Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures
Abstract
:1. Introduction
2. Design of the Absorbers
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial Electromagnetic Wave Absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Lu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Dai, J.; Chen, Y.; Zhu, J.; Jin, Y.; Bozhevolnyi, S.I. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. 2016, 6, 39445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedayati, M.K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V.S.K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M. Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials. Adv. Mater. 2011, 23, 5410–5414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergeant, N.P.; Pincon, O.; Agrawal, M.; Peumans, P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Opt. Express 2009, 17, 22800–22812. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cui, Y.; He, Y.; Hao, Y.; Lin, Y.; Tian, X.; Ji, T.; He, S. Efficient multiband absorber based on one-dimensional periodic metal–dielectric photonic crystal with a reflective substrate. Opt. Lett. 2014, 39, 331–334. [Google Scholar] [CrossRef]
- Diem, M.; Koschny, T.; Soukoulis, C.M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 79, 033101. [Google Scholar] [CrossRef] [Green Version]
- Pu, M.; Feng, Q.; Wang, M.; Hu, C.; Huang, C.; Ma, X.; Zhao, Z.; Wang, C.; Luo, X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 2012, 20, 2246–2254. [Google Scholar] [CrossRef]
- Gomes de Souza, I.L.; Rodriguez-Esquerre, V.F.; Rêgo, D.F. Wide-angle filters based on nanoresonators for the visible spectrum. Appl. Opt. 2018, 57, 6755. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Liang, Y.; Xu, T. Dual-band nearly perfect absorber at visible frequencies. Opt. Mater. Express 2018, 8, 463–468. [Google Scholar] [CrossRef]
- Shu, S.; Zhan, Y.; Lee, C.; Lu, J.; Li, Y.Y. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks. Sci. Rep. 2016, 6, 27061. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Díaz-Rubio, A.; Asadchy, V.S.; Ptitcyn, G.; Generalov, A.A.; Ala-Laurinaho, J.; Tretyakov, S.A. Extreme asymmetry in metasurfaces via evanescent fields engineering: Angular-asymmetric absorption. Phys. Rev. Lett. 2018, 121, 256802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butun, S.; Aydin, K. Asymmetric Light Absorption and Reflection in Freestanding Nanostructured Metallic Membranes. ACS Photonics 2015, 2, 1652–1657. [Google Scholar] [CrossRef]
- Devarapu, G.C.R.; Foteinopoulou, S. Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays. Phys. Rev. Appl. 2017, 7, 034001. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Oh, H.; Kang, B.; Hong, J.; Rha, J.J.; Lee, M. Broadband Visible and Near-Infrared Absorbers Implemented with Planar Nanolayered Stacks. ACS Appl. Nano Mater. 2020, 3, 2978–2986. [Google Scholar] [CrossRef]
- Ma, W.; Wen, Y.; Yu, X. Broadband Metamaterial Absorber at Mid-Infrared using Multiplexed Cross Resonators. Opt. Express 2013, 21, 30724–30730. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Petrov, A.Y.; Genevet, P.; Bogdanov, A. Inverse Design of Nanophotonics Devices and Materials. Photonics Nanostructures—Fundam. Appl. 2022, 52, 101084. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Z. (Eds.) Intelligent Nanotechnology, Merging Nanoscience and Artificial Intelligence. In Materials Today; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Zhang, L.; Yang, R.; Fu, Q.; Zhang, F.; Fan, Y. Inverse Design of Dual-Band Optically Transparent Metasurface Absorbers with Neural-Adjoint Method. Ann. Phys. 2023, 535, 2300054. [Google Scholar] [CrossRef]
- Malheiros-Silveira, G.N.; Rodríguez-Esquerre, V.F. An Artificial Immune System Model Tightly Coupled to the Inverse Design of Photonic Crystals. IEEE Access 2023, 11, 33442–33454. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Arbouet, A.; Girard, C.; Lecestre, A.; Larrieu, G.; Paillard, V. Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas. Nat. Nanotechnol. 2017, 12, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Jafar-Zanjani, S.; Inampudi, S.; Mosallaei, H. Adaptive Genetic Algorithm for Optical Metasurfaces Design. Sci. Rep. 2018, 8, 11040. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-L.; Cheng, Y.-Y. Application of the genetic algorithm for microwave imaging of a layered dielectric object via the regular shape expansion technique. Int. J. Imaging Syst. Technol. 1999, 10, 347–354. [Google Scholar] [CrossRef]
- Johnson, J.M.; Rahmat-Samii, V. Genetic algorithms in engineering electromagnetic. IEEE Antennas Propag. Mag. 1997, 39, 7–21. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Phillips, J. Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms. Sol. Energy Mater. Sol. Cells 2008, 92, 1689–1696. [Google Scholar] [CrossRef]
- Shin, H.; Yanik, M.F.; Fan, S.; Zia, R.; Brongersma, M.L. Omnidirectional resonance in a metal–dielectric–metal geometry. Appl.Phys. Lett. 2004, 84, 4421–4423. [Google Scholar] [CrossRef]
- Gomes de Souza, I.L.; Rodriguez-Esquerre, V.F. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum. Sci. Rep. 2019, 9, 7045–7048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, K.; Shen, W.; Yang, C.; Fang, X.; Yuan, W.; Zhang, Y.; Liu, X. Angle Insensitive Color Filters in Transmission Covering the Visible Region. Sci. Rep. 2016, 6, 19289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.T.; Seo, S.; Guo, L.J. High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers. Adv. Optical. Mater. 2015, 3, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-S.; Shrestha, V.R.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Omnidirectional color filters capitalizing on a nano-resonator of AgTiO2-Ag integrated with a phase compensating dielectric overlay. Sci. Rep. 2015, 5, 8467. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Lemarchand, F.; Lequime, M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bi-layer designs. J. Europ. Opt. Soc. Rap. Public. 2013, 8, 13010. [Google Scholar] [CrossRef] [Green Version]
- Werner, W.S.M.; Glantschnig, K.; Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 2009, 38, 1013–1092. [Google Scholar] [CrossRef]
- Hulkkonen, H.; Sah, A.; Niemi, T. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography. ACS Appl. Mater. Interfaces 2018, 10, 42941–42947. [Google Scholar] [CrossRef]
- Qian, Q.; Yan, Y.; Wang, C. Flexible Metasurface Black Nickel with Stepped Nanopillars. Opt. Lett. 2018, 43, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Wang, Z.; Lu, Z.; Song, H.; Xu, J.; Chen, K. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface. ACS Appl. Mater. Interfaces 2020, 12, 56178–56185. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; Alam, T.; Islam, M.T.; Hakim, M.L.; Rmili, H.; Alshammari, A.S.; Islam, M.S.; Soliman, M.S. Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region. Nanomaterials 2023, 13, 626. [Google Scholar] [CrossRef]
Metal/Pair | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
dNi (nm) | 5.0 | 5.5 | 8.9 | 26.8 | 25.9 | 83.7 | 50.7 | 32.2 | 60.8 | 90.0 |
dAu (nm) | 5.2 | 5.4 | 5.8 | 6.0 | 6.8 | 7.9 | 8.6 | 9.8 | 11.8 | 90.0 |
dAg (nm) | 5.2 | 6.5 | 6.0 | 7.3 | 7.3 | 8.4 | 9.1 | 14.1 | 12.3 | 89.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rêgo, D.F.; Gomes de Souza, I.L.; Rodriguez-Esquerre, V.F.; Malheiros-Silveira, G.N. Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures. Photonics 2023, 10, 922. https://doi.org/10.3390/photonics10080922
Rêgo DF, Gomes de Souza IL, Rodriguez-Esquerre VF, Malheiros-Silveira GN. Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures. Photonics. 2023; 10(8):922. https://doi.org/10.3390/photonics10080922
Chicago/Turabian StyleRêgo, Davi F., Igor L. Gomes de Souza, Vitaly F. Rodriguez-Esquerre, and Gilliard N. Malheiros-Silveira. 2023. "Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures" Photonics 10, no. 8: 922. https://doi.org/10.3390/photonics10080922
APA StyleRêgo, D. F., Gomes de Souza, I. L., Rodriguez-Esquerre, V. F., & Malheiros-Silveira, G. N. (2023). Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures. Photonics, 10(8), 922. https://doi.org/10.3390/photonics10080922