Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = plasmon detector

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4543 KiB  
Article
A New Protein–Ligand Trapping System to Rapidly Screen and Discover Small-Molecule Inhibitors of PD-L1 from Natural Products
by Yazhuo Huang, Senfeng Sun, Runxin Yin, Zongtao Lin, Daidong Wang, Wanwan Wang, Xiangyu Fu, Jing Wang, Xinyu Lei, Mimi Sun, Shizhong Chen and Hong Wang
Molecules 2025, 30(8), 1754; https://doi.org/10.3390/molecules30081754 - 14 Apr 2025
Viewed by 695
Abstract
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on [...] Read more.
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on high-efficiency identification of small-molecule inhibitors of Programmed Death Ligand 1 with lower antigenicity and flexible structure tunability. In order to identify small molecule inhibitors of PD-L1 from complex Chinese herbal extracts, this study established a protein–ligand trapping system based on high-performance liquid chromatography coupled with a photo-diode array detector, ion trap/quadrupole time-of-flight tandem mass spectrometry, and a Programmed Death Ligand 1 affinity chromatography unit (ACPD-L1-HPLC-PDA-IT-TOF (Q-TOF)-MS) to rapidly screen and identify small-molecule inhibitors of Programmed Death Ligand 1 from Toddalia asiatica (L.) Lam. Fourteen components were then identified as PD-L1 binders, and surface plasmon resonance (SPR) validation results showed that six of them—magnoflorine (6), nitidine (22), chelerythrine (24), jatrorrhizine (13), toddaculin (68), and toddanol (45)—displayed PD-L1 binding activity. Laser scanning confocal microscopy results demonstrated that these compounds effectively inhibited the binding of PD-1 to PD-L1 in a dose-dependent manner. Additionally, flow cytometry analysis indicated they could promote human lung cancer cell line (A549) apoptosis when co-cultured with Peripheral Blood Mononuclear Cells (PBMCs). The system’s innovation lies in its first integration of dynamic protein–ligand trapping with multi-dimensional validation, coupled with high-throughput screening capacity for structurally diverse natural products. This workflow overcomes traditional phytochemical screening bottlenecks by preserving native protein conformations during affinity capture while maintaining chromatographic resolution, offering a transformative template for accelerating natural product-derived immunotherapeutics through the PD-1/PD-L1 pathway. Full article
(This article belongs to the Special Issue Anticancer Natural Products)
Show Figures

Figure 1

17 pages, 8357 KiB  
Article
Aluminum–Silica Core–Shell Nanoparticles via Nonthermal Plasma Synthesis
by Thomas Cameron, Bailey Klause, Kristine Q. Loh and Uwe R. Kortshagen
Nanomaterials 2025, 15(3), 237; https://doi.org/10.3390/nano15030237 - 4 Feb 2025
Viewed by 1094
Abstract
Aluminum nanoparticles (Al NPs) are interesting for energetic and plasmonic applications due to their enhanced size-dependent properties. Passivating the surface of these particles is necessary to avoid forming a native oxide layer, which can degrade energetic and optical characteristics. This work utilized a [...] Read more.
Aluminum nanoparticles (Al NPs) are interesting for energetic and plasmonic applications due to their enhanced size-dependent properties. Passivating the surface of these particles is necessary to avoid forming a native oxide layer, which can degrade energetic and optical characteristics. This work utilized a radiofrequency (RF)-driven capacitively coupled argon/hydrogen plasma to form surface-modified Al NPs from aluminum trichloride (AlCl3) vapor and 5% silane in argon (dilute SiH4). Varying the power and dilute SiH4 flow rate in the afterglow of the plasma led to the formation of varying nanoparticle morphologies: Al–SiO2 core–shell, Si–Al2O3 core–shell, and Al–Si Janus particles. Scanning transmission electron microscopy with a high-angle annular dark-field detector (STEM-HAADF) and energy-dispersive X-ray spectroscopy (EDS) were employed for characterization. The surfaces of the nanoparticles and sample composition were characterized and found to be sensitive to changes in RF power input and dilute SiH4 flow rate. This work demonstrates a tunable range of Al–SiO2 core–shell nanoparticles where the Al-to-Si ratio could be varied by changing the plasma parameters. Thermal analysis measurements performed on plasma-synthesized Al, crystalline Si, and Al–SiO2 samples are compared to those from a commercially available 80 nm Al nanopowder. Core–shell particles exhibit an increase in oxidation temperature from 535 °C for Al to 585 °C for Al–SiO2. This all-gas-phase synthesis approach offers a simple preparation method to produce high-purity heterostructured Al NPs. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

9 pages, 8149 KiB  
Article
Absorption Spectra of AlGaN/GaN Terahertz Plasmonic Crystals—Experimental Validation of Analytical Approach
by Maksym Dub, Pavlo Sai, Pawel Prystawko, Wojciech Knap and Sergey Rumyantsev
Nanomaterials 2024, 14(18), 1502; https://doi.org/10.3390/nano14181502 - 16 Sep 2024
Cited by 3 | Viewed by 1169
Abstract
Absorption spectra of AlGaN/GaN grating-gate plasmonic crystals with a period from 1 µm to 2.5 µm were studied experimentally at T = 70 K using Fourier-transform infrared spectrometry. The plasmonic crystals exhibit distinct absorption lines of various plasmon harmonics across the 0.5 to [...] Read more.
Absorption spectra of AlGaN/GaN grating-gate plasmonic crystals with a period from 1 µm to 2.5 µm were studied experimentally at T = 70 K using Fourier-transform infrared spectrometry. The plasmonic crystals exhibit distinct absorption lines of various plasmon harmonics across the 0.5 to 6 THz frequency range, tunable by gate voltage. Cumbersome and time-consuming electromagnetic simulations are usually needed to interpret or predict the grating-gate crystal spectra. In this work, we examine an analytical model and show that it can successfully describe the majority of existing experimental results. In this way, we demonstrate a new analytical platform for designing plasmonic crystals for THz filters, detectors, and amplifiers. Full article
Show Figures

Figure 1

13 pages, 1958 KiB  
Article
Label-Free Biosensor Based on Particle Plasmon Resonance Coupled with Diffraction Grating Waveguide
by Wei-Ting Hsu, Yu-Cheng Lin, Huang-Chin Yang, Devesh Barshilia, Po-Liang Chen, Fu-Chun Huang, Lai-Kwan Chau, Wen-Hsin Hsieh and Guo-En Chang
Sensors 2024, 24(17), 5536; https://doi.org/10.3390/s24175536 - 27 Aug 2024
Cited by 4 | Viewed by 1612
Abstract
Particle plasmon resonance (PPR), or localized surface plasmon resonance (LSPR), utilizes intrinsic resonance in metal nanoparticles for sensor fabrication. While diffraction grating waveguides monitor bioaffinity adsorption with out-of-plane illumination, integrating them with PPR for biomolecular detection schemes remains underexplored. This study introduces a [...] Read more.
Particle plasmon resonance (PPR), or localized surface plasmon resonance (LSPR), utilizes intrinsic resonance in metal nanoparticles for sensor fabrication. While diffraction grating waveguides monitor bioaffinity adsorption with out-of-plane illumination, integrating them with PPR for biomolecular detection schemes remains underexplored. This study introduces a label-free biosensing platform integrating PPR with a diffraction grating waveguide. Gold nanoparticles are immobilized on a glass slide in contact with a sample, while a UV-assisted embossed diffraction grating is positioned opposite. The setup utilizes diffraction in reflection to detect changes in the environment’s refractive index, indicating biomolecular binding at the gold nanoparticle surface. The positional shift of the diffracted beam, measured with varying refractive indices of sucrose solutions, shows a sensitivity of 0.97 mm/RIU at 8 cm from a position-sensitive detector, highlighting enhanced sensitivity due to PPR–diffraction coupling near the gold nanoparticle surface. Furthermore, the sensor achieved a resolution of 3.1 × 10−4 refractive index unit and a detection limit of 4.4 pM for detection of anti-DNP. The sensitivity of the diffracted spot was confirmed using finite element method (FEM) simulations in COMSOL Multiphysics. This study presents a significant advancement in biosensing technology, offering practical solutions for sensitive, rapid, and label-free biomolecule detection. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidics-Integrated Optical Biosensors)
Show Figures

Figure 1

14 pages, 3218 KiB  
Article
Aluminum-Based Plasmonic Photodetector for Sensing Applications
by Yurii Lyaschuk, Ivan Indutnyi, Viktor Myn’ko, Volodymyr Romanyuk, Iryna Mamontova, Roman Redko, Mykhailo Dusheyko, Yelizaveta Savchuk, Vasyl Tochkovyi, Oleksandr Shtykalo, Daria Kuznetsova and Sergii Mamykin
Appl. Sci. 2024, 14(11), 4546; https://doi.org/10.3390/app14114546 - 25 May 2024
Cited by 4 | Viewed by 1341
Abstract
Plasmonic sensors have great potential for widespread usage. However, the prohibitive cost of noble metals restrains the wider adoption of these devices. The aim of our study is to develop a cost-effective Al-based alternative to common noble metal-based plasmonic detectors. We considered a [...] Read more.
Plasmonic sensors have great potential for widespread usage. However, the prohibitive cost of noble metals restrains the wider adoption of these devices. The aim of our study is to develop a cost-effective Al-based alternative to common noble metal-based plasmonic detectors. We considered a structure consisting of an n-type doped Si wafer with a shallow p-n junction and an overlying Al grating with a trapezoidal groove profile. The RCWA (rigorous coupled-wave analysis) method was used to numerically calculate the distribution of absorbed light energy in the plasmonic detector layers and to optimize the grating parameters. Based on the simulation results, experimental samples of plasmonic photodetectors with optimal grating parameters (period—633 nm, relief depth—50 nm, groove filling factor—0.36, and thickness of the intermediate Al layer—14 nm) were manufactured, and their properties were studied. For these samples, we obtained a polarization sensitivity value of Ip/Is = 8, an FWHM of the resonance in the photocurrent spectrum ranging from 50 to 100 nm, a sensitivity at the resonance maximum of Iph = 0.04–0.06 A/W, and an angular half-width of photocurrent resonance of Δθ = 5°, which are comparable to noble metal-based analogs. Our results may be used for creating cost-effective high-sensitivity plasmonic sensors. Full article
(This article belongs to the Special Issue Next-Generation Electronic and Optoelectronic Devices and Materials)
Show Figures

Figure 1

36 pages, 5342 KiB  
Review
Diamond for High-Power, High-Frequency, and Terahertz Plasma Wave Electronics
by Muhammad Mahmudul Hasan, Chunlei Wang, Nezih Pala and Michael Shur
Nanomaterials 2024, 14(5), 460; https://doi.org/10.3390/nano14050460 - 1 Mar 2024
Cited by 14 | Viewed by 5162
Abstract
High thermal conductivity and a high breakdown field make diamond a promising candidate for high-power and high-temperature semiconductor devices. Diamond also has a higher radiation hardness than silicon. Recent studies show that diamond has exceptionally large electron and hole momentum relaxation times, facilitating [...] Read more.
High thermal conductivity and a high breakdown field make diamond a promising candidate for high-power and high-temperature semiconductor devices. Diamond also has a higher radiation hardness than silicon. Recent studies show that diamond has exceptionally large electron and hole momentum relaxation times, facilitating compact THz and sub-THz plasmonic sources and detectors working at room temperature and elevated temperatures. The plasmonic resonance quality factor in diamond TeraFETs could be larger than unity for the 240–600 GHz atmospheric window, which could make them viable for 6G communications applications. This paper reviews the potential and challenges of diamond technology, showing that diamond might augment silicon for high-power and high-frequency compact devices with special advantages for extreme environments and high-frequency applications. Full article
(This article belongs to the Special Issue Advances in Nanotechnology for RF and Terahertz)
Show Figures

Figure 1

13 pages, 3218 KiB  
Article
Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas
by Fangzhe Li, Jing Zhou, Jie Deng, Jinyong Shen, Tianyun Zhu, Wenji Jing, Xu Dai, Jiexian Ye, Yujie Zhang, Junwei Huang and Xiaoshuang Chen
Photonics 2024, 11(2), 162; https://doi.org/10.3390/photonics11020162 - 7 Feb 2024
Cited by 1 | Viewed by 2267
Abstract
Recent advancements in terahertz (THz) wave technology have highlighted the criticality of circular-polarization detection, fostering the development of more compact, efficient on-chip THz circular-polarization detectors. In response to this technological imperative, we presented a chiral-antenna-integrated GaAs/AlGaAs quantum well (QW) THz detector. The chiral [...] Read more.
Recent advancements in terahertz (THz) wave technology have highlighted the criticality of circular-polarization detection, fostering the development of more compact, efficient on-chip THz circular-polarization detectors. In response to this technological imperative, we presented a chiral-antenna-integrated GaAs/AlGaAs quantum well (QW) THz detector. The chiral antenna selectively couples the incident light of a specific circular-polarization state into a surface-plasmon polariton wave that enhances the absorptance of the QWs by a factor of 12 relative to a standard 45° faceted device, and reflects a significant amount of the incident light of the orthogonal circular-polarization state. The circular-polarization selectivity is further enhanced by the QWs with a strong intrinsic anisotropy, resulting in a circular-polarization extinction ratio (CPER) as high as 26 at 6.52 THz. In addition, the operation band of the device can be adjusted by tuning the structural parameters of the chiral structure. Moreover, the device preserves a high performance for oblique incidence within a range of ±5°, and the device architecture is compatible with a focal plane array. This report communicates a promising approach for the development of miniaturized on-chip THz circular-polarization detectors. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement II)
Show Figures

Figure 1

16 pages, 9602 KiB  
Perspective
Plasmonic Modification of Epitaxial Nanostructures for the Development of a Highly Efficient SERS Platform
by Ewa Dumiszewska, Aleksandra Michałowska, Libor Nozka, Dariusz Czolak and Jan Krajczewski
Crystals 2023, 13(11), 1539; https://doi.org/10.3390/cryst13111539 - 26 Oct 2023
Cited by 1 | Viewed by 1720
Abstract
Epitaxy is the process of crystallization of monocrystalline layers and nanostructures on a crystalline substrate. It allows for the crystallization of various semiconductor layers on a finite quantity of semiconductor substrates, like GaAs, InP, GaP, InGaP, GaP, and many others. The growth of [...] Read more.
Epitaxy is the process of crystallization of monocrystalline layers and nanostructures on a crystalline substrate. It allows for the crystallization of various semiconductor layers on a finite quantity of semiconductor substrates, like GaAs, InP, GaP, InGaP, GaP, and many others. The growth of epitaxial heterostructures is very complicated and requires special conditions and the precise control of the growth temperature, the pressure in the reactor, and the flow of the precursors. It is used to grow epitaxial structures in lasers, diodes, detectors, photovoltaic structures, and so on. Semiconductors themselves are not suitable materials for application in surface-enhanced Raman spectroscopy (SERS) due to poor plasmonic properties in the UV/VIS range caused by missing free electrons in the conduction band due to the existing band gap. A plasmonic material is added on top of the nanostructured pattern, allowing for the formation of mixed photon–plasmon modes called localized surface plasmon-polaritons which stand behind the SERS effect. Typically, gold and silver are used as functional plasmonic layers. Such materials could be deposited via chemical or physical process. Attention has also been devoted to other plasmonic materials, like ones based on the nitrides of metals. The SERS performance of a functional surface depends both on the response of the plasmonic material and the morphology of the underlying semiconductor epitaxial layer. In the context of SERS, epitaxial growth allows for the fabrication of substrates with well-defined 3D nanostructures and enhanced electromagnetic properties. In this work, we described the possible potential plasmonic modification, composed of various coatings such as noble metals, TiN, and others, of well-developed epitaxial nanostructures for the construction of a new type of highly active SERS platforms. This abstract also highlights the role of epitaxial growth in advancing SERS, focusing on its principles, methods, and impact. Furthermore, this work outlines the potential of epitaxial growth to push the boundaries of SERS. The ability to design substrates with tailored plasmonic properties opens avenues for ultralow concentration detection. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

9 pages, 2089 KiB  
Communication
Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures
by Davi F. Rêgo, Igor L. Gomes de Souza, Vitaly F. Rodriguez-Esquerre and Gilliard N. Malheiros-Silveira
Photonics 2023, 10(8), 922; https://doi.org/10.3390/photonics10080922 - 11 Aug 2023
Cited by 2 | Viewed by 1703
Abstract
Plasmonic structures based on stacked layers of metal and dielectric materials excel as broadband absorbers because of the nonlinear relationship between the compound materials’ dispersion characteristics and the multilayered structure’s actual performance. In this work, radiation absorption along the plasmonic absorber is studied. [...] Read more.
Plasmonic structures based on stacked layers of metal and dielectric materials excel as broadband absorbers because of the nonlinear relationship between the compound materials’ dispersion characteristics and the multilayered structure’s actual performance. In this work, radiation absorption along the plasmonic absorber is studied. Broadband absorptance spectra play an important role in applications such as photovoltaics, detectors, modulators, and emitters. We propose and analyze plasmonic stacked structures that exhibit high broadband absorption. For this purpose, an inverse design approach has been implemented using a conventional genetic algorithm as a global optimizer in conjunction with a pattern search as a local optimizer. The proposed strategy found structures with absorption covering the visible spectrum, maintaining its performance for high incident angles. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

18 pages, 3608 KiB  
Article
Evaluation of the Efficiency of Generation of Terahertz Surface Plasmon Polaritons by the End-Fire Coupling Technique
by Vasily Valerievich Gerasimov, Alexey Konstantinovich Nikitin, Alexey Georgievich Lemzyakov and Ivan Aleksandrovich Azarov
Photonics 2023, 10(8), 917; https://doi.org/10.3390/photonics10080917 - 9 Aug 2023
Cited by 6 | Viewed by 1690
Abstract
One of the most important problems in the plasmonics of the terahertz (THz) range, which is actively developing now, is the efficient generation of surface plasmon polaritons (SPPs). The simplest and most promising technological technique of photon excitation of THz SPPs is through [...] Read more.
One of the most important problems in the plasmonics of the terahertz (THz) range, which is actively developing now, is the efficient generation of surface plasmon polaritons (SPPs). The simplest and most promising technological technique of photon excitation of THz SPPs is through diffraction of radiation on the edge of the conducting surface of the sample (the end-fire coupling technique). In this paper, we experimentally evaluated the efficiency of the generation of monochromatic THz SPPs (λ0 = 141 μm) by this method with a sample in the form of a cylindrical segment, the convex surface of which has a gold layer coated by zinc sulfide (ZnS) with thickness d = 0–2 µm. Such configuration of the surface supporting the SPPs not only shields the detector from parasitic bulk waves arising during diffraction but also enables one to change the distribution of the SPP field in the air by varying the coating layer thickness d. On an uncoated gold surface, the SPP generation efficiency was η ≈ 20%. In the presence of a ZnS layer on the gold, the SPP generation efficiency gradually increased with d, reached the maximum (ηmax ≈ 60%) at d ≈ 1 μm, and then gradually decreased. Theoretical analysis showed that the efficiency of the SPP generation can be raised up to 80% due to the selection of an optimal SPP field profile via variation of the thickness of the dielectric layer on the metal surface, as well as with optimal incidence of the focused radiation on the edge of the sample. Full article
Show Figures

Figure 1

11 pages, 1661 KiB  
Article
Portable Surface Plasmon Resonance Detector for COVID-19 Infection
by Maciej Trzaskowski, Anna Mazurkiewicz-Pisarek, Jakub Waldemar Trzciński, Marcin Drozd, Rafał Podgórski, Anna Zabost and Ewa Augustynowicz-Kopeć
Sensors 2023, 23(8), 3946; https://doi.org/10.3390/s23083946 - 13 Apr 2023
Cited by 10 | Viewed by 2697
Abstract
Methods based on nucleic acid detection are currently the most commonly used technique in COVID-19 diagnostics. Although generally considered adequate, these methods are characterised by quite a long time-to-result and the necessity to prepare the material taken from the examined person—RNA isolation. For [...] Read more.
Methods based on nucleic acid detection are currently the most commonly used technique in COVID-19 diagnostics. Although generally considered adequate, these methods are characterised by quite a long time-to-result and the necessity to prepare the material taken from the examined person—RNA isolation. For this reason, new detection methods are being sought, especially those characterised by the high speed of the analysis process from the moment of sampling to the result. Currently, serological methods of detecting antibodies against the virus in the patient’s blood plasma have attracted much attention. Although they are less precise in determining the current infection, such methods shorten the analysis time to several minutes, making it possible to consider them a promising method for screening tests in people with suspected infection. The described study investigated the feasibility of a surface plasmon resonance (SPR)-based detection system for on-site COVID-19 diagnostics. A simple-to-use portable device was proposed for the fast detection of anti-SARS-CoV-2 antibodies in human plasma. SARS-CoV-2-positive and -negative patient blood plasma samples were investigated and compared with the ELISA test. The receptor-binding domain (RBD) of spike protein from SARS-CoV-2 was selected as a binding molecule for the study. Then, the process of antibody detection using this peptide was examined under laboratory conditions on a commercially available SPR device. The portable device was prepared and tested on plasma samples from humans. The results were compared with those obtained in the same patients using the reference diagnostic method. The detection system is effective in the detection of anti-SARS-CoV-2 with the detection limit of 40 ng/mL. It was shown that it is a portable device that can correctly examine human plasma samples within a 10 min timeframe. Full article
Show Figures

Figure 1

31 pages, 89637 KiB  
Review
Optical Processes behind Plasmonic Applications
by Viktoriia E. Babicheva
Nanomaterials 2023, 13(7), 1270; https://doi.org/10.3390/nano13071270 - 3 Apr 2023
Cited by 69 | Viewed by 8830
Abstract
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the [...] Read more.
Plasmonics is a revolutionary concept in nanophotonics that combines the properties of both photonics and electronics by confining light energy to a nanometer-scale oscillating field of free electrons, known as a surface plasmon. Generation, processing, routing, and amplification of optical signals at the nanoscale hold promise for optical communications, biophotonics, sensing, chemistry, and medical applications. Surface plasmons manifest themselves as confined oscillations, allowing for optical nanoantennas, ultra-compact optical detectors, state-of-the-art sensors, data storage, and energy harvesting designs. Surface plasmons facilitate both resonant characteristics of nanostructures and guiding and controlling light at the nanoscale. Plasmonics and metamaterials enable the advancement of many photonic designs with unparalleled capabilities, including subwavelength waveguides, optical nanoresonators, super- and hyper-lenses, and light concentrators. Alternative plasmonic materials have been developed to be incorporated in the nanostructures for low losses and controlled optical characteristics along with semiconductor-process compatibility. This review describes optical processes behind a range of plasmonic applications. It pays special attention to the topics of field enhancement and collective effects in nanostructures. The advances in these research topics are expected to transform the domain of nanoscale photonics, optical metamaterials, and their various applications. Full article
(This article belongs to the Special Issue Nanophotonics: Lasers, Gratings and Localized Surface Plasmons)
Show Figures

Graphical abstract

9 pages, 2943 KiB  
Communication
Cascade Analysis Method of Multilayer Optical Films Structure Based on Two Port Transmission Line Theory
by Kui Wen, Xianjun Huang, Yuanlong Liang, Wencong Liu, Yanlin Xu and Peiguo Liu
Appl. Sci. 2023, 13(3), 1337; https://doi.org/10.3390/app13031337 - 19 Jan 2023
Cited by 1 | Viewed by 1433
Abstract
The infrared band is one of the important communication windows. Most of the detectors and sensors working in this band are designed and manufactured based on micro- and nano-lithography technology. In this article, we cut the giant-sized thickness of the transparent substrate and [...] Read more.
The infrared band is one of the important communication windows. Most of the detectors and sensors working in this band are designed and manufactured based on micro- and nano-lithography technology. In this article, we cut the giant-sized thickness of the transparent substrate and the metal film was uniformly sliced. Then, we used the CST software to simulate the sliced substrate and the metal film to obtain the optical response parameters for each slice. Finally, the combination of metal film and substrate was realized by cascading calculation of the two port transmission line theory, which solves problems such as overlong simulation time and cumbersome running load caused by huge grid divisions due to the difference between the substrate thickness and the response wavelength in the process of simulating light propagation. On the other hand, the cascade analysis method was experimentally verified by constructing a surface plasmon filter in the medium infrared band, which provides an effective idea and solution for bridging the gap between simulation and engineering application. Full article
Show Figures

Figure 1

16 pages, 17671 KiB  
Article
Near Infrared Efficiency Enhancement of Silicon Photodiodes by Integration of Metal Nanostructures Supporting Surface Plasmon Polaritrons
by Elia Scattolo, Alessandro Cian, Luisa Petti, Paolo Lugli, Damiano Giubertoni and Giovanni Paternoster
Sensors 2023, 23(2), 856; https://doi.org/10.3390/s23020856 - 11 Jan 2023
Cited by 10 | Viewed by 3888
Abstract
Recent years have witnessed a growing interest in detectors capable of detecting single photons in the near-infrared (NIR), mainly due to the emergence of new applications such as light detection and ranging (LiDAR) for, e.g., autonomous driving. A silicon single-photon avalanche diode is [...] Read more.
Recent years have witnessed a growing interest in detectors capable of detecting single photons in the near-infrared (NIR), mainly due to the emergence of new applications such as light detection and ranging (LiDAR) for, e.g., autonomous driving. A silicon single-photon avalanche diode is surely one of the most interesting and available technologies, although it yields a low efficiency due to the low absorption coefficient of Si in the NIR. Here, we aim at overcoming this limitation through the integration of complementary metal–oxide–semiconductor (CMOS) -compatible nanostructures on silicon photodetectors. Specifically, we utilize silver grating arrays supporting surface plasmons polaritons (SPPs) to superficially confine the incoming NIR photons and therefore to increase the probability of photons generating an electron-hole pair. First, the plasmonic silver array is geometrically designed using time domain simulation software to achieve maximum detector performance at 950 nm. Then, a plasmonic silver array characterized by a pitch of 535 nm, a dot width of 428 nm, and a metal thickness of 110 nm is integrated by means of the focused ion beam technique on the detector. Finally, the integrated detector is electro-optically characterized, demonstrating a QE of 13% at 950 nm, 2.2 times higher than the reference. This result suggests the realization of a silicon device capable of detecting single NIR photons, at a low cost and with compatibility with standard CMOS technology platforms. Full article
(This article belongs to the Special Issue Recent Developments of Integrated Photonic Sensors)
Show Figures

Figure 1

12 pages, 2721 KiB  
Communication
High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors
by Jinyong Shen, Tianyun Zhu, Jing Zhou, Zeshi Chu, Xiansong Ren, Jie Deng, Xu Dai, Fangzhe Li, Bo Wang, Xiaoshuang Chen and Wei Lu
Sensors 2023, 23(1), 168; https://doi.org/10.3390/s23010168 - 24 Dec 2022
Cited by 13 | Viewed by 3740
Abstract
Circular polarization detection enables a wide range of applications. With the miniaturization of optoelectronic systems, integrated circular polarization detectors with native sensitivity to the spin state of light have become highly sought after. The key issues with this type of device are its [...] Read more.
Circular polarization detection enables a wide range of applications. With the miniaturization of optoelectronic systems, integrated circular polarization detectors with native sensitivity to the spin state of light have become highly sought after. The key issues with this type of device are its low circular polarization extinction ratios (CPERs) and reduced responsivities. Metallic two-dimensional chiral metamaterials have been integrated with detection materials for filterless circular polarization detection. However, the CPERs of such devices are typically below five, and the light absorption in the detection materials is hardly enhanced and is even sometimes reduced. Here, we propose to sandwich multiple quantum wells between a dielectric two-dimensional chiral metamaterial and a metal grating to obtain both a high CPER and a photoresponse enhancement. The dielectric-metal-hybrid chiral metamirror integrated quantum well infrared photodetector (QWIP) exhibits a CPER as high as 100 in the long wave infrared range, exceeding all reported CPERs for integrated circular polarization detectors. The absorption efficiency of this device reaches 54%, which is 17 times higher than that of a standard 45° edge facet coupled device. The circular polarization discrimination is attributed to the interference between the principle-polarization radiation and the cross-polarization radiation of the chiral structure during multiple reflections and the structure-material double polarization selection. The enhanced absorption efficiency is due to the excitation of a surface plasmon polariton wave. The dielectric-metal-hybrid chiral mirror structure is compatible with QWIP focal plane arrays. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Sensors Technology in China)
Show Figures

Figure 1

Back to TopTop