Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures
Abstract
1. Introduction
2. Design of the Absorbers
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial Electromagnetic Wave Absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Lu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband Metamaterial Absorbers. Adv. Opt. Mater. 2019, 7, 1800995. [Google Scholar] [CrossRef]
- Ding, F.; Dai, J.; Chen, Y.; Zhu, J.; Jin, Y.; Bozhevolnyi, S.I. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals. Sci. Rep. 2016, 6, 39445. [Google Scholar] [CrossRef] [PubMed]
- Hedayati, M.K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V.S.K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M. Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials. Adv. Mater. 2011, 23, 5410–5414. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, N.P.; Pincon, O.; Agrawal, M.; Peumans, P. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks. Opt. Express 2009, 17, 22800–22812. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cui, Y.; He, Y.; Hao, Y.; Lin, Y.; Tian, X.; Ji, T.; He, S. Efficient multiband absorber based on one-dimensional periodic metal–dielectric photonic crystal with a reflective substrate. Opt. Lett. 2014, 39, 331–334. [Google Scholar] [CrossRef]
- Diem, M.; Koschny, T.; Soukoulis, C.M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 79, 033101. [Google Scholar] [CrossRef]
- Pu, M.; Feng, Q.; Wang, M.; Hu, C.; Huang, C.; Ma, X.; Zhao, Z.; Wang, C.; Luo, X. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 2012, 20, 2246–2254. [Google Scholar] [CrossRef]
- Gomes de Souza, I.L.; Rodriguez-Esquerre, V.F.; Rêgo, D.F. Wide-angle filters based on nanoresonators for the visible spectrum. Appl. Opt. 2018, 57, 6755. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Liang, Y.; Xu, T. Dual-band nearly perfect absorber at visible frequencies. Opt. Mater. Express 2018, 8, 463–468. [Google Scholar] [CrossRef]
- Shu, S.; Zhan, Y.; Lee, C.; Lu, J.; Li, Y.Y. Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks. Sci. Rep. 2016, 6, 27061. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Díaz-Rubio, A.; Asadchy, V.S.; Ptitcyn, G.; Generalov, A.A.; Ala-Laurinaho, J.; Tretyakov, S.A. Extreme asymmetry in metasurfaces via evanescent fields engineering: Angular-asymmetric absorption. Phys. Rev. Lett. 2018, 121, 256802. [Google Scholar] [CrossRef] [PubMed]
- Butun, S.; Aydin, K. Asymmetric Light Absorption and Reflection in Freestanding Nanostructured Metallic Membranes. ACS Photonics 2015, 2, 1652–1657. [Google Scholar] [CrossRef]
- Devarapu, G.C.R.; Foteinopoulou, S. Broadband Near-Unidirectional Absorption Enabled by Phonon-Polariton Resonances in SiC Micropyramid Arrays. Phys. Rev. Appl. 2017, 7, 034001. [Google Scholar] [CrossRef]
- Kim, J.; Oh, H.; Kang, B.; Hong, J.; Rha, J.J.; Lee, M. Broadband Visible and Near-Infrared Absorbers Implemented with Planar Nanolayered Stacks. ACS Appl. Nano Mater. 2020, 3, 2978–2986. [Google Scholar] [CrossRef]
- Ma, W.; Wen, Y.; Yu, X. Broadband Metamaterial Absorber at Mid-Infrared using Multiplexed Cross Resonators. Opt. Express 2013, 21, 30724–30730. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Petrov, A.Y.; Genevet, P.; Bogdanov, A. Inverse Design of Nanophotonics Devices and Materials. Photonics Nanostructures—Fundam. Appl. 2022, 52, 101084. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, Z. (Eds.) Intelligent Nanotechnology, Merging Nanoscience and Artificial Intelligence. In Materials Today; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Li, Z.; Xu, J.; Zhang, L.; Yang, R.; Fu, Q.; Zhang, F.; Fan, Y. Inverse Design of Dual-Band Optically Transparent Metasurface Absorbers with Neural-Adjoint Method. Ann. Phys. 2023, 535, 2300054. [Google Scholar] [CrossRef]
- Malheiros-Silveira, G.N.; Rodríguez-Esquerre, V.F. An Artificial Immune System Model Tightly Coupled to the Inverse Design of Photonic Crystals. IEEE Access 2023, 11, 33442–33454. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Arbouet, A.; Girard, C.; Lecestre, A.; Larrieu, G.; Paillard, V. Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas. Nat. Nanotechnol. 2017, 12, 163–169. [Google Scholar] [CrossRef]
- Jafar-Zanjani, S.; Inampudi, S.; Mosallaei, H. Adaptive Genetic Algorithm for Optical Metasurfaces Design. Sci. Rep. 2018, 8, 11040. [Google Scholar] [CrossRef]
- Li, C.-L.; Cheng, Y.-Y. Application of the genetic algorithm for microwave imaging of a layered dielectric object via the regular shape expansion technique. Int. J. Imaging Syst. Technol. 1999, 10, 347–354. [Google Scholar] [CrossRef]
- Johnson, J.M.; Rahmat-Samii, V. Genetic algorithms in engineering electromagnetic. IEEE Antennas Propag. Mag. 1997, 39, 7–21. [Google Scholar] [CrossRef]
- Lin, A.; Phillips, J. Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms. Sol. Energy Mater. Sol. Cells 2008, 92, 1689–1696. [Google Scholar] [CrossRef]
- Shin, H.; Yanik, M.F.; Fan, S.; Zia, R.; Brongersma, M.L. Omnidirectional resonance in a metal–dielectric–metal geometry. Appl.Phys. Lett. 2004, 84, 4421–4423. [Google Scholar] [CrossRef]
- Gomes de Souza, I.L.; Rodriguez-Esquerre, V.F. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum. Sci. Rep. 2019, 9, 7045–7048. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Shen, W.; Yang, C.; Fang, X.; Yuan, W.; Zhang, Y.; Liu, X. Angle Insensitive Color Filters in Transmission Covering the Visible Region. Sci. Rep. 2016, 6, 19289. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Seo, S.; Guo, L.J. High-Color-Purity Subtractive Color Filters with a Wide Viewing Angle Based on Plasmonic Perfect Absorbers. Adv. Optical. Mater. 2015, 3, 347–352. [Google Scholar] [CrossRef]
- Park, C.-S.; Shrestha, V.R.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Omnidirectional color filters capitalizing on a nano-resonator of AgTiO2-Ag integrated with a phase compensating dielectric overlay. Sci. Rep. 2015, 5, 8467. [Google Scholar] [CrossRef]
- Gao, L.; Lemarchand, F.; Lequime, M. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: Spectrophotometric reverse engineering on single and bi-layer designs. J. Europ. Opt. Soc. Rap. Public. 2013, 8, 13010. [Google Scholar] [CrossRef]
- Werner, W.S.M.; Glantschnig, K.; Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 2009, 38, 1013–1092. [Google Scholar] [CrossRef]
- Hulkkonen, H.; Sah, A.; Niemi, T. All-Metal Broadband Optical Absorbers Based on Block Copolymer Nanolithography. ACS Appl. Mater. Interfaces 2018, 10, 42941–42947. [Google Scholar] [CrossRef]
- Qian, Q.; Yan, Y.; Wang, C. Flexible Metasurface Black Nickel with Stepped Nanopillars. Opt. Lett. 2018, 43, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Wang, Z.; Lu, Z.; Song, H.; Xu, J.; Chen, K. Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface. ACS Appl. Mater. Interfaces 2020, 12, 56178–56185. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; Alam, T.; Islam, M.T.; Hakim, M.L.; Rmili, H.; Alshammari, A.S.; Islam, M.S.; Soliman, M.S. Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region. Nanomaterials 2023, 13, 626. [Google Scholar] [CrossRef]
Metal/Pair | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
dNi (nm) | 5.0 | 5.5 | 8.9 | 26.8 | 25.9 | 83.7 | 50.7 | 32.2 | 60.8 | 90.0 |
dAu (nm) | 5.2 | 5.4 | 5.8 | 6.0 | 6.8 | 7.9 | 8.6 | 9.8 | 11.8 | 90.0 |
dAg (nm) | 5.2 | 6.5 | 6.0 | 7.3 | 7.3 | 8.4 | 9.1 | 14.1 | 12.3 | 89.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rêgo, D.F.; Gomes de Souza, I.L.; Rodriguez-Esquerre, V.F.; Malheiros-Silveira, G.N. Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures. Photonics 2023, 10, 922. https://doi.org/10.3390/photonics10080922
Rêgo DF, Gomes de Souza IL, Rodriguez-Esquerre VF, Malheiros-Silveira GN. Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures. Photonics. 2023; 10(8):922. https://doi.org/10.3390/photonics10080922
Chicago/Turabian StyleRêgo, Davi F., Igor L. Gomes de Souza, Vitaly F. Rodriguez-Esquerre, and Gilliard N. Malheiros-Silveira. 2023. "Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures" Photonics 10, no. 8: 922. https://doi.org/10.3390/photonics10080922
APA StyleRêgo, D. F., Gomes de Souza, I. L., Rodriguez-Esquerre, V. F., & Malheiros-Silveira, G. N. (2023). Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures. Photonics, 10(8), 922. https://doi.org/10.3390/photonics10080922