Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = plasmon–phonon hybridization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1789 KiB  
Communication
Near-Field Imaging of Hybrid Surface Plasmon-Phonon Polaritons on n-GaN Semiconductor
by Vytautas Janonis, Adrian Cernescu, Pawel Prystawko, Regimantas Januškevičius, Simonas Indrišiūnas and Irmantas Kašalynas
Materials 2025, 18(12), 2849; https://doi.org/10.3390/ma18122849 - 17 Jun 2025
Viewed by 358
Abstract
Near-field imaging of the hybrid surface plasmon-phonon polaritons on the n-GaN semiconductor was performed using a scattering scanning near-field optical microscope at the selected frequencies of 920 cm−1 and 570 cm−1. The experimental measurements and numerical modeling data were in [...] Read more.
Near-field imaging of the hybrid surface plasmon-phonon polaritons on the n-GaN semiconductor was performed using a scattering scanning near-field optical microscope at the selected frequencies of 920 cm−1 and 570 cm−1. The experimental measurements and numerical modeling data were in good agreement, revealing the large propagation distances on the n-GaN semiconductor and other insights which could be obtained by analyzing the dispersion characteristics of hybrid polaritons. In particular, the decay lengths of polaritons at the excitation frequency of 920 cm−1 were measured to be up to 25 and 30 µm in experiment and theory, respectively. In the case of excitation at the frequency of 570 cm−1, the surface plasmon-phonon polaritons’ decay distances were 25 µm and 105 µm, respectively, noting the limitations of the near-field optical microscope setups used. Dispersion characteristics of the resonant frequency and the damping rate of hybrid polaritons were numerically modeled and compared with the analytical calculations, validating the need for further experiment improvements. The launch conditions for the near-field observation of extraordinary coherence of the surface plasmon-phonon polaritons were also discussed. Full article
(This article belongs to the Topic Wide Bandgap Semiconductor Electronics and Devices)
Show Figures

Figure 1

11 pages, 4723 KiB  
Article
Phonon-Induced Wake Potential in a Graphene–Insulator –Graphene Structure
by Ana Kalinić, Ivan Radović, Lazar Karbunar, Vito Despoja and Zoran L. Mišković
Nanomaterials 2024, 14(23), 1951; https://doi.org/10.3390/nano14231951 - 5 Dec 2024
Cited by 1 | Viewed by 807
Abstract
The aim of this study is to explore the potential which arises in a graphene–insulator–graphene structure when an external charged particle is moving parallel to it with a speed smaller than the Fermi speed in graphene. This is achieved by employing the dynamic [...] Read more.
The aim of this study is to explore the potential which arises in a graphene–insulator–graphene structure when an external charged particle is moving parallel to it with a speed smaller than the Fermi speed in graphene. This is achieved by employing the dynamic polarization function of graphene within the random phase approximation, where its π electrons are modeled as Dirac fermions, and utilizing a local dielectric function for bulk insulators. Three different insulators are considered: SiO2, HfO2, and Al2O3. It is observed that the wake potential is induced by the surface optical phonons originating from the insulator layer, and that total potential could be effectively decomposed into two components, each corresponding to different phonon branches, as long as those branches do not interact amongst themselves. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

9 pages, 3012 KiB  
Article
Active Tuning and Anisotropic Strong Coupling of Terahertz Polaritons in Van der Waals Heterostructures
by Shaopeng Li, Junhao Xu and Yajie Xie
Micromachines 2022, 13(11), 1955; https://doi.org/10.3390/mi13111955 - 11 Nov 2022
Cited by 1 | Viewed by 2033
Abstract
Electromagnetic field confinement is significant in enhancing light-matter interactions as well as in reducing footprints of photonic devices especially in Terahertz (THz). Polaritons offer a promising platform for the manipulation of light at the deep sub-wavelength scale. However, traditional THz polariton materials lack [...] Read more.
Electromagnetic field confinement is significant in enhancing light-matter interactions as well as in reducing footprints of photonic devices especially in Terahertz (THz). Polaritons offer a promising platform for the manipulation of light at the deep sub-wavelength scale. However, traditional THz polariton materials lack active tuning and anisotropic propagation simultaneously. In this paper, we design a graphene/α-MoO3 heterostructure and simulate polariton hybridization between isotropic graphene plasmon polaritons and anisotropic α-MoO3 phonon polaritons. The physical fundamentals for polariton hybridizations depend on the evanescent fields coupling originating from the constituent materials as well as the phase match condition, which can be severely affected by the α-MoO3 thickness and actively tuned by the gate voltages. Hybrid polaritons propagate with in-plane anisotropy that exhibit momentum dispersion characterized by elliptical, hyperboloidal and even flattened iso-frequency contours (IFCs) in the THz range. Our results provide a tunable and flexible anisotropic polariton platform for THz sensing, imaging, and modulation. Full article
(This article belongs to the Special Issue Processing and Applications of Novel Optical Metamaterials)
Show Figures

Figure 1

13 pages, 5557 KiB  
Article
Enhancement of Casimir Friction between Graphene-Covered Topological Insulator
by Ting Yu, Rong Luo, Tongbiao Wang, Dejian Zhang, Wenxing Liu, Tianbao Yu and Qinghua Liao
Nanomaterials 2022, 12(7), 1148; https://doi.org/10.3390/nano12071148 - 30 Mar 2022
Cited by 6 | Viewed by 2367
Abstract
Casimir friction is theoretically studied between graphene-covered undoped bismuth selenide (Bi2Se3) in detail. In the graphene/Bi2Se3 composite structure, the coupling of the hyperbolic phonon polaritons supported by Bi2Se3 with the surface plasmons supported [...] Read more.
Casimir friction is theoretically studied between graphene-covered undoped bismuth selenide (Bi2Se3) in detail. In the graphene/Bi2Se3 composite structure, the coupling of the hyperbolic phonon polaritons supported by Bi2Se3 with the surface plasmons supported by graphene can lead to the hybrid surface plasmon–phonon polaritons (SPPPs). Compared with that between undoped Bi2Se3, Casimir friction can be enhanced by more than one order of magnitude due to the contribution of SPPPs. It is found that the chemical potential that can be used to modulate the optical characteristic of SPPPs plays an important role in Casimir friction. In addition, the Casimir friction between doped Bi2Se3 is also studied. The friction coefficient between doped Bi2Se3 can even be larger than that between graphene-covered undoped Bi2Se3 for suitable chemical potential due to the contribution of unusual electron surface states. The results obtained in this work are not only beneficial to the study of Casimir frictions but also extend the research ranges of topological insulators. Full article
Show Figures

Figure 1

13 pages, 2180 KiB  
Article
Cooperative Molecular Rabi Splitting for Strong Coupling between a Plain Au Layer and an Azo-Dye
by Giuseppina Simone
Photonics 2021, 8(12), 531; https://doi.org/10.3390/photonics8120531 - 25 Nov 2021
Cited by 2 | Viewed by 2917
Abstract
Here, the experimental and numerical results provide evidence of strong coupling between an Au layer and an azo-dye. Strong coupling between the Au and a dye is not easy to observe, so a deep analysis for understanding the physics of the system is [...] Read more.
Here, the experimental and numerical results provide evidence of strong coupling between an Au layer and an azo-dye. Strong coupling between the Au and a dye is not easy to observe, so a deep analysis for understanding the physics of the system is carried on. After an accurate analysis of the reflectivity of the plain Au layer as well as after the chromophore adsorption, a hypothesis of strong coupling was advanced. The reflectivity dispersion of system polariton-exciton is characterized by an anti-crossing and two polaritons with a distance that raises with the concentration of the molecules until reaching a condition of saturation, as proof of a non-weak coupling. However, from one side the low-quality factor Q, from the other the optical characteristics of the dye, the strong coupling seems to contradict the achieved results. Then, a possible explanation of these results is that the collective vibrational level structure of the molecules plays a crucial role, and despite the poor conditions of coupling, the matching between the phonons and the excitons reaches an outstanding strength. The emission spectra permitted to characterize the vibrational status of the molecules coupled to the polaritons. Due to the dye adsorption, the surface plasmon frequency shifts, and the Stokes peak splits into two peaks, having a distance bigger than their line width. The strong effect of the collective mechanism of the molecules was described by a hybrid model. Finally, after proving and characterizing the strong coupling, the Raman scattering from such hybridized light-matter states was studied. The coherent nature of the vibro-polariton states increases the Raman scattering cross-section and indicates an enhancement mechanism due to the intrinsic properties of the molecules (e.g., polarizability). Since the light-matter interaction permits the property modulation of materials by confining to small volumes the light field for forming exciton-polariton states, these results provide insight into molecular science. Full article
(This article belongs to the Special Issue Optomechanics: Science and Applications)
Show Figures

Figure 1

16 pages, 4209 KiB  
Article
Hybrid Graphene-Based Photonic-Plasmonic Biochemical Sensor with a Photonic and Acoustic Cavity Structure
by Chan-Shan Yang, Yi-Sheng Cheng, Young-Chou Hsu, Yi-Cheng Chung, Jing-Ting Hung, Chien-Hao Liu, Jin-Chen Hsu, Cheng-Ying Chen, Chii-Rong Yang, Yu-Tai Li, Nan-Nong Huang and Tzy-Rong Lin
Crystals 2021, 11(10), 1175; https://doi.org/10.3390/cryst11101175 - 28 Sep 2021
Cited by 3 | Viewed by 2819
Abstract
In this study, we propose a biochemical sensor that features a photonic cavity integrated with graphene. The tunable hybrid plasmonic-photonic sensor can detect the molecular fingerprints of biochemicals with a small sample volume. The stacking sequence of the device is “ITO grating/graphene/TiO2 [...] Read more.
In this study, we propose a biochemical sensor that features a photonic cavity integrated with graphene. The tunable hybrid plasmonic-photonic sensor can detect the molecular fingerprints of biochemicals with a small sample volume. The stacking sequence of the device is “ITO grating/graphene/TiO2/Au/Si substrate”, which composes a photonic band gap structure. A defect is created within the ITO gratings to form a resonant cavity. The plasmonic-photonic energy can be confined in the cavity to enhance the interaction between light and the analyte deposited in the cavity. The finite element simulation results indicated that the current sensor exhibits very high values in resonance shift and sensitivity. Moreover, the resonance spectrum with a broad resonance linewidth can identify the molecular vibration bands, which was exemplified by the fingerprint detections of protein and the chemical compound CBP. The sensor possesses an electrical tunability by including a graphene layer, which allowed us to tune the effective refractive index of the cavity to increase the sensor’s sensing performance. In addition, our device admits a phononic bandgap as well, which was exploited to sense the mechanical properties of two particular dried proteins based on the simplified elastic material model instead of using the more realistic viscoelastic model. The dual examinations of the optical and mechanical properties of analytes from a phoxonic sensor can improve the selectivity in analyte detections. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Graphical abstract

14 pages, 2635 KiB  
Article
Enhanced Absorption with Graphene-Coated Silicon Carbide Nanowires for Mid-Infrared Nanophotonics
by Patrick Rufangura, Iryna Khodasevych, Arti Agrawal, Matteo Bosi, Thomas G. Folland, Joshua D. Caldwell and Francesca Iacopi
Nanomaterials 2021, 11(9), 2339; https://doi.org/10.3390/nano11092339 - 8 Sep 2021
Cited by 9 | Viewed by 4181
Abstract
The mid-infrared (MIR) is an exciting spectral range that also hosts useful molecular vibrational fingerprints. There is a growing interest in nanophotonics operating in this spectral range, and recent advances in plasmonic research are aimed at enhancing MIR infrared nanophotonics. In particular, the [...] Read more.
The mid-infrared (MIR) is an exciting spectral range that also hosts useful molecular vibrational fingerprints. There is a growing interest in nanophotonics operating in this spectral range, and recent advances in plasmonic research are aimed at enhancing MIR infrared nanophotonics. In particular, the design of hybrid plasmonic metasurfaces has emerged as a promising route to realize novel MIR applications. Here we demonstrate a hybrid nanostructure combining graphene and silicon carbide to extend the spectral phonon response of silicon carbide and enable absorption and field enhancement of the MIR photon via the excitation and hybridization of surface plasmon polaritons and surface phonon polaritons. We combine experimental methods and finite element simulations to demonstrate enhanced absorption of MIR photons and the broadening of the spectral resonance of graphene-coated silicon carbide nanowires. We also indicate subwavelength confinement of the MIR photons within a thin oxide layer a few nanometers thick, sandwiched between the graphene and silicon carbide. This intermediate shell layer is characteristically obtained using our graphitization approach and acts as a coupling medium between the core and outer shell of the nanowires. Full article
(This article belongs to the Special Issue Nano-Optics: Novel Research on Theory and Applications)
Show Figures

Graphical abstract

9 pages, 3309 KiB  
Article
Extraordinary Optical Transmission by Hybrid Phonon–Plasmon Polaritons Using hBN Embedded in Plasmonic Nanoslits
by Shinpei Ogawa, Shoichiro Fukushima and Masaaki Shimatani
Nanomaterials 2021, 11(6), 1567; https://doi.org/10.3390/nano11061567 - 14 Jun 2021
Cited by 7 | Viewed by 3476
Abstract
Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel [...] Read more.
Hexagonal boron nitride (hBN) exhibits natural hyperbolic dispersion in the infrared (IR) wavelength spectrum. In particular, the hybridization of its hyperbolic phonon polaritons (HPPs) and surface plasmon resonances (SPRs) induced by metallic nanostructures is expected to serve as a new platform for novel light manipulation. In this study, the transmission properties of embedded hBN in metallic one-dimensional (1D) nanoslits were theoretically investigated using a rigorous coupled wave analysis method. Extraordinary optical transmission (EOT) was observed in the type-II Reststrahlen band, which was attributed to the hybridization of HPPs in hBN and SPRs in 1D nanoslits. The calculated electric field distributions indicated that the unique Fabry–Pérot-like resonance was induced by the hybridization of HPPs and SPRs in an embedded hBN cavity. The trajectory of the confined light was a zigzag owing to the hyperbolicity of hBN, and its resonance number depended primarily on the aspect ratio of the 1D nanoslit. Such an EOT is also independent of the slit width and incident angle of light. These findings can not only assist in the development of improved strategies for the extreme confinement of IR light but may also be applied to ultrathin optical filters, advanced photodetectors, and optical devices. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

11 pages, 1215 KiB  
Article
Resonant Terahertz Light Absorption by Virtue of Tunable Hybrid Interface Phonon–Plasmon Modes in Semiconductor Nanoshells
by Denis L. Nika, Evghenii P. Pokatilov, Vladimir M. Fomin, Josef T. Devreese and Jacques Tempere
Appl. Sci. 2019, 9(7), 1442; https://doi.org/10.3390/app9071442 - 6 Apr 2019
Cited by 4 | Viewed by 2975
Abstract
Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of [...] Read more.
Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of the semiconductor shells, terahertz light absorption in these nanostructures can be resonantly enhanced due to the strong coupling between interface plasmons and phonons. A threefold to fourfold increase in the absorption peak intensity was achieved at specific values of electron concentration. Doping, as well as adapting the nanoshell radius, allowed for fine-tuning of the absorption peak frequencies. Full article
(This article belongs to the Special Issue Optical Properties of Confined Quantum Systems)
Show Figures

Figure 1

Back to TopTop