Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas
Abstract
:1. Introduction
2. Device Structure
3. Result and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chenault, D.B.; Pezzaniti, J.L. Polarization imaging through scattering media. In Proceedings of the Polarization Analysis, Measurement, and Remote Sensing III, San Diego, CA, USA, 2–4 August 2000; SPIE: Bellingham, WA, USA, 2000; Volume 4133, pp. 124–133. [Google Scholar]
- Feng, W.; Kim, J.Y.; Wang, X.; Calcaterra, H.A.; Qu, Z.; Meshi, L.; Kotov, N.A. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors. Sci. Adv. 2017, 3, e1601159. [Google Scholar] [CrossRef] [PubMed]
- Sherson, J.F.; Krauter, H.; Olsson, R.K.; Julsgaard, B.; Hammerer, K.; Cirac, I.; Polzik, E.S. Quantum teleportation between light and matter. Nature 2006, 443, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Farshchi, R.; Ramsteiner, M.; Herfort, J.; Tahraoui, A.; Grahn, H.T. Optical communication of spin information between light emitting diodes. Appl. Phys. Lett. 2011, 98, 162508. [Google Scholar] [CrossRef]
- Kwon, J.; Tamura, M.; Lucas, P.W.; Hashimoto, J.; Kusakabe, N.; Kandori, R.; Nakajima, Y.; Nagayama, T.; Nagata, T.; Hough, J.H. Near-infrared circular polarization images of NGC, 6.3.3.4.-V. Astrophys. J. Lett. 2013, 765, L6. [Google Scholar] [CrossRef]
- Tang, Y.; Cohen, A.E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 2011, 332, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Nagali, E.; Sciarrino, F.; De Martini, F.; Marrucci, L.; Piccirillo, B.; Karimi, E.; Santamato, E. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 2009, 103, 013601. [Google Scholar] [CrossRef] [PubMed]
- Fujita, T.; Morimoto, K.; Kiyama, H.; Allison, G.; Larsson, M.; Ludwig, A.; Valentin, S.R.; Wieck, A.W.; Oiwa, A.; Tarucha, S. Angular momentum transfer from photon polarization to an electron spin in a gate-defined quantum dot. Nat. Commun. 2019, 10, 2991. [Google Scholar] [CrossRef] [PubMed]
- Togan, E.; Chu, Y.; Trifonov, A.S.; Jiang, L.; Maze, J.; Childress, L.; Dutt, M.V.G.; Sørensen, A.S.; Hemmer, P.R.; Zibrov, A.S.; et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 2010, 466, 730–734. [Google Scholar] [CrossRef]
- Sayed, M.; Yu, J.; Liu, G.; Jaroniec, M. Non-noble plasmonic metal-based photocatalysts. Chem. Rev. 2022, 122, 10484–10537. [Google Scholar] [CrossRef]
- Weisman, D.; Carmesin, C.M.; Rozenman, G.G.; Efremov, M.A.; Shemer, L.; Schleich, W.P.; Arie, A. Diffractive guiding of waves by a periodic array of slits. Phys. Rev. Lett. 2021, 127, 014303. [Google Scholar] [CrossRef]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P.M.; Oddershede, L.B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, J.; Shi, M.; Chu, Z.; Li, H.; Dong, R.; Chen, X. Cavity coupled plasmonic resonator enhanced infrared detectors. Appl. Phys. Lett. 2021, 119, 160504. [Google Scholar] [CrossRef]
- Mackay, T.G.; Lakhtakia, A. Negatively refracting chiral metamaterials: A review. SPIE Rev. 2010, 1, 018003. [Google Scholar] [CrossRef]
- Liu, W.; Mei, L.; Li, Y.; Yu, L.; Lai, Z.; Yu, T.; Chen, H. Controlling the spin-selective absorption with two-dimensional chiral plasmonic gratings. Opt. Lett. 2019, 44, 5868–5871. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Coppens, Z.J.; Besteiro, L.V.; Wang, W.; Govorov, A.O.; Valentine, J. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 2015, 6, 8379. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Jia, H.; Yao, K.; Cai, W.; Chen, H.; Liu, Y. Circular dichroism metamirrors with near-perfect extinction. ACS Photonics 2016, 3, 2096–2101. [Google Scholar] [CrossRef]
- Plum, E.; Zheludev, N.I. Chiral mirrors. Appl. Phys. Lett. 2015, 106, 221901. [Google Scholar] [CrossRef]
- Kang, L.; Rodrigues, S.P.; Taghinejad, M.; Lan, S.; Lee, K.T.; Liu, Y.; Werner, D.H.; Urbas, A.; Cai, W. Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror. Nano Lett. 2017, 17, 7102–7109. [Google Scholar] [CrossRef]
- Collin, S.; Pardo, F.; Bardou, N.; Lemaître, A.; Averin, S.; Pelouard, J.L. Harvesting light at the nanoscale by GaAs-gold nanowire arrays. Opt. Express 2011, 19, 17293–17297. [Google Scholar] [CrossRef]
- Assefa, S.; Xia, F.; Vlasov, Y.A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 2010, 464, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Green, M.A.; Zhao, J.; Wang, A.; Wenham, S.R. Very high efficiency silicon solar cells-science and technology. IEEE Trans. Electron Devices 1999, 46, 1940–1947. [Google Scholar] [CrossRef]
- Zhang, M.; Yeow, J.T.W. Nanotechnology-Based Terahertz Biological Sensing: A review of its current state and things to come. IEEE Nanotechnol. Mag. 2016, 10, 30–38. [Google Scholar] [CrossRef]
- Giles, R.H.; Doradla, F.; Martin, J.; Joseph, C.S. Applications of terahertz frequency technologies in biology. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–2. [Google Scholar]
- AlNabooda, M.O.; Shubair, R.M.; Rishani, N.R.; Aldabbagh, G. Terahertz spectroscopy and imaging for the detection and identification of illicit drugs. In Proceedings of the 2017 Sensors Networks Smart and Emerging Technologies (SENSET), Beiriut, Lebanon, 12–14 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Bin, L.; Liping, C. Exploration on precision farming pollution detection using THz technology. Infrared Laser Eng. 2016, 45, 425003. [Google Scholar] [CrossRef]
- Yazgan, A.; Jofre, L.; Romeu, J. Comparative efficiency and power assessment of optical photoconductive material-based terahertz sources for wireless communication systems. J. Circuits Syst. Comput. 2019, 28, 1950005. [Google Scholar] [CrossRef]
- Hossain, Z.; Xia, Q.; Jornet, J.M. TeraSim: An ns-3 extension to simulate Terahertz-band communication networks. Nano Commun. Netw. 2018, 17, 36–44. [Google Scholar] [CrossRef]
- Tuovinen, J. Method for testing reflector antennas at THz frequencies. IEEE Antennas Propag. Mag. 1993, 35, 7–13. [Google Scholar] [CrossRef]
- Mueller, E.R.; Henschke, R.; Robotham, W.E., Jr.; Newman, L.A.; Laughman, L.M.; Hart, R.A.; Kennedy, J.; Pickett, H.M. Terahertz local oscillator for the Microwave Limb Sounder on the Aura satellite. Appl. Opt. 2007, 46, 4907–4915. [Google Scholar] [CrossRef]
- Gaidis, M.C.; Pickett, H.M.; Smith, C.D.; Martin, S.C.; Smith, R.P.; Siegel, P.H. A 2.5-THz receiver front end for spaceborne applications. IEEE Trans. Microw. Theory Tech. 2000, 48, 733–739. [Google Scholar] [CrossRef]
- Shalini, M. A compact antenna structure for circular polarized terahertz radiation. Optik 2021, 231, 166393. [Google Scholar]
- Chu, Z.; Zhou, J.; Dai, X.; Li, F.; Lan, M.; Ji, Z.; Lu, W.; Chen, X. Circular polarization discrimination enhanced by anisotropic media. Adv. Opt. Mater. 2020, 8, 1901800. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Yang, Y.; Li, J.; Zhang, Y.; Wu, L.; Zhang, Z.; Yang, M.; Zheng, C.; Li, J.; et al. Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 2020, 163, 34–42. [Google Scholar] [CrossRef]
- Seilmeier, A.; Plödereder, U.; Baier, J.; Weimann, G. Quantum Well Intersubband Transition Physics and Devices; Liu, H.C., Levine, B.F., Anderson, J.Y., Eds.; NATO ASI Series E 270; Kluwer: Dordrecht, The Netherlands, 1994; p. 421. [Google Scholar]
- Zhen, T.; Zhou, J.; Li, Z.; Chen, X. Realization of both high absorption of active materials and low ohmic loss in plasmonic cavities. Adv. Opt. Mater. 2019, 7, 1801627. [Google Scholar] [CrossRef]
- Tang, W.; Zhou, J.; Zheng, Y.; Zhou, Y.; Hao, J.; Chen, X.; Lu, W. All-dielectric resonant waveguide based quantum well infrared photodetectors for hyperspectral detection. Optics Commun. 2018, 427, 196–201. [Google Scholar] [CrossRef]
- Chu, Z.; Zhou, Y.; Zhou, J.; Chen, P.; Li, Z.; Lu, W.; Chen, X. Quantum well infrared detectors enhanced by faceted plasmonic cavities. Infrared Phys. Technol. 2021, 116, 103746. [Google Scholar] [CrossRef]
- Dai, X.; Chu, Z.; Deng, J.; Li, F.; Zhou, J.; Xiong, D.; Zhou, X.; Chen, X.; Li, N.; Li, Z.; et al. Detection band expansion by independently tunable double resonances in a long-wavelength dual-color QWIP. Opt. Express 2022, 30, 43579–43589. [Google Scholar] [CrossRef]
- Helm, M. The basic physics of intersubband transitions. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 1999; Volume 62, pp. 1–99. [Google Scholar]
- Lee, S.J.; Ku, Z.; Barve, A.; Montoya, J.; Jang, W.Y.; Brueck, S.R.J.; Sundaram, M.; Reisinger, A.; Krishna, S.; Noh, S.K. A monolithically integrated plasmonic infrared quantum dot camera. Nat. Commun. 2011, 2, 286. [Google Scholar] [CrossRef]
- Levine, B.F. Quantum-well infrared photodetectors. J. Appl. Phys. 1993, 74, R1–R81. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: New York, NY, USA, 1998; Volume 3. [Google Scholar]
- Rehm, R.; Schneider, H.; Schönbein, C.S.; Walther, M. Noise current investigations of g-r noise limited and shot noise limited QWIPs. Phys. E Low-Dimens. Syst. Nanostructures 2000, 7, 124–129. [Google Scholar] [CrossRef]
- Zheng, Y. Research on Material Growth and Optical Coupling Devices of Terahertz Quantum Well Photodetectors. Ph.D. Dissertation, University of Chinese Academy of Sciences, Beijing, China, 2020. Available online: https://kns.cnki.net/kcms2/article/abstract?v=MwumK-qo9AANfBclwM2M5OjAZAEaIVuTPy-laiTHRSeyZzM-Kzp3Jtp5MZKoBq5eEXrXOEQyklWOq7P5rlJsB_f0_f7yvkAPgJMwG6qfAvi4p0avCEF3RYHhuli8iz8eeZG6rsg1IhM=&uniplatform=NZKPT&language=CHS (accessed on 1 June 2019).
- Collett, E. Field Guide to Polarization; SPIE: Bellingham, WA, USA, 2005. [Google Scholar]
- Shen, J.; Zhou, J.; Zhu, T.; Deng, J.; Wang, B.; Jing, W.; Ma, J.; Qin, X.; Liu, H.; Li, J.; et al. On-chip long-wavelength infrared polarimeter for full-Stokes polarization detection. Opt. Mater. Express 2023, 13, 2475–2488. [Google Scholar] [CrossRef]
- De Abajo, F.G. Colloquium: Light scattering by particle and hole arrays. Rev. Mod. Phys. 2007, 79, 1267. [Google Scholar] [CrossRef]
- Sihvola, A.H. Electromagnetic Mixing Formulas and Applications; IET: London, UK, 1999. [Google Scholar]
- Zhen, Y.; Deng, J.; Bu, Y.; Dai, X.; Yu, Y.; Shi, M.; Wang, R.; Ye, T.; Chen, G.; Zhou, J. Recent advances in on-chip infrared polarization detection. J. Infrared Millim. Waves 2024, 43, 52–62. [Google Scholar]
- Wang, W.; Besteiro, L.V.; Liu, T.; Wu, C.; Sun, J.; Yu, P.; Chang, L.; Wang, Z.; Govorov, A.O. Generation of hot electrons with chiral metamaterial perfect absorbers: Giant optical chirality for polarization-sensitive photochemistry. ACS Photonics 2019, 6, 3241–3252. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Chiral plasmonic metasurface absorbers in the mid-infrared wavelength range. Opt. Lett. 2020, 45, 5372–5375. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Cumming, B.P.; Gu, M. Direct detection of photon spin angular momentum by a chiral graphene mid-infrared photodetector. Opt. Lett. 2019, 44, 2998–3001. [Google Scholar] [CrossRef]
- Ouyang, L.; Wang, W.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Near-infrared chiral plasmonic metasurface absorbers. Opt. Express 2018, 26, 31484–31489. [Google Scholar] [CrossRef]
- Pan, M.; Li, Q.; Hong, Y.; Cai, L.; Lu, J.; Qiu, M. Circular-polarization-sensitive absorption in refractory metamaterials composed of molybdenum zigzag arrays. Opt. Express 2018, 26, 17772–17780. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, J.; Yang, X. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett. 2018, 18, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, L.; Rosenmann, D.; Czaplewski, D.A.; Gao, J.; Yang, X. Broadband infrared circular dichroism in chiral metasurface absorbers. Nanotechnology 2020, 31, 295203. [Google Scholar] [CrossRef]
- Fang, Y.; Verre, R.; Shao, L.; Nordlander, P.; Käll, M. Hot electron generation and cathodoluminescence nanoscopy of chiral split ring resonators. Nano Lett. 2016, 16, 5183–5190. [Google Scholar] [CrossRef]
- Han, C.; Tam, W.Y. Broadband optical magnetism in chiral metallic nanohole arrays by shadowing vapor deposition. Appl. Phys. Lett. 2016, 109, 251102. [Google Scholar] [CrossRef]
- Li, Y.; Jing, Z.; Bai, Y.; Ullah, H.; Zhang, Z. Effects of electric field coupling on the circular dichroism of composite nanostructures. J. Opt. 2020, 22, 055002. [Google Scholar] [CrossRef]
- Lumerical Inc. Available online: http://www.lumerical.com/products/ (accessed on 1 January 2022).
- COMSOL. Multiphysics v. 6.0. cn.comsol.com; COMSOL AB: Stockholm, Sweden, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Zhou, J.; Deng, J.; Shen, J.; Zhu, T.; Jing, W.; Dai, X.; Ye, J.; Zhang, Y.; Huang, J.; et al. Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas. Photonics 2024, 11, 162. https://doi.org/10.3390/photonics11020162
Li F, Zhou J, Deng J, Shen J, Zhu T, Jing W, Dai X, Ye J, Zhang Y, Huang J, et al. Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas. Photonics. 2024; 11(2):162. https://doi.org/10.3390/photonics11020162
Chicago/Turabian StyleLi, Fangzhe, Jing Zhou, Jie Deng, Jinyong Shen, Tianyun Zhu, Wenji Jing, Xu Dai, Jiexian Ye, Yujie Zhang, Junwei Huang, and et al. 2024. "Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas" Photonics 11, no. 2: 162. https://doi.org/10.3390/photonics11020162
APA StyleLi, F., Zhou, J., Deng, J., Shen, J., Zhu, T., Jing, W., Dai, X., Ye, J., Zhang, Y., Huang, J., & Chen, X. (2024). Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas. Photonics, 11(2), 162. https://doi.org/10.3390/photonics11020162