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Abstract: Casimir friction is theoretically studied between graphene-covered undoped bismuth
selenide (Bi2Se3) in detail. In the graphene/Bi2Se3 composite structure, the coupling of the hyperbolic
phonon polaritons supported by Bi2Se3 with the surface plasmons supported by graphene can lead
to the hybrid surface plasmon–phonon polaritons (SPPPs). Compared with that between undoped
Bi2Se3, Casimir friction can be enhanced by more than one order of magnitude due to the contribution
of SPPPs. It is found that the chemical potential that can be used to modulate the optical characteristic
of SPPPs plays an important role in Casimir friction. In addition, the Casimir friction between doped
Bi2Se3 is also studied. The friction coefficient between doped Bi2Se3 can even be larger than that
between graphene-covered undoped Bi2Se3 for suitable chemical potential due to the contribution of
unusual electron surface states. The results obtained in this work are not only beneficial to the study
of Casimir frictions but also extend the research ranges of topological insulators.

Keywords: casimir friction; graphene; topological insulator

1. Introduction

In nature, friction is a very common phenomenon, which extensively exists in the
macroscopic to the microscopic world. However, the physical mechanism of friction in the
microscopic world is different from that of the friction observed in our daily lives. In recent
years, people have paid much attention to nanotribology with the rapid development of
nanofabrication technology. Interestingly, there is one type of friction that appears between
bodies in relative motion even without direct contact at the nanoscale, which is usually
called noncontact friction [1–7]. Noncontact friction has been observed experimentally by
atomic force microscopy [1,5,6] and has important practical significance in ultra-sensitive
force detection. In the past decade, another noncontact friction originating from the mo-
mentum exchange of Doppler-shifted photons has attracted much attention [8]. The essence
of this friction is closely related to the Casimir effect, so it is called Casimir friction [8,9].
Even at zero temperature, Casimir friction can still exist because of the vacuum fluctuation,
so it will be denoted as quantum friction. Casimir frictions have been extensively studied
in several configurations that are in relative motion, such as atom and atom [10], atom and
plate [11–13], and plate and plate [14].

The theoretical method of Casimir friction between two objects separated by a small
gap was firstly derived by Pendry with the help of classical electromagnetic theory [8]. Then,
Volokitin and Persson also made a series of works on Casimir friction [15–20]. Because the
Casimir friction is extremely small, it makes a great challenge to detect in an experiment.
Enhancing the Casimir friction between bodies in relative motion becomes an important
topic. An enhancement mechanism of Casimir friction associated with resonant photon
tunneling on different surfaces was proposed [16]. It has been found that Casimir friction
will be significantly enhanced if the materials can support low-frequency surface plasmons
(SPs) or other surface polaritons [16]. Therefore, plenty of materials that can support
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surface polaritons are employed to investigate the Casimir friction [21,22]. Among them,
graphene is a two-dimensional material composed of carbon atoms [23–25], which can
support SPs from terahertz (THz) to infrared frequency ranges [26–35]. In particular, the
optical conductivity of graphene depends on its chemical potential, which is controlled by
an external field or gate voltage. It is shown that SPs supported by graphene can play an
important role in enhancing and actively modulating Casimir friction [36–39]. In addition,
the Casimir friction between graphene-covered hyperbolic materials (HMs) has also been
studied [40]. The coupling of graphene plasmon with hyperbolic phonon polaritons (HPPs)
supported by HMs can enhance the Casimir friction remarkably [40].

In the past decade, topological insulators have received extensive attention because
of their exotic characteristic and important applications in the fabrications of new elec-
tronic devices [41–45]. They are characterized by a full insulating gap in the bulk and
gapless surface states protected by time-reversal symmetry [44]. The three-dimensional
(3D) topological insulators have been predicted theoretically in the Bi1−xSbx alloy [46] and
observed experimentally by angle-resolved photoemission spectroscopy [47]. Then, several
simple 3D topological insulators were predicted theoretically in Bi2Te3, Sb2Te3 [48], and
Bi2Se3 [48,49] compounds with a large gap in bulk and gapless surface state. Bismuth-
based topological insulators have attracted great interest due to their unusual electronic
surface states, which are manifested as massless Dirac fermions [43,44,48–51]. As one of
the representative topological insulators, Bi2Se3 is also well-known for its bulk optical
response [52–55] besides its novel surface state. It exhibits hyperbolic dispersion relation
and can support highly oriented collective HPPs in the THz range [56]. For Bi2Se3 with
finite doping, the coupling of HPPs with Dirac plasmon confined at the surface can result
in the appearance of hybrid modes [56]. However, the SPs are absent for undoped Bi2Se3.
As has been mentioned above, graphene plasmon can be coupled with different surface
polaritons, so it is interesting to investigate the coupling between graphene plasmon and
HPPs supported by undoped Bi2Se3.

In this paper, we study the Casimir friction between graphene-covered undoped
Bi2Se3. The low-frequency HPPs supported by Bi2Se3 can be coupled with SPs supported
by graphene, and then resulting in the appearance of hybrid surface plasmon–phonon
polaritons (SPPPs). We demonstrate that the SPPPs play an important role in the Casimir
friction between graphene-covered Bi2Se3. Compared with that between undoped Bi2Se3,
the Casimir friction between graphene-covered Bi2Se3 enhances about one order of magni-
tude in wide separation gaps. Furthermore, the hybrid SPPPs can be flexibly controlled
by tuning the chemical potential of graphene that depends on the gate voltage. Therefore,
it provides an opportunity to actively modulate the Casimir friction between topological
insulators. Casimir friction between doped Bi2Se3 is also studied. Depending on the
chemical potential, Casimir friction between doped Bi2Se3 can be larger or smaller than
that between graphene-covered Bi2Se3 under the same separation distance. This study not
only extends the research ranges of topological insulators but also provides an efficient
method to control the Casimir friction.

2. Theoretical Model

The schematic of the Casimir force between graphene-covered Bi2Se3 is shown in
Figure 1. Two graphene-covered Bi2Se3 bulks are separated by a distance d. We assume
the top graphene-covered Bi2Se3 moves relatively to the bottom one along the x-axis with
a velocity v in the laboratory frame. The temperature of the surrounding environment is
denoted by T, which is set to be T = 300 K in all the calculations. If the moving velocity of
the top graphene-covered Bi2Se3 satisfies the conditions v < dkBT/}, Casimir friction is
proportional to the sliding velocity, which can be determined as f = γv [18]. kB and } are
the Boltzmann and reduced Planck constants, respectively. γ = γrad + γevan is the Casimir
friction coefficient, which comes from the contributions of propagation and evanescent
electromagnetic waves from the graphene-covered Bi2Se3. However, the contribution of
the propagation wave can be ignored in the near-field region [2,18]. Therefore, we only
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consider the Casimir friction coefficient from the evanescent waves, which can be expressed
as [18]

γ ≈ }
2π2

∞∫
0

dω

(
− ∂n

∂ω

) ∞∫
ω/c

dqq3e−2|kz |d Im
(

R1p
)
Im
(

R2p
)∣∣1− e−2|kz |dR1pR2p
∣∣2 + [p→ s] (1)

where n(ω) = 1/
(

e}ω/kBT − 1
)

is the Bose–Einstein factor. q and kz =
√
(ω/c)2 − q2

are the components of the wave vector components parallel and perpendicular to the xy
plane, respectively. c is the speed of light in the vacuum and Rip (i = 1,2) is the reflection
amplitude from the top or bottom surface of the p-polarized electromagnetic waves. The
symbol [p→ s] represents the p-polarized reflection amplitude Rp replaced with s-polarized
reflection amplitude Rs. As described in Ref. [57], p-polarized wave often plays a dominant
role in the near-field region, so the contribution from s-polarized waves can be excluded.
The integral of q in Equation (1) is defined as force spectral density (FSD), which can be
expressed by

fp = − ∂n
∂ω

∞∫
ω/c

dqq3 Im
(

R1p
)
Im
(

R2p
)∣∣1− e−2|kz |dR1pR2p
∣∣2 e−2|kz |d (2)

Nanomaterials 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

Casimir friction coefficient, which comes from the contributions of propagation and ev-
anescent electromagnetic waves from the graphene-covered Bi2Se3. However, the con-
tribution of the propagation wave can be ignored in the near-field region [2,18]. There-
fore, we only consider the Casimir friction coefficient from the evanescent waves, which 
can be expressed as [18] 

 
Figure 1. Schematic of Casimir friction between graphene-covered undoped Bi2Se3 separated by a 
distance d. The layered structure denotes Bi2Se3 and the two thin orange layers at the top and bot-
tom of Bi2Se3 represent the surface states. 

𝛾 ≈ ℏ2πଶ න d𝜔(− ∂𝑛∂𝜔) න d𝑞𝑞ଷஶ
ఠ/ୡ

ஶ
଴ eିଶ|௞౰|ௗ Im(𝑅ଵ୮)Im(𝑅ଶ୮)|1 − eିଶ|௞౰|ௗ𝑅ଵ୮𝑅ଶ୮|ଶ + [p → s] (1)

where 𝑛(𝜔) = 1/(eℏன/௞ా் − 1) is the Bose–Einstein factor. 𝑞 and 𝑘୸ = ඥ(𝜔/c)ଶ − 𝑞ଶ are 
the components of the wave vector components parallel and perpendicular to the xy 
plane, respectively. 𝑐 is the speed of light in the vacuum and 𝑅୧୮ (i = 1,2) is the reflection 
amplitude from the top or bottom surface of the p-polarized electromagnetic waves. The 
symbol [p → s]  represents the p-polarized reflection amplitude 𝑅୮  replaced with 
s-polarized reflection amplitude 𝑅ୱ. As described in Ref. [57], p-polarized wave often 
plays a dominant role in the near-field region, so the contribution from s-polarized waves 
can be excluded. The integral of q in Equation (1) is defined as force spectral density 
(FSD), which can be expressed by 𝑓୮ = − 𝜕𝑛𝜕𝜔 න 𝑑𝑞𝑞ଷ Im(𝑅ଵ୮)Im(𝑅ଶ୮)|1 − 𝑒ିଶ|௞೥|ௗ𝑅ଵ୮𝑅ଶ୮|ଶ 𝑒ିଶ|௞೥|ௗஶ

ఠ/௖  (2)

For convenient description, we define the photon exchange function as  𝜉୮ = Im(𝑅ଵ୮)Im(𝑅ଶ୮)|1 − 𝑒ିଶ|௞೥|ௗ𝑅ଵ୮𝑅ଶ୮|ଶ 𝑒ିଶ|௞೥|ௗ (3)

Figure 1. Schematic of Casimir friction between graphene-covered undoped Bi2Se3 separated by a
distance d. The layered structure denotes Bi2Se3 and the two thin orange layers at the top and bottom
of Bi2Se3 represent the surface states.

For convenient description, we define the photon exchange function as

ξp =
Im
(

R1p
)
Im
(

R2p
)∣∣1− e−2|kz |dR1pR2p
∣∣2 e−2|kz |d (3)

which is used to describe the exchange ability of photons between the bodies in relative
motion. The reflection amplitude of graphene-covered anisotropic material can be written
as [58]

Rp =
pε⊥ − pp + µ0cσppp

pε⊥ + pp + µ0cσppp
(4)
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where p =
√

1− κ2, pp =
√

ε⊥ − ε⊥κ2/εz, and κ = cq/ω. εz and ε⊥ are the permittivities
of Bi2Se3 parallel and perpendicular to the optical axis (z-axis), respectively. µ0 is the
permeability in the vacuum. σ(ω) is the optical conductivity of graphene, which can be

simplified to σ = ie2µ

π}2(ω+iτ−1)
in the low-frequency range by ignoring the contribution of

interband transitions [32]. e is the electron charge, µ is the chemical potential of graphene,
and τ = 10−13 s is the relaxation time. As a naturally anisotropic material, Bi2Se3 exhibits
hyperbolic optical properties. The dielectric properties perpendicular (ε⊥) and parallel (εz)
to the optical axis have different values which are given by [59,60]

εα(ω) = εα
∞ + ∑

j=1,2

ωα 2
p,j

ωα 2
to,j −ω2 − iγα

j ω
, (α = ⊥, z) (5)

The parameters used in Equation (5) are ε⊥∞ = 29, εz
∞ = 17.4, ω⊥to,1 = 64 cm−1 ,

ω⊥p,1 = 704 cm−1, ω⊥to,2 = 125 cm−1, ω⊥p,2 = 55 cm−1, ωz
to,1 = 135 cm−1, ωz

p,1 = 283 cm−1 ,

ωz
to,2 = 154 cm−1, ωz

p,2 = 156 cm−1 , γα
j = 3.5 cm−1. The real parts of the dielectric

functions ε⊥(ω) and εz(ω) of Bi2Se3 are shown in Figure 2. There are two shaded regions,
including regions A (ω⊥to,1 < ω < ωz

to,1) where Bi2Se3 is type II HM (Re(εz) > 0, Re(ε⊥) < 0)
and region B (ωz

to,2 < ω < 163 cm−1) where Bi2Se3 is type I HM (Re(εz) < 0, Re(ε⊥) > 0).
Therefore, HPPs can be excited in these hyperbolic regions [56]. Although as a typical
topological insulator, Bi2Se3 possesses unusual electron surface states, we firstly only
consider its bulk optical response. When the frequencies are smaller than the bulk gap of
0.3 eV of Bi2Se3, the electronic contribution to permittivities (appearing in Equation (5)
via εz

∞) is purely real. In addition, it is assumed that the valence bulk band is completely
filled and the conduction band is empty, there are no free carriers present in the bulk. The
doping electron surface states of Bi2Se3 is determined by its chemical potential µB that is
located inside the bulk band gap. The electron surface states can be excluded by setting
µB = 0.0 eV.
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hyperbolic bands, respectively.

3. Casimir Friction between Graphene-Covered Bi2Se3

In Figure 3, we show the dependences of Casimir friction on distance d for different
configurations. As a natural hyperbolic material, hBN can also support HPPs which
are located in the infrared regions. The permittivities of hBN can be found in Ref. [58].
Here we also show the Casimir friction between hBN bulk for comparison. The results
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of hBN, Bi2Se3, graphene, and graphene-covered Bi2Se3 are denoted in green dotted, red
dashed, blue dot-dashed, and black solid lines, respectively. The chemical potential of
graphene is fixed at µ = 0.2 eV. It is seen that the Casimir friction coefficients of different
configurations decrease as the distance increases. The friction coefficients of graphene and
Bi2Se3 decrease slowly as the distance increases, while the friction coefficients of hBN and
graphene-covered Bi2Se3 decrease rapidly as the distance increases. Although the friction
coefficient of Bi2Se3 is smaller than that of hBN when the distance is less than 25 nm, it has
an obvious enhancement when covered with graphene. Compared with that of Bi2Se3, the
friction coefficient between graphene-covered Bi2Se3 can increase more than one order of
magnitude when the chemical potential of graphene is 0.2 eV.
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distance d. The chemical potential of graphene is µ = 0.2 eV. The base of the logarithm is 10 in this
and the following figures.

Because Casimir friction is mainly from the exchange of the evanescent waves in the
near-field region, we display the FSDs for different configurations to realize the contribution
of different evanescent waves to Casimir friction in Figure 4. The results of hBN, Bi2Se3,
graphene, and graphene-covered Bi2Se3 are displayed in green dotted, red dashed, blue
dot-dashed, and black solid lines, respectively. The chemical potential of graphene is set to
be µ = 0.2 eV and the separation distance is d = 20 nm. It can be clearly seen from Figure 4
that there are two peaks corresponding to its hyperbolic bands located in the infrared
frequency region for the FSD of hBN. Similarly, there are two peaks in the low-frequency
regions for Bi2Se3. FSD has a strong peak corresponding to the resonance frequency of
the HPPs on the surface of Bi2Se3 material, so the main contribution to quantum friction
in Bi2Se3 comes from the HPPs. The FSD spectrum of graphene covers a very wide
frequency range but with a relatively low value, which agrees that graphene can support
p-polarized SPs with a wide frequency range. For graphene-covered undoped Bi2Se3, the
HPPs supported by Bi2Se3 can be coupled with SPs supported by graphene, which results
in the shift of the hybrid SPPPs toward higher frequencies. Therefore, the Casimir friction
between graphene-covered Bi2Se3 is mainly from the SPPPs. We can qualitatively obtain
the Casimir friction by judging the area covered by the curves of different configurations.
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To further analyze the physical mechanism of Casimir frictions for different configu-
rations, we show the photon exchange functions of these configurations in Figure 5. The
bright regions in the dark background denote the different surface polaritons supported by
different materials. In Figure 5a, the bright regions are from the contributions of type I and
type II hyperbolic bands of hBN, respectively. For the case of Bi2Se3 shown in Figure 5b.
we can see that the hyperbolic bands also exist in the THz frequency range. For the photon
exchange function between graphene sheets shown in Figure 5c, it covers a very wide
frequency range since graphene can support SPs from THz to infrared frequencies. When
Bi2Se3 is covered with graphene, the HPPs supported by Bi2Se3 can couple with SPs sup-
ported by graphene to form the SPPPs which is out of the hyperbolic band. The SPPPs
move toward higher frequencies as the wave vector increases. Therefore, we can obtain
that SPPPs dominate the Casimir friction between graphene-covered undoped Bi2Se3.
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Because the characteristic of SPs excited by graphene as well as the coupled SPPPs
is dependent on the chemical potential of graphene, we investigate the effect of chemical
potential on the Casimir friction. In Figure 6, we display the friction coefficient on the
separation distance d for different chemical potentials of graphene. The friction coefficient
between graphene-covered Bi2Se3 with chemical potentials µ = 0.1, µ = 0.2, and µ = 0.3 eV
are plotted in black solid, blue dashed, and red dotted lines, respectively. We can see that the
friction coefficients varying with distance exhibit different behavior for different chemical
potentials. As the distance increases, the difference of Casimir friction between systems
with different chemical potentials becomes smaller, which means that the contribution from
the evanescent SPPPs becomes weaker as the distance increases.
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In Figure 7, we show the dependence of the friction coefficient on the chemical po-
tential between graphene-covered Bi2Se3 bulks. The friction coefficients with separation
distances of 10, 20, and 30 nm are plotted in black solid, blue dashed, and red dotted
lines, respectively. In Figure 7, we can see that the friction coefficients increase first and
then decrease after reaching the maximum values as the chemical potential increases. In
particular, the difference between the maximum value and minimum value of friction
coefficients can reach about one order of magnitude for different chemical potentials for the
separation distance being 10 nm. When the separation distance increases, the maximum
and minimum values of Casimir friction still have an obvious difference in our considered
chemical potential range. Therefore, the maximum value of the friction coefficient can be
obtained by tuning the chemical potential of graphene.
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Figure 7. Dependence of the Casimir friction coefficient on chemical potential for different separation
distances d.

In Figure 8, we show the FSD in order to understand the physical mechanism of
the relationship between the friction coefficient and chemical potential. The separation
distance between the top and bottom graphene-covered Bi2Se3 is fixed at d = 20 nm in
the calculations. When the chemical potential of graphene is smaller (µ = 0.05 eV), we
can see that Casimir friction is mainly determined by the HPPs as shown by the solid
black line. In this case, the coupling between HPPs and graphene plasmons is weak. The
HPPs and graphene plasmon contribute to the Casimir friction separately. As the chemical
potential increases (µ = 0.1 eV), the coupling between HPPs and SPs occurs, resulting in
the enhancement of SPPPs in a wide frequency region compared with the SPs supported by
graphene as shown in red dashed lines in Figure 8. However, when the chemical potential
continues to increase, the peak of SPPPs shifts toward higher frequencies with a decrease
in magnitude. This will lead to the decrease in the Casimir friction. Therefore, we can
demonstrate the coupling of graphene plasmon with HPPs supported by undoped Bi2Se3
can enhance the Casimir friction significantly between graphene-covered Bi2Se3. It is also
possible to actively modulate the Casimir friction between such graphene/Bi2Se3 composite
structures by controlling the gate voltage.
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4. Casimir Friction between Doped Bi2Se3 Bulks

We have investigated the Casimir friction between graphene-covered undoped Bi2Se3
in the previous sections. Then, we continue to study the Casimir friction between doped
Bi2Se3 without covering graphene. Such a configuration can be realized by moving
graphene away in Figure 1. In this configuration, the Bi2Se3 bulk behaves like an anisotropic
material, while the two layers denoted in orange represent the top and bottom surface
states. The electron surface states which behave as massless Dirac fermions exist when
Bi2Se3 is doped; it plays a similar role as graphene in the graphene-covered undoped Bi2Se3
configuration. The fundamental density response functions of the surface states are the
sheet conductivity σB and polarizability P, which have the following relation [56]

σB(q, ω) =
iω
q2 e2P(q, ω) (6)

Under the condition of random-phase approximation for Dirac fermions, P(q, ω) can
be obtained analytically [56]:

P(q, ω) = − NkF

2π}vF
− iN

16π}vF

q2√
q2 − k2

ω

[G(
kω + 2kF

q
)− G(

kω − 2kF

q
)− iπ] (7)

where function G(x) are expressed as G(x) = ix
√

1− x2 − iarccosx. N = 1 is the number
of Dirac cones. kF = |µB|/}vF is the Fermi momentum with vF =

√
µdcµBτB/e being

the Fermi velocity, and µdc is the electron mobility. kω = (ω + iγe)/vF and γe > 0 is a
phenomenological parameter that stands for electron scattering rate. After substituting the
conductivity in Equation (4) with σB in Equation (6), we can calculate the Casimir friction
between doped Bi2Se3 by employing Equation (1).

In Figure 9, we show the dependence of the Casimir friction coefficient on the separa-
tion distance d for different chemical potentials µB of doped Bi2Se3, which is similar to that
shown in Figure 6. We can see that the Casimir friction coefficient decreases rapidly with
the increase in separation distance d. When the separation distance is less than 20 nm, the
friction coefficient is not sensitive to the chemical potential. When the separation distance
becomes larger, the friction coefficient decreases as the chemical potential increases. Such
phenomenon is different from that between graphene-covered undoped Bi2Se3 which is
shown in Figure 6. In addition, comparing Figure 9 with Figure 3, we can also see that
the friction coefficient between doped Bi2Se3 is larger than that between undoped Bi2Se3
when the separation distance is less than 20 nm. However, when the separation is larger
than 20 nm, the difference in Casimir friction between undoped Bi2Se3 and doped Bi2Se3 is
very small.

In Figure 10, we show the dependence of the Casimir friction coefficient on the
chemical potential of doped Bi2Se3 for different separation distances d. When the separation
distance is 10 nm, the friction coefficient almost does not vary with the chemical potential.
That means the chemical potential of doped Bi2Se3 has little impact on the surface states
that dominate the Casimir friction at such a small distance. The Casimir friction, in this
case, is even larger than that between graphene-covered Bi2Se3 when the chemical potential
is larger than 0.1 eV, which can be seen in Figure 7. For the cases with separation distances
are 20 and 30 nm, the friction coefficients first increase and then decrease after reaching the
maximum values as the chemical potential µB increase. However, the friction coefficients
between doped Bi2Se3 are not as sensitive to the chemical potential as those between
graphene-covered undoped Bi2Se3.
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5. Conclusions

In summary, we have studied the Casimir friction between graphene-covered Bi2Se3.
Owing to the coupling of the HPPs supported by Bi2Se3 to the SPs excited by graphene,
the Casimir friction between the proposed structures shows a significant enhancement
compared to those between undoped Bi2Se3 materials. The Casimir friction can be modu-
lated actively by tuning the chemical potential of graphene. It is found that the maximum
value of Casimir friction can be obtained by choosing the appropriate chemical potential.
Furthermore, Casimir friction between doped Bi2Se3 is also studied. When the chemical
potential is larger than 0.1 eV, Casimir friction between doped Bi2Se3 is even larger than
that between graphene-covered undoped Bi2Se3. Although more and more schemes have
been proposed to enhance the Casimir force, it is still challenging to observe such a small
force exactly in an experiment. Because it may play an important role in the nanoelec-
tromechanical systems (NEMS), it is feasible to observe the Casimir force in the NEMS
successfully. The results of this study are of great help to extend the research range of
Casimir frictions and are meaningful to understanding the application of ultra-sensitive
force detection of topological insulators.
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