improved SERS activity and SEF performance, not only promotes the development of surface-enhanced spectroscopy but also shows promise for applications in flexible sensors. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

14 pages, 2681 KiB  
Article
Waveguide-Assisted Magneto-Optical Effects in 1D Garnet/Co/Au Plasmonic Crystals
by Tatiana Murzina, Andrey Dotsenko, Irina Kolmychek, Vladimir Novikov, Nikita Gusev, Ilya Fedotov and Sergei Gusev
Photonics 2025, 12(7), 728; https://doi.org/10.3390/photonics12070728 - 17 Jul 2025
Viewed by 229
Abstract
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known [...] Read more.
Magneto-plasmonic structures have been a subject of tremendous attention of researchers in recent decades as they provide unique approaches regarding the efficient control of optical, magneto-optical, and nonlinear-optical effects. Among others, magneto-plasmonic crystals (MPCs) have become one of the most studied structures, known for their high-quality tunable resonant optical properties. Here, we present the results of experimental and numerical studies on the functional magneto-optical (MO) response of planar 1D plasmonic crystals composed of Co/Au stripes of submicron period on the surface of a 3 μm thick rare-earth garnet layer. The experimental and numerical studies confirm that the wavelength–angular spectra of such structures contain a set of tunable resonant features in their optical and magneto-optical response, associated with the excitation of (i) surface plasmon polaritons at the Co/Au grating–garnet interface, as well as (ii) waveguide (WG) modes propagating in the garnet slab. A comparison of the MO effects in the transversal and longitudinal magnetization of the plasmonic structures is presented. We show that the most efficient Fano-type MPC magneto-optical response is realized for the WG modes of the first order for the longitudinal magnetization of the structure. Further perspectives regarding the optimization of this type of plasmonic crystal are discussed. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

34 pages, 6553 KiB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Viewed by 1060
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

14 pages, 1800 KiB  
Article
Design of a Photonic Crystal Fiber Optic Magnetic Field Sensor Based on Surface Plasmon Resonance
by Yuxuan Yi, Hua Yang, Tangyou Sun, Zao Yi, Zigang Zhou, Chao Liu and Yougen Yi
Sensors 2025, 25(13), 3931; https://doi.org/10.3390/s25133931 - 24 Jun 2025
Viewed by 493
Abstract
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), [...] Read more.
To enhance the sensing performance of fiber-optic magnetic field sensors, we explored the design, optimization, and application prospects of a D-type fiber-optic magnetic field sensor. This D-type PCF-SPR sensor is metal coated on one side (the metal used in this study is gold), which serves as the active metal for SPR and enhances structural stability. Magnetic fluid is applied on the outer side of the gold film for SPR magnetic field sensing. Six internal air holes arranged in a hexagonal shape form a central light transmission channel that facilitates the connection between the two modes, which are the sensor’s core mode and SPP mode, respectively. The outer six large air holes and two small air holes are arranged in a circular pattern to form the cladding, which allows for better energy transmission and reduces energy loss in the fiber. In this paper, the finite element method is employed to analyze the transmission performance of the sensor, focusing on the transmission mode. Guidelines for optimizing the PCF-SPR sensor are derived from analyzing the fiber optic sensor’s dispersion curve, the impact of surface plasmon excitation mode, and the core mode energy on sensing performance. After analyzing and optimizing the transmission mode and structural parameters, the optimized sensor achieves a magnetic field sensitivity of 18,500 pm/mT and a resolution of 54 nT. This performance is several orders of magnitude higher than most other sensors in terms of sensitivity and resolution. The SPR-PCF magnetic field sensor offers highly sensitive and accurate magnetic field measurements and shows promising applications in medical and industrial fields. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors: 2nd Edition)
Show Figures

Figure 1

26 pages, 10223 KiB  
Article
Silver–Titania Nanocomposites for Photothermal Applications
by Leonardo Bottacin, Roberto Zambon, Francesca Tajoli, Veronica Zani, Roberto Pilot, Naida El Habra, Silvia Gross and Raffaella Signorini
Gels 2025, 11(6), 461; https://doi.org/10.3390/gels11060461 - 16 Jun 2025
Viewed by 468
Abstract
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. [...] Read more.
Local temperature measurement is crucial for understanding nanoscale thermal transport and developing nanodevices for biomedical, photonic, and optoelectronic applications. The rise of photothermal therapy for cancer treatment has increased the demand for high-resolution nanothermometric techniques capable of non-contact intracellular temperature measurement and modification. Raman spectroscopy meets this need: the ratio of anti-Stokes to Stokes Raman intensities for a specific vibrational mode correlates with local temperature through the Boltzmann distribution. The present study proposes a novel photothermal therapy agent designed to advance the current state of the art while adhering to green chemistry principles, thereby favoring low-temperature synthesis involving limited energy consumption. A key challenge in this field is to achieve close contact between plasmonic nanosystems, which act as nanoheaters, and local temperature sensors. This is achieved by employing silver nanoparticles as a heat release agent, coated with anatase-phase titanium dioxide, as a local temperature sensor. The proposed synthesis, which combines refluxing and subcritical solvothermal treatments, enables direct anatase formation, despite its metastability under standard conditions, thus eliminating the need for a calcination step. Structural characterization through SAED-HRTEM and Raman spectroscopy confirms the successful crystallization of the desired phase. Moreover, the nanothermometry measurements conducted at various wavelengths ultimately demonstrate both the effectiveness of these nanomaterials as thermometric probes, with a relative sensitivity of about 0.24 K−1%, and their capability as local heaters, with a release of a few tens of degrees. This work demonstrates a new synthetic strategy for these nanocomposites, which offers a promising pathway for the optimization of nanosystems in therapeutic applications. Full article
Show Figures

Graphical abstract

47 pages, 1518 KiB  
Review
Advances in MoS2-Based Biosensors: From Material Fabrication and Characterization to Biomedical, Environmental, and Industrial Applications
by Chun-Liang Lai, Arvind Mukundan, Riya Karmakar, Roopmeet Kaur, Kuo-Liang Huang and Hsiang-Chen Wang
Biosensors 2025, 15(6), 371; https://doi.org/10.3390/bios15060371 - 10 Jun 2025
Viewed by 1162
Abstract
The growing demand for low-cost biosensors has stimulated the study of new technologies and materials like molybdenum disulfide (MoS2). Due to its electroconductive nature and high surface-to-volume ratio, it allows for the ultra-sensitive detection of biomarkers. The crystal structure of MoS [...] Read more.
The growing demand for low-cost biosensors has stimulated the study of new technologies and materials like molybdenum disulfide (MoS2). Due to its electroconductive nature and high surface-to-volume ratio, it allows for the ultra-sensitive detection of biomarkers. The crystal structure of MoS2 provides it with a unique micrometer thickness, making it appropriate for biosensing in healthcare, environmental monitoring, and food safety. As compared to traditional materials, MoS2 can work without labels (through field-effect transduction or plasmonic shifts) while maintaining biocompatibility and low-cost fabrication, which fill significant voids in the early diagnosis of diseases. This paper provides an overview of the recent advancements in MoS2-based biosensors, which are primarily focused on the field-effect transistors and surface plasmon resonance techniques and fabrication methods for MoS2-based biosensors like mechanical exfoliation, liquid-phase exfoliation, physical vapor deposition, chemical vapor deposition, and chemical exfoliation, applications in various industries, and their characterization techniques to evaluate the quality and functionality of MoS2 nanosheets in biosensors. While certain challenges remain like improving conductivity and scalability, MoS2-based biosensors serve as a powerful tool for the precise and reliable detection of biomarkers in environmental, food, and healthcare industries. Full article
(This article belongs to the Collection Novel Sensing System for Biomedical Applications)
Show Figures

Figure 1

11 pages, 11517 KiB  
Article
Kinetics-Controlled Simple Method for the Preparation of Au@Ag Hierarchical Superstructures for SERS Analysis
by Mengqi Lyu, Ming Jiang, Hanting Yu, Kailiang Wu, Peitao Zhu, Yingke Zhu, Yan Xia and Juan Li
Inorganics 2025, 13(6), 191; https://doi.org/10.3390/inorganics13060191 - 7 Jun 2025
Viewed by 489
Abstract
Silver nanostructures exhibit exceptional surface-enhanced Raman scattering (SERS) performance due to their strong plasmonic resonance. However, their practical applications are often hindered by structural instability, leading to deformation and performance degradation. In this study, we developed a kinetics-controlled synthetic strategy to fabricate gold-encapsulated [...] Read more.
Silver nanostructures exhibit exceptional surface-enhanced Raman scattering (SERS) performance due to their strong plasmonic resonance. However, their practical applications are often hindered by structural instability, leading to deformation and performance degradation. In this study, we developed a kinetics-controlled synthetic strategy to fabricate gold-encapsulated silver (Au@Ag) hierarchical superstructures (HSs) with enhanced SERS activity and stability. By leveraging polyvinylpyrrolidone (PVP) as a surface modifier and precisely regulating the introduction rate of reaction precursors, we achieved meticulous control over the galvanic replacement kinetics, thereby preserving the structural integrity of pre-synthesized Ag HSs during the formation of Au@Ag HSs. The resulting well-defined Au@Ag HSs demonstrated superior SERS performance, achieving a detection limit of 10−9 M for crystal violet (CV) while exhibiting outstanding signal reproducibility (relative standard deviation, RSD = 11.60%). This work provides a robust and scalable approach to designing stable, high-efficiency SERS-active nanostructures with broad potential in analytical and sensing applications. Full article
Show Figures

Figure 1

25 pages, 8085 KiB  
Article
Finite Element Method-Based Modeling of a Novel Square Photonic Crystal Fiber Surface Plasmon Resonance Sensor with a Au–TiO2 Interface and the Relevance of Artificial Intelligence Techniques in Sensor Optimization
by Ayushman Ramola, Amit Kumar Shakya and Arik Bergman
Photonics 2025, 12(6), 565; https://doi.org/10.3390/photonics12060565 - 4 Jun 2025
Cited by 2 | Viewed by 662
Abstract
This research presents a novel square-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, designed using the external metal deposition (EMD) technique, for highly sensitive refractive index (RI) sensing applications. The proposed sensor operates effectively over an RI range of 1.33 to [...] Read more.
This research presents a novel square-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor, designed using the external metal deposition (EMD) technique, for highly sensitive refractive index (RI) sensing applications. The proposed sensor operates effectively over an RI range of 1.33 to 1.37 and supports both x- polarized and y-polarized modes. It achieves a wavelength sensitivity of 15,800 nm/RIU and 14,300 nm/RIU, and amplitude sensitivities of 11,584 RIU−1 and 11,007 RIU−1, respectively, for the x-pol. and y-pol. The sensor also reports a resolution in the order of 10−6 RIU and a strong linearity of R2 ≈ 0.97 for both polarization modes, indicating its potential for precision detection in complex sensing environments. Beyond the sensor’s structural and performance innovations, this work also explores the future integration of artificial intelligence (AI) into PCF-SPR sensor design. AI techniques such as machine learning and deep learning offer new pathways for sensor calibration, material optimization, and real-time adaptability, significantly enhancing sensor performance and reliability. The convergence of AI with photonic sensing not only opens doors to smart, self-calibrating platforms but also establishes a foundation for next-generation sensors capable of operating in dynamic and remote applications. Full article
(This article belongs to the Special Issue Optical Measurement Systems, 2nd Edition)
Show Figures

Figure 1

17 pages, 4080 KiB  
Article
Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Egeria densa Plant Extract
by Maruf Olaide Yekeen, Mubarak Ibrahim, James Wachira and Saroj Pramanik
Appl. Biosci. 2025, 4(2), 27; https://doi.org/10.3390/applbiosci4020027 - 2 Jun 2025
Viewed by 1213
Abstract
An aqueous leaf extract of Egeria densa was used to green-synthesize iron (II) and iron (III) oxide nanoparticles from ferrous sulphate and ferric chloride, respectively. The successful green synthesis of the nanoparticles was confirmed through UV–visible spectroscopy, and the colour of the mixtures [...] Read more.
An aqueous leaf extract of Egeria densa was used to green-synthesize iron (II) and iron (III) oxide nanoparticles from ferrous sulphate and ferric chloride, respectively. The successful green synthesis of the nanoparticles was confirmed through UV–visible spectroscopy, and the colour of the mixtures changed from light-yellow to green-black and reddish-brown for FeO–NPs and Fe2O3–NPs, respectively. The morphological characteristics of the nanoparticles were determined using an X-ray diffractometer (XRD), a Fourier transform infrared spectrophotometer (FTIR), a transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDX). The UV–Vis spectrum of the FeO–NPs showed a sharp peak at 290 nm due to the surface plasmon resonance, while that of the Fe2O3–NPs showed a sharp peak at 300 nm. TEM analysis revealed that the FeO–NPs were oval to hexagonal in shape and were clustered together with an average size of 18.49 nm, while the Fe2O3-NPs were also oval to hexagonal in shape, but some were irregularly shaped, and they clustered together with an average size of 27.96 nm. EDX analysis showed the presence of elemental iron and oxygen in both types of nanoparticles, indicating that these nanoparticles were essentially present in oxide form. The XRD patterns of both the FeO–NPs and Fe2O3–NPs depicted that the nanoparticles produced were crystalline in nature and exhibited the rhombohedral crystal structure of hematite. The FT-IR spectra revealed that phenolic compounds were present on the surface of the nanoparticles and were responsible for reducing the iron salts into FeO–NPs and Fe2O3–NPs. Conclusively, this work demonstrated for the first time the ability of Elodea aqueous extract to synthesize iron-based nanoparticles from both iron (II) and iron (III) salts, highlighting its versatility as a green reducing and stabilizing agent. The dual-path synthesis approach provides new insights into the influence of the precursor oxidation state on nanoparticle formation, thereby expanding our understanding of plant-mediated nanoparticle production and offering a sustainable route for the fabrication of diverse iron oxide nanostructures. Furthermore, it provides a simple, cost-effective, and environmentally friendly method for the synthesis of the FeO–NPs and Fe2O3–NPs using Egeria densa. Full article
Show Figures

Figure 1

14 pages, 3264 KiB  
Article
Thickness and Wavelength Optimizations of a High-Performance SPR Sensor Employing a Silver Layer and Black Phosphorus in Principal Directions
by Jakub Chylek, Dalibor Ciprian and Petr Hlubina
Nanomaterials 2025, 15(11), 790; https://doi.org/10.3390/nano15110790 - 24 May 2025
Viewed by 606
Abstract
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an [...] Read more.
In this paper, we propose an innovative approach based on the wavelength optimization of a light source for a simple, high-performance surface plasmon resonance (SPR) sensor utilizing comprehensive reflectance analysis in the angular domain. The proposed structure consists of a glass substrate, an adhesion layer of titanium dioxide, a silver plasmonic layer, and a 2D material. Analysis is performed in the Kretschmann configuration for liquid analyte sensing. Sensing parameters such as the refractive index (RI) sensitivity, the reflectance minimum, and the figure of merit (FOM) are investigated in the first step of this study as a function of the thickness of the silver layer together with the RI of a coupling prism. Next, utilizing the results offering a fused silica prism, the thickness of the silver layer and the wavelength of the light source are optimized for the structure with the addition of a 2D material, black phosphorus (BP), which is studied along different principal directions, the zigzag and armchair directions. In addition, a new approach of adjusting the source wavelength using a one-dimensional photonic crystal combined with an LED, is presented. Based on this analysis, for the reference structure at a wavelength of 632.8 nm, the optimized silver layer thickness is 50 nm, and the achieved RI sensitivity ranges from 193.9 to 251.5 degrees per RI unit (deg/RIU), with the highest FOM reaching 52.3 RIU−1. In addition, for the modified structure with BP, the achieved RI sensitivity varies in the range of 269.1–351.2 deg/RIU at the optimized wavelength of 628 nm, with the highest FOM reaching 44.7 RIU−1 for the zigzag direction. Due to the optimization and adjusting the wavelength of the source, the results obtained for the proposed SPR structure could have significant implications for the development of more sensitive and efficient sensors employing a simple plasmonic structure. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

17 pages, 15972 KiB  
Article
Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating
by Andrzej Dziedzic, Dariusz Augustowski, Paweł Kwaśnicki, Stanisław Adamiak, Wojciech Bochnowski, Anna Żaczek, Patrycja Skała, Bogumił Cieniek, Piotr Potera, Jakub Dziedzic, Małgorzata Kus-Liskiewicz and Dariusz Płoch
Coatings 2025, 15(5), 587; https://doi.org/10.3390/coatings15050587 - 15 May 2025
Viewed by 799
Abstract
The aim of this study was to produce a coating for protective glass glued to touch displays with high antibacterial effectiveness. This paper presents the structural, mechanical, optical, and antibacterial properties of a TiO2:Ag–Pt coating prepared by dual reactive DC and [...] Read more.
The aim of this study was to produce a coating for protective glass glued to touch displays with high antibacterial effectiveness. This paper presents the structural, mechanical, optical, and antibacterial properties of a TiO2:Ag–Pt coating prepared by dual reactive DC and RF magnetron sputtering. Characterization techniques used include XRD, TEM with EDS, SEM, AFM, nanoindentation for hardness and Young’s modulus, wettability tests, and optical property analysis. The coating exhibited columnar crystals with a width of 30–50 nm. Crystals of anatase, rutile, silver, and platinum with a size of up to 3 nm were identified. The coating deposited on glass had a concentration of 5.0 ± 0.2% at. Ag and 4.4 ± 0.1% at. Pt. The value of the optical band gap energy, corresponding to the direct transition, was 3.36 eV, while Urbach’s energy was in the order of 500 meV. The hydrophilic coating had a roughness RMS = 1.8 ± 0.2 nm, hardness HV = 6.8 ± 0.5 GPa, and Young’s modulus E = 116 ± 8 GPa. A unique combination of the phase composition of the TiO2:Ag–Pt coating, metallic Ag and Pt nanoparticles in a ceramic matrix of anatase and rutile crystallites resulted a >90% reduction of Staphylococcus aureus bacteria. This antibacterial effect was attributed to the activation of the doped semiconductor under visible light via plasmon resonance of the Ag and Pt nanoparticles, as well as a light-independent antibacterial action due to Ag+ ion release. In contrast, commercial antibacterial coatings typically achieve only around 60% bacterial reduction. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films, Volume II)
Show Figures

Figure 1

25 pages, 8285 KiB  
Article
Active Ag-, Fe-, and AC-Modified TiO2 Mesoporous Photocatalysts for Anionic and Cationic Dye Degradation
by Daniela Negoescu, Irina Atkinson, Mihaela Gherendi, Daniela C. Culita, Adriana Baran, Simona Petrescu, Veronica Bratan and Viorica Parvulescu
Catalysts 2025, 15(5), 479; https://doi.org/10.3390/catal15050479 - 13 May 2025
Viewed by 558
Abstract
TiO2 mesoporous supports were obtained by the sol–gel method from different precursors (titaniumethoxide, isopropoxide, or butoxide) in the presence of nonionic, cationic, and anionic surfactants. Among these samples, those obtained from Ti isopropoxide, Brij58 w/o activated carbon (AC), were selected as supports. [...] Read more.
TiO2 mesoporous supports were obtained by the sol–gel method from different precursors (titaniumethoxide, isopropoxide, or butoxide) in the presence of nonionic, cationic, and anionic surfactants. Among these samples, those obtained from Ti isopropoxide, Brij58 w/o activated carbon (AC), were selected as supports. Photocatalysts were obtained by modifying these supports with Ag, Fe, and AgFe (each metal around 1% mass). The characterization results showed a stronger influence of titania precursors, surfactants, and AC on the texture and an insignificant effect on the crystalline structure and morphology of the obtained materials. X-ray photoelectron spectroscopy revealed the effects of AC and Fe on the Ag0 concentration and of Ag on Fe-reduced species. Based on this information, the results obtained by H2-TPR, UV–Vis, Raman, and photoluminescence spectroscopy were explained. The performance of the photocatalysts was evaluated in the degradation of Congo Red (CR) and Crystal Violet (CV) dyes under UV and visible light. The Ag-TiO2 sample exhibited the best activity in degrading CR at acidic pH and in degrading CV under basic conditions. In visible light, we observed the significant effects of the surface plasmon resonance, AC, Ag, and Fe on the activity in CR photodegradation. The proposed kinetics and mechanisms complete the study of the reactions. Full article
Show Figures

Figure 1

26 pages, 5862 KiB  
Review
Recent Advances and Applications of Odor Biosensors
by Hongchao Deng, Zhangyu Chen, Pengfei Feng, Lifeng Tian, Huijuan Zong and Takamichi Nakamoto
Electronics 2025, 14(9), 1852; https://doi.org/10.3390/electronics14091852 - 1 May 2025
Viewed by 1019
Abstract
Many odorants fall outside the sensing scope of the human olfactory system, yet they play quite important roles in our daily lives. Thus, numerous devices have been invented for qualitative or quantitative odor detection issues. Some analytical instruments, e.g., gas chromatography–mass spectrometry, are [...] Read more.
Many odorants fall outside the sensing scope of the human olfactory system, yet they play quite important roles in our daily lives. Thus, numerous devices have been invented for qualitative or quantitative odor detection issues. Some analytical instruments, e.g., gas chromatography–mass spectrometry, are precise and reliable, but also expensive and bulky. Odor sensors with a smaller size and a lower cost play an important role in on-site rapid odor detection. The sensitivity and selectivity of these sensors are mainly determined by their sensing materials. Inspired by the powerful animal olfactory system, researchers extract diverse biological materials and combine them with transducers to form odor biosensors. In this paper, we introduce odor biosensors based on transducer types such as microelectrodes, fluorescence, surface plasmon resonance, field-effect transistor, quartz crystal micro-balance, etc. Then, we list several applications of odor biosensors, such as environmental monitoring, disease diagnosis, food quality control, and security. In addition, we analyze the future development of odor biosensors. Full article
(This article belongs to the Special Issue Advanced Techniques in Biorobotics)
Show Figures

Figure 1

17 pages, 3355 KiB  
Article
Model Design and Study of a U-Channel Photonic Crystal Fib Optic Sensor for Measuring Glucose Concentration in Blood
by Lei Zhao, Hua Yang, Tangyou Sun, Qianju Song, Zao Yi and Yougen Yi
Sensors 2025, 25(9), 2647; https://doi.org/10.3390/s25092647 - 22 Apr 2025
Viewed by 534
Abstract
This research introduces a biosensor utilizing surface plasmon resonance in a photonic crystal fiber (PCF) configuration. PCF uses fused silica as the base material, with a layer of gold placed over the U-channels in the cross-section of the fiber to create a surface [...] Read more.
This research introduces a biosensor utilizing surface plasmon resonance in a photonic crystal fiber (PCF) configuration. PCF uses fused silica as the base material, with a layer of gold placed over the U-channels in the cross-section of the fiber to create a surface plasmon resonance. There are three different sizes of internal fiber optic air hole diameters, with a larger channel circle below the u-channel for the formation of an energy leakage window. COMSOL software 6.0 assisted us in tuning the fiber optic structure and performance for the study, and the structural parameters analyzed mainly include the channel circle diameter, the channel circle spacing, the profundity measurement of the polished layer, and the nanoscale size variation of metal films. The results of the simulation study show that the optical fiber sensor achieves refractive index (RI) responsiveness across the 1.30 to 1.41 range, and in the RI interval of 1.40 to 1.41, the sensor exhibits the largest resonance peak shift, and its highest sensitivity reaches 10,200 nm/RIU, and the smallest full width at half peak (FWHM) corresponds to the RI of 1.34 with a value of 4.8 nm, and the highest figure of merit (FOM) corresponds to the RI of 1.34 with a value of 895.83 (1/RIU). COMSOL 6.0 simulation software, was used to simulate the changes in blood refractive index corresponding to different glucose concentrations, and the detection performance of the sensor for different concentrations of glucose was tested. Then, the results show that the glucose concentration in 75 mg/dL–175 mg/dL with RI detection sensitivity is 3750 nm/RIU, where the maximum refractive index sensitivity is 5455 nm/RIU. It shows that the sensor can be applied in the field of biomedical applications, with its convenience, fast response, and high sensitivity, it has great potential and development prospect in the market. Full article
Show Figures

Figure 1

17 pages, 56647 KiB  
Article
Dual-Parameter Surface Plasmon Resonance Photonic Crystal Fiber Sensor for Simultaneous Magnetic Field and Temperature Detection with Potential SERS Applications
by Haoran Wang, Shiwei Liu, Wenzhao Liu and Shuai Wang
Photonics 2025, 12(4), 355; https://doi.org/10.3390/photonics12040355 - 8 Apr 2025
Cited by 2 | Viewed by 542
Abstract
A high-sensitivity surface plasmon resonance (SPR) dual-parameter sensor based on photonic crystal fiber (PCF) is proposed for simultaneous measurement of magnetic field and temperature. The grooves on the right and upper sides of the PCF, serving as distinct detection channels, are filled with [...] Read more.
A high-sensitivity surface plasmon resonance (SPR) dual-parameter sensor based on photonic crystal fiber (PCF) is proposed for simultaneous measurement of magnetic field and temperature. The grooves on the right and upper sides of the PCF, serving as distinct detection channels, are filled with magnetic fluid and polydimethylsiloxane, respectively, enabling high-sensitivity detection of magnetic field and temperature. The structure parameters and sensing characteristics of the proposed sensor are investigated based on the finite element method. Numerical results indicate, within the wavelength range of 850–1050 nm, that the sensor achieves a high magnetic field sensitivity of 86 pm/Gs under x-polarization in the range of 100–600 Gs, and exhibits a temperature sensitivity of −2.63 nm/°C under y-polarization within the temperature range of 20–40 °C. Furthermore, the detection precision and applicability of the sensor in actual measurement applications could be further enhanced in the future by introducing surface-enhanced Raman scattering technology. Full article
(This article belongs to the Special Issue Research, Development and Application of Raman Scattering Technology)
Show Figures

Figure 1

Back to TopTop