Dual-Parameter Surface Plasmon Resonance Photonic Crystal Fiber Sensor for Simultaneous Magnetic Field and Temperature Detection with Potential SERS Applications
Abstract
:1. Introduction
2. Structure Design and Theoretical Analysis
2.1. Structure Design
2.2. Theoretical Analysis
2.3. Single-Parameter Magnetic Field Sensing of the SPR-PCF Sensor
2.4. Single-Parameter Temperature Sensing of the SPR-PCF Sensor
3. Results
3.1. Effect of TiO2 and Au Film Thicknesses on Sensing Performance
3.2. Effect of Variation of Structural Parameters on the Spectral Response
3.3. Dual-Parameter Sensing of Magnetic Field and Temperature
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.; Li, X.G.; Li, S.G.; An, G.W.; Cheng, T.L. Magnetic Field Sensing Based on SPR Optical Fiber Sensor Interacting with Magnetic Fluid. IEEE Trans. Instrum. Meas. 2019, 68, 234–239. [Google Scholar] [CrossRef]
- Dai, T.T.; Yi, Y.T.; Yi, Z.; Tang, Y.J.; Yi, Y.G.; Cheng, S.B.; Hao, Z.Q.; Tang, C.J.; Wu, P.H.; Zeng, Q.D. Photonic Crystal Fiber Based on Surface Plasmon Resonance Used for Two Parameter Sensing for Magnetic Field and Temperature. Photonics 2024, 11, 784. [Google Scholar] [CrossRef]
- Ji, Y.; Pu, S.L.; Liu, W.A.; Zhang, C.C.; Fu, J.Q.; Han, S.F.; Duan, S.M.; Huang, S.Y.; Lahoubi, M. High-sensitivity vector magnetic field sensor based on a V-shaped multimode-no-core-multimode fiber structure. Opt. Lett. 2024, 49, 2813–2816. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Schwendtner, E.; Navarrete, M.C.; Díaz-Herrera, N.; González-Cano, A.; Esteban, O. Advanced Plasmonic Fiber-Optic Sensor for High Sensitivity Measurement of Magnetic Field. IEEE Sens. J. 2019, 19, 7355–7364. [Google Scholar] [CrossRef]
- Zhang, X.X.; Qian, J.X.; Wang, W.; Lu, K.F.; Li, X.H.; Chen, H.B.; Zhang, J.Y. Fiber-Optic Vector Magnetic Field Sensors Based on Magnetic Fluid: Progress and Prospect. IEEE Trans. Instrum. Meas. 2024, 73, 6010213. [Google Scholar] [CrossRef]
- Su, C.B.; Yang, W.J.; Tong, D.; Zhu, Q.F.; Ma, Y.W.; Geng, T.; Yuan, L.B. A Highly Sensitive Sensor Based on Combination of Magnetostrictive Material and Vernier Effect for Magnetic Field Measurement. J. Light. Technol. 2024, 42, 485–492. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, S.; Marciante, J.R. All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber. Opt. Express 2010, 18, 5407–5412. [Google Scholar] [CrossRef]
- Tian, P.X.; Guan, C.Y.; Ye, P.; Cheng, T.L.; Yang, J.; Zhu, Z.; Shi, J.H.; Yang, J.; Yuan, L.B. Dual Mode Interference Magnetic-Field Sensor Based on Hollow Suspended-Core Fiber. IEEE Photon. Technol. Lett. 2022, 34, 43–46. [Google Scholar] [CrossRef]
- Gu, S.F.; Feng, D.Q.; Zhang, T.H.; Deng, S.D.; Li, M.; Hu, Y.W.; Sun, W.; Deng, M. Highly Sensitive Magnetic Field Measurement with Taper-Based In-Line Mach-Zehnder Interferometer and Vernier Effect. J. Light. Technol. 2022, 40, 909–917. [Google Scholar] [CrossRef]
- Tian, H.; Tian, K.; Zhang, H.Y.; Shao, L.P.; Wang, Y.M.; Lu, H.L.; Shao, W.J.; Tang, J.; Hu, J.H. Vector magnetic field sensor based on coreless D-shaped fiber and magnetic fluid. Opt. Express 2024, 32, 25508–25518. [Google Scholar] [CrossRef]
- Zhang, F.; Li, B.; Chen, X.Y.; Gao, Y.H.; Yan, X.; Zhang, X.N.; Wang, F.; Suzuki, T.; Ohishi, Y.; Cheng, T.L. A Magnetic Field Sensor Based on Birefringence Effect in Asymmetric Four-Hole Fiber. J. Light. Technol. 2022, 40, 2594–2600. [Google Scholar] [CrossRef]
- Bilal, M.M.; Lopez-Aguayo, S.; Thottoli, A. Numerical Analysis of Solid-Core Photonic Crystal Fiber Based on Plasmonic Materials for Analyte Refractive Index Sensing. Photonics 2023, 10, 1070. [Google Scholar] [CrossRef]
- You, E.M.; Wang, H.L.; Zheng, J.R.; Meng, Z.D.; Zhang, M.X.; Ding, S.Y.; Tian, Z.Q. Attenuated total reflection-cascading nanostructure-enhanced Raman spectroscopy on flat surfaces: A nano-optical design. J. Raman Spectrosc. 2021, 52, 446–457. [Google Scholar] [CrossRef]
- Yao, S.Y.; Yu, Y.; Qin, S.P.; Wang, D.Y.; Yan, P.G.; Zhang, Z.R. Research on optimization of magnetic field sensing characteristics of PCF sensor based on SPR. Opt. Express 2022, 30, 16405–16418. [Google Scholar] [CrossRef]
- Wang, D.Y.; Yu, Y.; Lu, Z.C.; Yang, J.B.; Yi, Z.; Bian, Q.; Zhang, J.F.; Qin, S.P.; Weng, J.J.; Yao, S.Y.; et al. Design of photonic crystal fiber to excite surface plasmon resonance for highly sensitive magnetic field sensing. Opt. Express 2022, 30, 29271–29286. [Google Scholar] [CrossRef]
- Yao, S.Y.; Wang, D.Y.; Yu, Y.; Zhang, Z.R.; Wei, L.Y.; Yang, J.B. Design of an Er-doped surface plasmon resonance-photonic crystal fiber to improve magnetic field sensitivity. Opt. Express 2022, 30, 41240–41254. [Google Scholar] [CrossRef]
- Fan, Z.K.; Chu, S.C.; Zhang, X.Q.; Meng, J.H.; Fan, Y.Q.; Zhang, Y.P. Two Kinds of Liquid Crystal Filled PCFs Temperature and RI Sensors Based on SPR. IEEE Sens. J. 2023, 23, 5766–5772. [Google Scholar] [CrossRef]
- Danlard, I.; Akowuah, E.K. Design and Theoretical Analysis of a Dual-Polarized Quasi D-Shaped Plasmonic PCF Microsensor for Back-to-Back Measurement of Refractive Index and Temperature. IEEE Sens. J. 2021, 21, 9860–9868. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, W.L.; Yi, Z.; Ma, G.L.; Gao, X.; Dai, B.; Yu, Y.; Zhou, G.R.; Wu, P.H.; Liu, C. Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. Opt. Express 2022, 30, 39055–39067. [Google Scholar] [CrossRef]
- Liu, T.G.; Jiang, J.F.; Liu, K.; Wang, S.; Zhang, X.Z.; Hu, H.F.; Ding, Z.Y.; Guo, H.R.; Li, Y.F.; Zhang, W.L. Review of Fiber Mechanical and Thermal Multi-Parameter Measurement Technologies and Instrumentation. J. Light. Technol. 2021, 39, 3724–3739. [Google Scholar] [CrossRef]
- Liu, H.; Tan, C.; Zhu, C.H.; Wang, Y.; Gao, Y.; Ma, H.L.; Cheng, D.Q. Simultaneous measurement of temperature and magnetic field based on directional resonance coupling in photonic crystal fibers. Opt. Commun. 2017, 391, 111–115. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, D.; Lv, R.Q.; Ying, Y. Tunable Characteristics and Mechanism Analysis of the Magnetic Fluid Refractive Index with Applied Magnetic Field. IEEE Trans. Magn. 2014, 50, 4600205. [Google Scholar] [CrossRef]
- Zhu, Z.D.; Liu, L.; Liu, Z.H.; Zhang, Y.; Zhang, Y.X. Surface-plasmon-resonance-based optical-fiber temperature sensor with high sensitivity and high figure of merit. Opt. Lett. 2017, 42, 2948–2951. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.G.; Chen, H.L.; Fan, Z.K.; Li, J.S. Photonic Crystal Fiber Temperature Sensor Based on Coupling Between Liquid-Core Mode and Defect Mode. IEEE Photon. J. 2015, 7, 4500509. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mandiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Adikan, F.R.M. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 2016, 24, 2485–2495. [Google Scholar] [CrossRef]
- Vial, A.; Grimault, A.S.; Macías, D.; Barchiesi, D.; de la Chapelle, M.L. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 2005, 71, 085416. [Google Scholar] [CrossRef]
- Yang, X.C.; Zhu, L.Q.; Lu, Y.; Yao, J.Q. Ultrasharp LSPR Temperature Sensor Based on Grapefruit Fiber Filled with a Silver Nanoshell and Liquid. J. Light. Technol. 2020, 38, 2015–2021. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.G.; Chen, H.L.; Li, J.S.; Fan, Z.K. High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 2015, 8, 046701. [Google Scholar] [CrossRef]
- Russell, P. Photonic crystal fibers. Science 2003, 299, 358–362. [Google Scholar] [CrossRef]
- Cregan, R.F.; Mangan, B.J.; Knight, J.C.; Birks, T.A.; Russell, P.S.; Roberts, P.J.; Allan, D.C. Single-mode photonic band gap guidance of light in air. Science 1999, 285, 1537–1539. [Google Scholar] [CrossRef]
- van Brakel, A.; Grivas, C.; Petrovich, M.N.; Richardson, D.J. Micro-channels machined in microstructured optical fibers by femtosecond laser. Opt. Express 2007, 15, 8731–8736. [Google Scholar] [CrossRef]
- Wang, H.R.; Wu, M.Y.; Zhou, J.; Zheng, S.C.; Xie, T.T.; Dai, W.Y.; Fu, H.Y.; Lv, W.L.; Chen, N.; Bu, Y.K. SPR Sensor Based on Cascaded NCF and U-Shaped Multimode Fibers for Simultaneous Detection of Refractive Index and Temperature. IEEE Sens. J. 2023, 23, 16851–16858. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, S.G.; Li, J.S.; Chen, H.L. High-Sensitivity Refractive Index Sensing and Broadband Tunable Polarization Filtering Characteristics of D-Shaped Micro-Structured Fiber with Single-Layer Air-Holes and Gold Film Based on SPR. J. Light. Technol. 2022, 40, 863–871. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.H.; Zhang, Y.; Li, S.; Zhang, Y.X.; Yang, X.H.; Zhang, J.Z.; Yuan, L.B. Specialty optical fibers and 2D materials for sensitivity enhancement of fiber optic SPR sensors: A review. Opt. Laser Technol. 2022, 152, 108167. [Google Scholar] [CrossRef]
- Singh, S.; Chaudhary, B.; Kumar, R.; Upadhyay, A.; Kumar, S. A Numerical Analysis of Rectangular Open Channel Embedded TiO2-Au-MXene Employed PCF Biosensor for Brain Tumor Diagnosis. IEEE Sens. J. 2024, 24, 16047–16054. [Google Scholar] [CrossRef]
- Yi, J.; You, E.M.; Hu, R.; Wu, D.Y.; Liu, G.K.; Yang, Z.L.; Zhang, H.; Gu, Y.; Wang, Y.H.; Wang, X.; et al. Surface-enhanced Raman spectroscopy: A half-century historical perspective. Chem. Soc. Rev. 2025, 54, 1453–1551. [Google Scholar] [CrossRef]
- Jing, J.Y.; Wang, Q.; Zhao, W.M.; Wang, B.T. Long-range surface plasmon resonance and its sensing applications: A review. Opt. Lasers Eng. 2019, 112, 103–118. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Li, L.; Yin, H. Long-Range Spoof Surface Plasmons (LRSSP) on the Asymmetric Double Metal Gratings. IEEE Photon. J. 2021, 13, 4800209. [Google Scholar] [CrossRef]
- Mo, X.W.; Lv, J.T.; Liu, Q.; Jiang, X.X.; Si, G.Y. A Magnetic Field SPR Sensor Based on Temperature Self-Reference. Sensors 2021, 21, 6130. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Pu, S.L.; Li, D.H.; Zhao, Y.L.; Yuan, M.; Wang, J.; Liu, W.N. Bilaterally Polished Photonic Crystal Fiber Magnetic Field Sensor Based on Lossy Mode Resonance. IEEE Sens. J. 2022, 22, 23786–23792. [Google Scholar] [CrossRef]
Ref. | Structure | Magnetic Field Sensitivity (pm/Oe) | Temperature Sensitivity (pm/°C) | Number of Simultaneously Detectable Parameters | Result Type |
---|---|---|---|---|---|
[14] | D-shaped PCF | 190 | −29.7 | 1 | Simulation |
[15] | D-shaped PCF | 2175 | Simulation | ||
[16] | D-shaped PCF | 5 | 0 | 1 | Simulation |
[19] | Two opening ring PCF | 308 | −6520 | 2 | Simulation |
[39] | D-shaped PCF | 143 | −229 | 2 | Simulation |
[40] | Symmetrically side-polished PCF | 467 | 0 | 1 | Simulation |
Our work | Multi-channel PCF | 860 | −2628 | 2 | Simulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Liu, S.; Liu, W.; Wang, S. Dual-Parameter Surface Plasmon Resonance Photonic Crystal Fiber Sensor for Simultaneous Magnetic Field and Temperature Detection with Potential SERS Applications. Photonics 2025, 12, 355. https://doi.org/10.3390/photonics12040355
Wang H, Liu S, Liu W, Wang S. Dual-Parameter Surface Plasmon Resonance Photonic Crystal Fiber Sensor for Simultaneous Magnetic Field and Temperature Detection with Potential SERS Applications. Photonics. 2025; 12(4):355. https://doi.org/10.3390/photonics12040355
Chicago/Turabian StyleWang, Haoran, Shiwei Liu, Wenzhao Liu, and Shuai Wang. 2025. "Dual-Parameter Surface Plasmon Resonance Photonic Crystal Fiber Sensor for Simultaneous Magnetic Field and Temperature Detection with Potential SERS Applications" Photonics 12, no. 4: 355. https://doi.org/10.3390/photonics12040355
APA StyleWang, H., Liu, S., Liu, W., & Wang, S. (2025). Dual-Parameter Surface Plasmon Resonance Photonic Crystal Fiber Sensor for Simultaneous Magnetic Field and Temperature Detection with Potential SERS Applications. Photonics, 12(4), 355. https://doi.org/10.3390/photonics12040355