Absorption Spectra of AlGaN/GaN Terahertz Plasmonic Crystals—Experimental Validation of Analytical Approach
Abstract
1. Introduction
2. Device Fabrication
3. Experiment Details
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaplik, A.V. Amplification of two-dimensional plasma waves in superlattices. JETP Lett. 1980, 32, 529–532. [Google Scholar]
- Krasheninnikov, M.V.; Chaplik, A.V. Two-dimensional plasma waves in superlattices. Sov. Phys.-Semicond. 1981, 15, 32–39. [Google Scholar]
- Peralta, X.G.; Allen, S.J.; Wanke, M.C.; Harff, N.E.; Simmons, J.A.; Lilly, M.P.; Reno, J.L.; Burke, P.J.; Eisenstein, J.P. Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors. Appl. Phys. Lett. 2002, 81, 1627–1629. [Google Scholar] [CrossRef]
- Shaner, E.A.; Lee, M.; Wanke, M.C.; Grine, A.D.; Reno, J.L.; Allen, S.J. Single-quantum-well grating-gated terahertz plasmon detectors. Appl. Phys. Lett. 2005, 87, 193507. [Google Scholar] [CrossRef]
- Shaner, E.A.; Wanke, C.L.; Grine, A.D.; Lyo, S.K.; Reno, J.L.; Allen, S.J. Enhanced responsivity in membrane isolated split-grating-gate plasmonic terahertz detectors. Appl. Phys. Lett. 2007, 90, 181127. [Google Scholar] [CrossRef]
- Dyer, G.C.; Aizin, G.R.; Reno, J.L.; Shaner, E.A.; Allen, S.J. Novel tunable millimeter-wave grating-gated plasmonic detectors. IEEE J. Sel. Top. Quantum Electron. 2010, 17, 85–91. [Google Scholar] [CrossRef]
- Dyer, G.C.; Preu, S.; Aizin, G.R.; Mikalopas, J.; Grine, A.D.; Reno, J.L.; Hensley, J.M.; Vinh, N.Q.; Gossard, A.C.; Sherwin, M.S.; et al. Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity. Appl. Phys. Lett. 2012, 100, 083506. [Google Scholar] [CrossRef]
- Meziani, Y.M.; Handa, H.; Knap, W.; Otsuji, T.; Sano, E.; Popov, V.V.; Tsymbalov, G.M.; Coquillat, D.; Teppe, F. Room temperature terahertz emission from grating coupled two-dimensional plasmons. Appl. Phys. Lett. 2008, 92, 201108. [Google Scholar] [CrossRef]
- Otsuji, T.; Meziani, Y.M.; Nishimura, T.; Suemitsu, T.; Knap, W.; Sano, E.; Asano, T.; Popov, V.V. Emission of terahertz radiation from dual grating gate plasmon-resonant emitters fabricated with InGaP/InGaAs/GaAs material systems. J. Phys. Condens. Matter 2008, 20, 384206. [Google Scholar] [CrossRef]
- Shaner, E.A.; Grine, A.D.; Wanke, M.C.; Lee, M.; Reno, J.L.; Allen, S.J. Far-infrared spectrum analysis using plasmon modes in a quantum-well transistor. IEEE Photonics Technol. Lett. 2006, 18, 1925–1927. [Google Scholar] [CrossRef]
- Teperik, T.V.; García de Abajo, F.J.; Popov, V.V.; Shur, M.S. Strong terahertz absorption bands in a scaled plasmonic crystal. Appl. Phys. Lett. 2007, 90, 251910. [Google Scholar] [CrossRef]
- Sai, P.; Korotyeyev, V.V.; Dub, M.; Słowikowski, M.; Filipiak, M.; But, D.B.; Ivonyak, Y.; Sakowicz, M.; Lyaschuk, Y.M.; Kukhtaruk, S.M.; et al. Electrical tuning of terahertz plasmonic crystal phases. Phys. Rev. X 2023, 13, 041003. [Google Scholar] [CrossRef]
- Popov, V.V. Plasmon excitation and plasmonic detection of terahertz radiation in the grating-gate field-effect-transistor structures. J. Infrared Millim. Terahertz Waves 2011, 32, 1178–1191. [Google Scholar] [CrossRef]
- Allen, J.S., Jr.; Tsui, D.C.; Logan, R.A. Observation of the two-dimensional plasmon in silicon inversion layers. Phys. Rev. Lett. 1977, 38, 980. [Google Scholar] [CrossRef]
- Tsui, D.C.; Allen, J.S., Jr.; Logan, R.A.; Kamgar, A.; Coppersmith, S.N. High frequency conductivity in silicon inversion layers: Drude relaxation, 2D plasmons and minigaps in a surface superlattice. Surf. Sci. 1978, 73, 419–433. [Google Scholar] [CrossRef]
- Białek, M.; Czapkiewicz, M.; Wróbel, J.; Umansky, V.; Łusakowski, J. Plasmon dispersions in high electron mobility terahertz detectors. Appl. Phys. Lett. 2014, 104, 263514. [Google Scholar] [CrossRef]
- Pashnev, D.; Korotyeyev, V.V.; Jorudas, J.; Kaplas, T.; Janonis, V.; Urbanowicz, A.; Kašalynas, I. Experimental evidence of temperature dependent effective mass in AlGaN/GaN heterostructures observed via THz spectroscopy of 2D plasmons. Appl. Phys. Lett. 2020, 117, 162101. [Google Scholar] [CrossRef]
- Shalygin, V.A.; Moldavskaya, M.D.; Vinnichenko, M.Y.; Maremyanin, K.V.; Artemyev, A.A.; Panevin, V.Y.; Vorobjev, L.E.; Firsov, D.A.; Korotyeyev, V.V.; Sakharov, A.V. Selective terahertz emission due to electrically excited 2D plasmons in AlGaN/GaN heterostructure. J. Appl. Phys. 2019, 126, 183104. [Google Scholar] [CrossRef]
- Muravjov, A.V.; Veksler, D.B.; Popov, V.V.; Polischuk, O.V.; Pala, N.; Hu, X.; Gaska, R.; Saxena, H.; Peale, R.E.; Shur, M.S. Temperature dependence of plasmonic terahertz absorption in grating-gate gallium-nitride transistor structures. Appl. Phys. Lett. 2010, 96, 042105. [Google Scholar] [CrossRef]
- Kachorovskii, V.Y.; Shur, M.S. Current-induced terahertz oscillations in plasmonic crystal. Appl. Phys. Lett. 2012, 100, 232108. [Google Scholar] [CrossRef]
- Gorbenko, I.V.; Kachorovskii, V.Y. Lateral plasmonic crystals: Tunability, dark modes, and weak-to-strong coupling transition. arXiv 2024, arXiv:2401.08826. [Google Scholar]
- SweGaN. Available online: https://swegan.se/1709/ (accessed on 19 May 2020).
- Pashnev, D.; Kaplas, T.; Korotyeyev, V.V.; Janonis, V.; Urbanowicz, A.; Jorudas, J.; Kašalynas, I. Terahertz time-domain spectroscopy of two-dimensional plasmons in AlGaN/GaN heterostructures. Appl. Phys. Lett. 2020, 117, 051105. [Google Scholar] [CrossRef]
- Qin, H.; Yu, Y.; Li, X.; Sun, J.; Huang, Y. Excitation of terahertz plasmon in two-dimensional electron gas. Terahertz Sci. Technol. 2016, 9, 71. [Google Scholar] [CrossRef]
- Shur, M. Introduction to Electronic Devices; J. Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
Sample ID or Ref. | P, µm | Lg, µm | Lug, µm | d, nm | ng, 1012 cm−2 | nug, 1012 cm−2 | Frequency fn (THz), Experiment (Theory) | |||
---|---|---|---|---|---|---|---|---|---|---|
Harmonic Number | ||||||||||
1 | 2 | 3 | 4 | |||||||
Current Work | ||||||||||
S1 (IHPP) | 2 | 1.6 | 0.4 | 22 | 7 | 10 | 0.89 (0.77) | 1.81 (1.6) | 2.65 (2.48) | |
S2 (IHPP) | 1.5 | 1.2 | 0.3 | 1.21 (1.03) | 2.34 (2.14) | 3.37 (3.3) | 4.28 (4.5) | |||
S3 (IHPP) | 1 | 0.8 | 0.2 | 1.74 (1.55) | 3.29 (3.19) | 4.59 (4.92) | 5.65 (6.68) | |||
S7 (SweGaN) | 1.5 | 0.9 | 0.6 | 23 | 5.5 | 8 | 1.13 (1.07) | 2.27 (2.59) | ||
S8 (SweGaN) | 2.5 | 1.8 | 0.7 | 0.67 (0.58) | 1.34 (1.25) | 2.02 (1.97) | 2.64 (2.7) | |||
S13 (SweGaN) | 1 | 0.5 | 0.5 | 1.76 (1.73) | ||||||
Published results | ||||||||||
[17] | 1 | 0.8 | 0.2 | 21.5 | 6.5 | 8.7 | 1.38 (1.47) | 2.59 (3.03) | ||
[17] | 0.8 | 0.44 | 0.36 | 1.70 (2.13) | ||||||
[17] | 1 | 0.53 | 0.47 | 1.42 (1.75) | ||||||
[23] | 0.6 | 0.35 | 0.25 | 21.5 | 6.5 | 8.7 | 2.20 (2.72) | |||
[18] | 0.8 | 0.39 | 0.40 | 42 | 8 | 11.5 | 2.80 (3.40) | |||
[18] | 1.01 | 0.49 | 0.51 | 2.39 (2.76) | ||||||
[19] | 1.5 | 1.15 | 0.35 | 30 | 7.5 | 7.5 | 1.23 (1.25) | 2.45 (2.61) | 3.57 (4.05) | 4.50 (5.37) |
[24] | 4 | 2.7 | 1.3 | 25 | 10 | 10 | 0.45 (0.52) | 1.00 (1.15) | 1.48 (1.83) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dub, M.; Sai, P.; Prystawko, P.; Knap, W.; Rumyantsev, S. Absorption Spectra of AlGaN/GaN Terahertz Plasmonic Crystals—Experimental Validation of Analytical Approach. Nanomaterials 2024, 14, 1502. https://doi.org/10.3390/nano14181502
Dub M, Sai P, Prystawko P, Knap W, Rumyantsev S. Absorption Spectra of AlGaN/GaN Terahertz Plasmonic Crystals—Experimental Validation of Analytical Approach. Nanomaterials. 2024; 14(18):1502. https://doi.org/10.3390/nano14181502
Chicago/Turabian StyleDub, Maksym, Pavlo Sai, Pawel Prystawko, Wojciech Knap, and Sergey Rumyantsev. 2024. "Absorption Spectra of AlGaN/GaN Terahertz Plasmonic Crystals—Experimental Validation of Analytical Approach" Nanomaterials 14, no. 18: 1502. https://doi.org/10.3390/nano14181502
APA StyleDub, M., Sai, P., Prystawko, P., Knap, W., & Rumyantsev, S. (2024). Absorption Spectra of AlGaN/GaN Terahertz Plasmonic Crystals—Experimental Validation of Analytical Approach. Nanomaterials, 14(18), 1502. https://doi.org/10.3390/nano14181502