Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. XRD Analysis of the Structure
2.2. TEM Analysis of the Structure
2.3. SEM with EDS Analysis
2.4. Analysis of the Geometric Structure of the Coating Surface
2.5. Mechanical Properties Tests
2.6. Wettability Tests
2.7. Optical Properties of Coatings
2.8. Antibacterial Testing of Coatings
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hájková, P.; Matoušek, J.; Antoš, P. Aging of the photocatalytic TiO2 thin films modified by Ag and Pt. Appl. Catal. B Environ. 2014, 160–161, 51–56. [Google Scholar] [CrossRef]
- Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol. Energy 2020, 211, 522–546. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, J.; Lu, Z.; Shi, H.; Ye, J.; Zhao, C.; Li, Q.; Ding, F.; Zhang, B.; Li, C. Inactivation effect and kinetic analysis of multi-band ultraviolet LED combined with Ag/N modified magnetic TiO2 on microorganisms in ballast water. J. Water Process. Eng. 2024, 58, 104751. [Google Scholar] [CrossRef]
- Meng, F.; Lu, F. Pure and silver (2.5–40 vol%) modified TiO2 thin films deposited by radio frequency magnetron sputtering at room temperature: Surface topography, energy gap and photo-induced hydrophilicity. J. Alloys Compd. 2010, 501, 154–158. [Google Scholar] [CrossRef]
- Ma, C.; Dong, W.; Fang, L.; Zheng, F.; Shen, M.; Wang, Z. Synthesis of TiO2/Pt/TiO2 multilayer films via radio frequency magnetron sputtering and their enhanced photocatalytic activity. Thin Solid Films 2012, 520, 5727–5732. [Google Scholar] [CrossRef]
- Xu, W.; Dong, S.; Wang, D.; Ren, G. Investigation of microstructure evolution in Pt-doped TiO2 thin films deposited by rf magnetron sputtering. Phys. B Condens. Matter 2008, 403, 2698–2701. [Google Scholar] [CrossRef]
- Płacheta, K.; Kot, A.; Banas-Gac, J.; Zając, M.; Sikora, M.; Radecka, M.; Zakrzewska, K. Evolution of surface properties of titanium oxide thin films. Appl. Surf. Sci. 2023, 608, 155046. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, G. Recent developments in thin film deposition using the magnetron sputtering technique. In Advances in Materials Science Research 56; Nova Science Publishers: Hauppauge, NY, USA, 2022; pp. 197–2425. ISBN 979-8-88697-331-0. [Google Scholar]
- Dziedzic, A.; Bochnowski, W.; Adamiak, S.; Szyller, Ł.; Cebulski, J.; Virt, I.; Kus-Liśkiewicz, M.; Marzec, M.; Potera, P.; Żaczek, A.; et al. Structure and antibacterial properties of Ag and N doped titanium dioxide coatings containing Ti2.85O4N phase, prepared by magnetron sputtering and annealing. Surf. Coat. Technol. 2020, 393, 125844. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Zaleska, A. Ag/Pt-modified TiO2 nanoparticles for toluene photooxidation in the gas phase. Catal. Today 2014, 230, 104–111. [Google Scholar] [CrossRef]
- Vanlalhmingmawia, C.; Lee, S.M.; Tiwari, D. Plasmonic noble metal doped titanium dioxide nanocomposites: Newer and exciting materials in the remediation of water contaminated with micropollutants. J. Water Process. Eng. 2023, 51, 103360. [Google Scholar] [CrossRef]
- Žerjav, G.; Say, Z.; Zavašnik, J.; Finšgar, M.; Langhammer, C.; Pintar, A. Photo, thermal and photothermal activity of TiO2 supported Pt catalysts for plasmon-driven environmental applications. J. Environ. Chem. Eng. 2023, 11, 110209. [Google Scholar] [CrossRef]
- Zielińska-Jurek, A.; Wei, Z.; Wysocka, I.; Szweda, P.; Kowalska, E. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts. Appl. Surf. Sci. 2015, 353, 317–325. [Google Scholar] [CrossRef]
- Wu, J.; Xu, M.; Lei, S.; Jin, C. High electrocatalytic activity and stability of PtAg supported on rutile TiO2 for methanol oxidation. Int. J. Hydrogen Energy 2020, 45, 12815–12821. [Google Scholar] [CrossRef]
- Qamar, M. Photodegradation of acridine orange catalyzed by nanostructured titanium dioxide modified with platinum and silver metals. Desalination 2010, 254, 108–113. [Google Scholar] [CrossRef]
- Dorothy, A.A.; Subramaniam, N.G.; Panigrahi, P. Tuning electronic and optical properties of TiO2 with Pt/Ag doping to a prospective photocatalyst: A first principles DFT study. Mater. Res. Express 2019, 6, 045913. [Google Scholar] [CrossRef]
- Calderon Velasco, S.; Cavaleiro, A.; Carvalho, S. Functional properties of ceramic-Ag nanocomposite coatings produced by magnetron sputtering. Prog. Mater. Sci. 2016, 84, 158–191. [Google Scholar] [CrossRef]
- Mosquera, A.A.; Albella, J.M.; Navarro, V.; Bhattacharyya, D.; Endrino, J.L. Effect of silver on the phase transition and wettability of titanium oxide films. Sci. Rep. 2016, 6, 32171. [Google Scholar] [CrossRef]
- Jamuna-Thevi, K.; Bakar, S.; Ibrahim, S.; Shahab, N.; Toff, M. Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 2011, 86, 235–241. [Google Scholar] [CrossRef]
- Adochite, R.; Munteanu, D.; Torrell, M.; Cunha, L.; Alves, E.; Barradas, N.; Cavaleiro, A.; Riviere, J.; Le Bourhis, E.; Eyidi, D.; et al. The influence of annealing treatments on the properties of Ag:TiO2, nanocomposite films prepared by magnetron sputtering. Appl. Surf. Sci. 2012, 258, 4028–4034. [Google Scholar] [CrossRef]
- Shahid, M.; Zhan, Y.; Sagadeven, S.; Akermi, M.; Ahmad, W.; Hatamvand, M.; Oh, W.-C. Platinum doped titanium dioxide nanocomposite an efficient platform as anode material for methanol oxidation. J. Mater. Res. Technol. 2021, 15, 6551–6561. [Google Scholar] [CrossRef]
- Dziedzic, A.; Bochnowski, W.; Szyller, Ł.; Adamiak, S.; Wisz, G.; Cebulski, J. Method of Preparation of a Silver and Nitrogen Modified Titanium Dioxide Coating and a Coating Obtained Thereby. Pat.240989, Patent Office of Poland 2018. Available online: https://worldwide.espacenet.com/patent/search?q=ap%3DPL426051%2A (accessed on 19 April 2022).
- ISO 14577-1:2015; Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters, Part 1: Test method; International Organization for Standardization. 2015. Available online: https://www.iso.org/standard/56626.html (accessed on 14 December 2015).
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Yang, G.; Namin, L.M.; Deskins, N.A.; Teng, X. Influence of ∗OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol. J. Catal. 2017, 353, 335–348. [Google Scholar] [CrossRef]
- Graham, C.; Mezzadrelli, A.; Senaratne, W.; Pal, S.; Thelen, D.; Hepburn, L.; Mazumder, P.; Pruneri, V. Towards transparent and durable copper-containing antimicrobial surfaces. Commun. Mater. 2024, 5, 39. [Google Scholar] [CrossRef]
- Xiong, Z.; Lei, Z.; Chen, X.; Gong, B.; Zhao, Y.; Zhang, J.; Zheng, C.; Wu, J.C. CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: Effect of deposition method and Pt precursors. Catal. Commun. 2017, 96, 1–5. [Google Scholar] [CrossRef]
- Cozzoli, P.D.; Fanizza, E.; Comparelli, R.; Curri, M.L.; Agostiano, A.; Laub, D. Role of Metal Nanoparticles in TiO2/Ag Nanocomposite-Based Microheterogeneous Photocatalysis. J. Phys. Chem. B 2004, 108, 9623–9630. [Google Scholar] [CrossRef]
- Jagodzińska, A. Determination of the Contact Angle of Titanium Dioxide-Based Coatings Produced in the Magnetron Sputtering Process. Bachelor’s Thesis, University of Rzeszow, Rzeszow, Poland, 2023. [Google Scholar]
- Navabpour, P.; Ostovarpour, S.; Hampshire, J.; Kelly, P.; Verran, J.; Cooke, K. The effect of process parameters on the structure, photocatalytic and selfcleaning properties of TiO2 and Ag-TiO2 coatings deposited using reactive magnetron sputtering. Thin Solid Films 2014, 571, 75–83. [Google Scholar] [CrossRef]
- Rudakova, A.V.; Bulanin, K.M.; Mikheleva, A.Y.; Emeline, A.V. Wettability of anatase TiO2 surface: Effect of niobium doping. Surfaces Interfaces 2024, 52, 104921. [Google Scholar] [CrossRef]
- Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.; Sathe, V.; Ganesan, V. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films. J. Appl. Phys. 2014, 116, 213502. [Google Scholar] [CrossRef]
- Chen, W.-F.; Koshy, P.; Sorrell, C.C. Effects of film topology and contamination as a function of thickness on the photo-induced hydrophilicity of transparent TiO2 thin films deposited on glass substrates by spin coating. J. Mater. Sci. 2016, 51, 2465–2480. [Google Scholar] [CrossRef]
- Abdullah, M.T.; Dagher, H.F.; Abd, A.N. Study on the optical and structure properties of TiO2 for different thickness prepared by spray pyrolysis. J. Phys. Conf. Ser. 1999, 1999, 012131. [Google Scholar] [CrossRef]
- Tasisa, Y.E.; Sarma, T.K.; Krishnaraj, R.; Sarma, S. Band gap engineering of titanium dioxide (TiO2) nanoparticles prepared via green route and its visible light driven for environmental remediation. Results Chem. 2024, 11, 101850. [Google Scholar] [CrossRef]
- Fonseca-Cervantes, O.R.; Pérez-Larios, A.; Arellano, V.H.R.; Sulbaran-Rangel, B.; González, C.A.G. Effects in Band Gap for Photocatalysis in TiO2 Support by Adding Gold and Ruthenium. Processes 2020, 8, 1032. [Google Scholar] [CrossRef]
- Reyes-coronado, D.; Rodríguez-Gattorno, G.; Espinosa-Pesqueira, M.E.; Cab, C.; De Coss, R.; Oskam, G. Phase-pure TiO2 nanoparticles: Anatase, brookite and rutile. Nanotechnology 2008, 19, 145605. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Sathasivam, S.; Williamson, B.A.D.; Kafizas, A.; Sotelo-Vazquez, C.; Taylor, A.; Scanlon, D.O.; Parkin, I.P. Chemical Vapor Deposition of Photocatalytically Active Pure Brookite TiO2 Thin films. Chem. Mater. 2018, 30, 1353–1361. [Google Scholar] [CrossRef]
- Chimupala, Y.; Hyett, G.; Simpson, R.; Mitchell, R.; Douthwaite, R.; Milne, S.J.; Brydson, R.D. Synthesis and characterization of mixed phase anatase TiO2 and sodium-doped TiO2 (B) thin films by low pressure chemical vapour deposition (LPCVD). RSC Adv. 2014, 4, 48507–48515. [Google Scholar] [CrossRef]
- Lin, H.; Li, L.; Zhao, M.; Huang, X.; Chen, X.; Li, G.; Yu, R. Synthesis of High-Quality Brookite TiO2 Single-Crystalline Nanosheets with Specific Facets Exposed: Tuning Catalysts from Inert to Highly Reactive. J. Am. Chem. Soc. 2012, 134, 8328–8331. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Kim, W.-S.; Kim, S.; Hong, S.-H. Brookite TiO2 Thin Film Epitaxially Grown on (110) YSZ Substrate by Atomic Layer Deposition. ACS Appl. Mater. Interfaces 2014, 6, 11817–11822. [Google Scholar] [CrossRef] [PubMed]
- Shinen, M.H.; A A AlSaati, S.; Razooqi, F.Z. Preparation of high transmittance TiO2 thin films by sol-gel technique as antireflection coating IOP. Conf. Ser. J. Phys. Conf. Ser. 2018, 1032, 012018. [Google Scholar] [CrossRef]
- Wisz, G.; Virt, I.; Sagan, P.; Potera, P.; Yavorskyi, R. Structural, Optical and electrical properties of zinc oxide layers produced by pulsed laser deposition method. Nanoscale Res. Lett. 2017, 12, 253. [Google Scholar] [CrossRef]
- El Fanaoui, A.; Taleb, A.; El Hamri, E.; Boulkaddat, L.; Kirou, H.; Atourki, L.; Ihlal, A.; Bouabid, K. Effect of heat treatment on TiO2 thin films properties. J. Mater. Environ. Sci. 2016, 7, 907–914. [Google Scholar]
- El-Moula, A.A.; Raaif, M.; El-Hossary, F. Optical properties of nanocrystalline/amorphous TiO2 thin film deposited by RF plasma magnetron sputtering. Acta Phys. Pol. A 2020, 137, 1068–1074. [Google Scholar] [CrossRef]
- Endo-Kimura, M.; Kowalska, E. Plasmonic Photocatalysts for Microbiological Applications. Catalysts 2020, 10, 824. [Google Scholar] [CrossRef]
- Cai, P.-F.; Li, J.; Wu, X.-B.; Li, Z.-Y.; Shen, J.; Nie, J.-J.; Cui, Z.-D.; Chen, D.-F.; Liang, Y.-Q.; Zhu, S.-L.; et al. ALD-induced TiO2/Ag nanofilm for rapid surface photodynamic ion sterilization. Rare Met. 2022, 41, 4138–4148. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dziedzic, A.; Augustowski, D.; Kwaśnicki, P.; Adamiak, S.; Bochnowski, W.; Żaczek, A.; Skała, P.; Cieniek, B.; Potera, P.; Dziedzic, J.; et al. Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating. Coatings 2025, 15, 587. https://doi.org/10.3390/coatings15050587
Dziedzic A, Augustowski D, Kwaśnicki P, Adamiak S, Bochnowski W, Żaczek A, Skała P, Cieniek B, Potera P, Dziedzic J, et al. Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating. Coatings. 2025; 15(5):587. https://doi.org/10.3390/coatings15050587
Chicago/Turabian StyleDziedzic, Andrzej, Dariusz Augustowski, Paweł Kwaśnicki, Stanisław Adamiak, Wojciech Bochnowski, Anna Żaczek, Patrycja Skała, Bogumił Cieniek, Piotr Potera, Jakub Dziedzic, and et al. 2025. "Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating" Coatings 15, no. 5: 587. https://doi.org/10.3390/coatings15050587
APA StyleDziedzic, A., Augustowski, D., Kwaśnicki, P., Adamiak, S., Bochnowski, W., Żaczek, A., Skała, P., Cieniek, B., Potera, P., Dziedzic, J., Kus-Liskiewicz, M., & Płoch, D. (2025). Structure and Properties of Silver-Platinum-Titanium Dioxide Nanocomposite Coating. Coatings, 15(5), 587. https://doi.org/10.3390/coatings15050587