Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = plasma transfer arc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4643 KiB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Viewed by 182
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

19 pages, 13393 KiB  
Article
Erosive Wear of Stainless Steel-Based Hardfacings with Ex-Situ and In-Situ Synthesized TiC
by Sibel Yöyler, Andrei Surženkov, Marek Tarraste, Mart Kolnes and Kristjan Juhani
Coatings 2025, 15(6), 658; https://doi.org/10.3390/coatings15060658 - 29 May 2025
Viewed by 383
Abstract
The resistance to erosion of stainless steel-based plasma transferred arc (PTA)-cladded hardfacings reinforced with ex-situ-synthesized TiC is compared to those reinforced using in-situ-synthesized TiC (formed from TiO2 and graphite). The PTA cladding was performed under an optimized torch linear velocity of 0.7 [...] Read more.
The resistance to erosion of stainless steel-based plasma transferred arc (PTA)-cladded hardfacings reinforced with ex-situ-synthesized TiC is compared to those reinforced using in-situ-synthesized TiC (formed from TiO2 and graphite). The PTA cladding was performed under an optimized torch linear velocity of 0.7 m/s and cladding current of 115 A. The microstructure of the cladded overlay was analyzed using scanning electron microscopy (SEM), and the phase composition was determined using X-ray diffraction (XRD). Vickers macrohardness measurements were made at representative areas at the surface of the overlays. An erosive wear test was conducted with impact angles of 30° and 90° and impact velocities of 20, 50, and 80 m/s. The formation of TiC from TiO2 and graphite started during ball milling and ended during the cladding stage. The final TiC content in the hardfacings was below nominal, which is likely due to carbide segregation occurring during the cladding process. The highest hardness was 2.4 times that of stainless steel, which was observed in the deposit containing 60 vol.% ex-situ-synthesized TiC. Both ex-situ and in-situ TiC reinforcement improved resistance to erosion, providing up to 1.5 times better resistance under the 30° impact angle and up to 6.3 times under the 90° impact angle than that of stainless steel. However, ex-situ TiC showed a slightly larger improvement. At the 30° impact angle, the primary wear mechanism is micro-ploughing, but at the 90° impact angle it is surface fatigue. Both mechanisms appeared at both angles under 80 m/s impact velocity. Full article
Show Figures

Graphical abstract

8 pages, 1768 KiB  
Proceeding Paper
Real-Time Detection and Counting of Melted Spatter Particles During Deposition of Biomedical-Grade Co-Cr-Mo-4Ti Powder Using the Micro-Plasma Transferred Arc Additive Manufacturing Process
by Sagar Nikam, Sonya Coleman, Dermot Kerr, Neelesh Kumar Jain, Yash Panchal and Deepika Nikam
Eng. Proc. 2025, 92(1), 78; https://doi.org/10.3390/engproc2025092078 - 21 May 2025
Viewed by 283
Abstract
Spatters in the powder-based metal additive manufacturing processes influence deposition quality, part surface quality, and internal defects. We developed a novel video analysis method to monitor and count the melted spatter particles of biomedical-grade Co-Cr-Mo-4Ti powder particles in depositing layers using a micro-plasma [...] Read more.
Spatters in the powder-based metal additive manufacturing processes influence deposition quality, part surface quality, and internal defects. We developed a novel video analysis method to monitor and count the melted spatter particles of biomedical-grade Co-Cr-Mo-4Ti powder particles in depositing layers using a micro-plasma transferred arc additive manufacturing (M-PTAAM) process. We captured the spatters using a weld-monitoring camera and building datasets of videos and monitored different combinations of M-PTAAM process parameters. We captured videos of the melted spatter particles and counted the melted spatter particles in real time using a Kalman filter. The weld-monitoring camera captured the melted spatter particles and the fumes generated by the evaporated spatter particles. The video processing algorithm was developed in this study to accurately capture melted spatter particles. In images without fumes, nearly all melted spatter particles were successfully detected. Even in images with the presence of fumes, the algorithm maintained a detection accuracy of 90%. The real-time melted spatter count particle exhibited a powder feed rate changing from 30 to 35 g/min and then to 50 g/min. The melted spatter particle count was lowest at a powder feed rate of 30 g/min and increased with the increasing powder feed rate. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

20 pages, 7633 KiB  
Article
Corrosion Performance of Chemically Passivated and Ion Beam-Treated Austenitic–Martensitic Steel in the Marine Environment
by Viktor Semin, Alexander Cherkasov, Konstantin Savkin, Maxim Shandrikov and Evgeniya Khabibova
J. Manuf. Mater. Process. 2025, 9(5), 167; https://doi.org/10.3390/jmmp9050167 - 20 May 2025
Viewed by 668
Abstract
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% [...] Read more.
In the present work, chemical and ion beam surface treatments were performed in order to modify the electrochemical behavior of industrial austenitic–martensitic steel VNS-5 in 3.5 wt. % NaCl. Immersion for 140 h in a solution containing 0.05 M potassium dichromate and 10% phosphoric acid promotes formation of chromium hydroxides in the outer surface layer. By means of a new type of ion source, based on a high-current pulsed magnetron discharge with injection of electrons from vacuum arc plasma, ion implantation with Ar+ and Cr+ ions of the VNS-5 steel was performed. It has been found that the ion implantation leads to formation of an Fe- and Cr-bearing oxide layer with advanced passivation ability. Moreover, the ion beam-treated steel exhibits a lower corrosion rate (by ~7.8 times) and higher charge transfer resistance in comparison with an initial (mechanically polished) substrate. Comprehensive electrochemical and XPS analysis has shown that a Cr2O3-rich oxide film is able to provide an improved corrosion performance of the steel, while the chromium hydroxides may increase the specific conductivity of the surface layer. A scheme of a charge transfer between the microgalvanic elements was proposed. Full article
Show Figures

Figure 1

26 pages, 10949 KiB  
Article
Tribological Investigation of Plasma-Based Coatings for Use in Quasi-Monolithic Engine Cylinder Bores
by Siddharth Banerjee, Joshua Stroh, Dimitry Sediako and Jimi Tjong
Metals 2025, 15(4), 370; https://doi.org/10.3390/met15040370 - 27 Mar 2025
Viewed by 380
Abstract
This study evaluates the tribological characteristics of quasi-monolithic engine cylinder coatings and piston rings using a custom-built linear reciprocating tribometer. The coatings were deposited on an Al-Si alloy cylinder bore using the Plasma Transfer Wire Arc (PTWA) and Electrolytic Jet Plasma Oxidation (EJPO) [...] Read more.
This study evaluates the tribological characteristics of quasi-monolithic engine cylinder coatings and piston rings using a custom-built linear reciprocating tribometer. The coatings were deposited on an Al-Si alloy cylinder bore using the Plasma Transfer Wire Arc (PTWA) and Electrolytic Jet Plasma Oxidation (EJPO) processes. The coatings’ tribological performances were investigated in the boundary lubrication regime. The performance of conventional chrome-coated cast iron piston rings was tested and compared to that of EJPO- and PTWA-coated engine cylinder samples that were extracted from a cast Al-Si engine block. Scanning electron microscopy and profilometry were used to compare the evolution of wear and the prevalent wear mechanism. This paper also presents the verification and repeatability analysis of a custom-built tribometer against a standard industry-calibrated tribometer. The wear test results showed that the EJPO coating had 0.05% to 10.35% lower wear rates than its PTWA counterpart throughout a wide range of loading conditions and sliding distances. The variation in the counter-face behavior is likely due to the different surface topographic parameters such as skewness, kurtosis, and porosity. Full article
Show Figures

Figure 1

41 pages, 6573 KiB  
Review
Research and Development Progress of Laser–Arc Hybrid Welding: A Review
by Yang He, Xinyu Song, Zhidong Yang, Ruihai Duan, Jiangmin Xu, Wenqin Wang, Liangyu Chen, Mingxiao Shi and Shujin Chen
Metals 2025, 15(3), 326; https://doi.org/10.3390/met15030326 - 17 Mar 2025
Cited by 3 | Viewed by 1945
Abstract
Laser–arc hybrid welding (LAHW) is an advanced welding technology that integrates both laser and arc heat sources within a single molten pool, achieving synergistic benefits that surpass the sum of their individual contributions. This method enhances the welding speed and depth of the [...] Read more.
Laser–arc hybrid welding (LAHW) is an advanced welding technology that integrates both laser and arc heat sources within a single molten pool, achieving synergistic benefits that surpass the sum of their individual contributions. This method enhances the welding speed and depth of the fusion, stabilizes the process, and minimizes welding defects. Numerous studies have investigated the principles, synergistic effects, keyhole dynamics, joint performance, and various factors influencing the parameters of laser–arc hybrid welding. This paper begins with an introduction to the classification of LAHW, followed by a discussion of the characteristics of gas-shielded welding, argon arc welding, and plasma hybrid welding. Subsequently, the welding principles underlying laser–arc hybrid welding will be elucidated. To enhance weld integrity and quality, this paper will analyze keyhole behavior, droplet transfer dynamics, welding quality performance, and the generation and prevention of welding defects that affect laser–arc hybrid welding. Additionally, a detailed analysis of the effects of residual stress on the shape, microstructure, and phase composition of the weld will be provided, along with an exploration of the influences of various welding parameters on post-weld deformation and mechanical properties. Full article
Show Figures

Figure 1

15 pages, 6805 KiB  
Article
Metallurgical and Mechanical Properties of Stellite 6 Deposition Developed Through Friction Surfacing Technique
by Mohammad Faseeulla Khan, Ramachandran Damodaram, Hussain Altammar and Gangaraju Manogna Karthik
Materials 2025, 18(5), 1003; https://doi.org/10.3390/ma18051003 - 25 Feb 2025
Cited by 1 | Viewed by 798
Abstract
Friction surfacing (FS) is a solid-state process for depositing metallurgically bonded coatings for corrosion and wear protection. It is particularly attractive for depositing coatings in materials that are difficult to fusion deposit. Stellite 6 is one such material, which is widely used as [...] Read more.
Friction surfacing (FS) is a solid-state process for depositing metallurgically bonded coatings for corrosion and wear protection. It is particularly attractive for depositing coatings in materials that are difficult to fusion deposit. Stellite 6 is one such material, which is widely used as a protective coating on steel structures to combat wear and corrosion. In the current study, Stellite 6 was successfully friction-surfaced on low carbon steel plates without using any preheating. The microstructures and wear behavior of Stellite 6 coatings produced using FS were comparatively investigated with those produced using the plasma transferred arc (PTA) process. The PTA coatings showed a cast microstructure consisting of γ-dendrites and an inter-dendritic carbide network. On the other hand, the FS coatings showed a wrought microstructure with dynamically recrystallized grains and fine, uniformly distributed carbide particles. The FS coatings also showed uniform composition across the coating thickness and were undiluted, while the PTA coatings showed significant dilution as well as strong local variations in chemistry. The FS coatings exhibited a 22% increase in hardness (550 HV) compared to the PTA coatings (450 HV). Pin-on-disc dry sliding wear tests showed that the FS coatings (1.205 mm3) were more wear resistant compared to the PTA coatings (6.005 mm3), highlighting their superior mechanical performance. This study uniquely demonstrates the feasibility of depositing Stellite 6 coatings using FS without the need for preheating or post-deposition heat treatments, while achieving superior microstructural refinement, hardness, and wear resistance compared to conventional PTA coatings. Full article
Show Figures

Graphical abstract

19 pages, 4754 KiB  
Article
Computational Analysis of Flow Separation in Non-Transferred Plasma Torch: Causes, Impacts and Control Methods
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Per Gren, Henrik Wiinikka and Alexey Sepman
Fluids 2025, 10(2), 47; https://doi.org/10.3390/fluids10020047 - 12 Feb 2025
Cited by 1 | Viewed by 752
Abstract
In a non-transferred plasma torch, the working gas becomes ionized and forms plasma as it interacts with the electric arc at the cathode tip. However, in certain cathode shapes, particularly flat ones, and under specific conditions, the gas flow can separate at the [...] Read more.
In a non-transferred plasma torch, the working gas becomes ionized and forms plasma as it interacts with the electric arc at the cathode tip. However, in certain cathode shapes, particularly flat ones, and under specific conditions, the gas flow can separate at the cathode tip, forming a vortex region. While this flow separation is influenced by geometric factors, it occurs in the critical zone where plasma is generated. Understanding the causes of this separation is essential, as it may significantly impact torch performance. If the separation proves detrimental, it is important to identify ways to mitigate it. This paper presents a computational analysis of a non-transferred plasma torch to investigate the physics behind flow separation. The results highlight the location and causes of the separation, as well as its potential advantages and disadvantages. Finally, the paper explores theoretical approaches to address flow separation in plasma torches, offering practical insights for enhancing their design and efficiency. Full article
Show Figures

Figure 1

14 pages, 12796 KiB  
Article
An Evaluation of the Microstructure and Hardness of Co-Rich PTA Overlays on a Duplex Steel Substrate
by Lechosław Tuz
Coatings 2025, 15(1), 69; https://doi.org/10.3390/coatings15010069 - 10 Jan 2025
Viewed by 2947
Abstract
Overlaying welding is a technology that allows for the acquisition of structural materials with advantageous and complex operating properties. The substrate material can be a material with advantageous mechanical and plastic properties, and the coating can provide corrosion or abrasion (wear) resistance. Among [...] Read more.
Overlaying welding is a technology that allows for the acquisition of structural materials with advantageous and complex operating properties. The substrate material can be a material with advantageous mechanical and plastic properties, and the coating can provide corrosion or abrasion (wear) resistance. Among coating application techniques, plasma transfer arc (PTA) overlay welding can be used, where the overlay ensures metallic continuity and high durability, but is a limitation in the joining technologies. Therefore, research was carried out on the possibility of making Co-rich PTA overlay welding coatings on duplex steel, which combine the unique properties of duplex steel and the abrasion resistance of the coating. The tests performed showed that it is possible to apply a coating on the edges of elements without unfavorable changes in the material associated with the formation of carbides and the sigma phase in the HAZ. The coating has a structure of a Co-rich solid solution and a net of eutectics with carbide precipitations. This allowed for high hardness (600 HV10) without the need for additional heat treatment procedures. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

16 pages, 3077 KiB  
Article
Comparison Between Numerical and Experimental Methodologies for Total Enthalpy Determination in Scirocco PWT
by Antonio Smoraldi and Luigi Cutrone
Aerospace 2024, 11(12), 1023; https://doi.org/10.3390/aerospace11121023 - 14 Dec 2024
Viewed by 1033
Abstract
Arc-jet facility tests are critical for replicating the extreme thermal conditions encountered during high-speed planetary entry, where the precise determination of flow enthalpy is essential. Despite its importance, a systematic comparison of methods for determining enthalpy in the Scirocco Plasma Wind Tunnel had [...] Read more.
Arc-jet facility tests are critical for replicating the extreme thermal conditions encountered during high-speed planetary entry, where the precise determination of flow enthalpy is essential. Despite its importance, a systematic comparison of methods for determining enthalpy in the Scirocco Plasma Wind Tunnel had not yet been conducted. This study evaluates three experimental techniques—the sonic throat method, the heat balance method, and the heat transfer method—under various operating conditions in the Scirocco facility, employing a nozzle C configuration (10° half-angle conical nozzle with a 90 cm exit diameter). These methods are compared with computational fluid dynamics (CFDs) simulations to address discrepancies between experimental and predicted enthalpy and heat flux values. Significant deviations between measured and simulated results prompted a reassessment of the numerical and experimental models. Initially, the Navier–Stokes model, which assumes chemically reacting, non-equilibrium flows and fully catalytic copper walls, underestimated the heat flux. By incorporating partial catalytic behavior for the copper probe surface, the CFD results showed better agreement with the experimental data, providing a more accurate representation of heat flux and flow enthalpy within the test environment. Full article
(This article belongs to the Special Issue Thermal Protection System Design of Space Vehicles)
Show Figures

Figure 1

13 pages, 3386 KiB  
Article
Research on Ni-WC Coating and a Carbide Solidification Simulation Mechanism of PTAW on the Descaling Roll Surface
by Chang Li, Fanhong Kong, Lei Feng, Han Sun, Xing Han and Fenghua Luo
Coatings 2024, 14(12), 1490; https://doi.org/10.3390/coatings14121490 - 27 Nov 2024
Cited by 1 | Viewed by 882
Abstract
The descaling roll is a critical component in a hot-rolling production line. The operating conditions are significantly impacted by water with high-pressure and dynamic shocks caused by high-temperature steel slab descaling. Roll surfaces often experience wear and corrosion failures. This is attributed to [...] Read more.
The descaling roll is a critical component in a hot-rolling production line. The operating conditions are significantly impacted by water with high-pressure and dynamic shocks caused by high-temperature steel slab descaling. Roll surfaces often experience wear and corrosion failures. This is attributed to a combination of high temperatures, intense wear, and repeated thermal, mechanical, and fluid stresses. Production costs and efficiency are significantly affected by the replacement of descaling rolls. Practice shows that the use of plasma cladding technology forms high-performance coatings. Conventional metal surface properties can be significantly improved. In this study, a Ni-WC composite coating was prepared on the descaling roll surface by plasma-transferred arc welding (PTAW) technology. The microstructure and phase composition of the welding overlay were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results show that the WC hard phase added to the molten pool dissolves, and subsequently M7C3 and W2C phases are formed. To further explore the morphological evolution mechanism of the hard phase, numerical simulations were performed using a phase-field method to model M7C3 phase precipitation. The evolution from nucleation, rod-like growth, to eutectic structure formation was revealed. Experimental and simulation results show high consistency, validating the established phase-field model. In this study, a theoretical foundation for designing and preparing high-performance coatings is provided. Full article
(This article belongs to the Special Issue Enhanced Mechanical Properties of Metals by Surface Treatments)
Show Figures

Figure 1

13 pages, 6719 KiB  
Article
Fatigue Crack Growth Behavior of Additively Manufactured Ti Metal Matrix Composite with TiB Particles
by Thevika Balakumar, Afsaneh Edrisy and Reza A. Riahi
Coatings 2024, 14(11), 1447; https://doi.org/10.3390/coatings14111447 - 13 Nov 2024
Viewed by 1167
Abstract
Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with [...] Read more.
Fatigue crack growth behavior of additively manufactured Ti metal matrix composite with TiB particles at room temperature was studied using a compact tension specimen and at the stress ratio of 0.1 (R = 0.1). The composite studied in this work was manufactured with a unique additive technique called plasma transferred arc solid free-form fabrication, which was designed to manufacture low-cost near-net-shaped components for aerospace and automotive industries. The fatigue crack growth rate experiments were carried perpendicular and parallel to the additive material build, aiming to find any fatigue anisotropies at room temperature. The findings reveal that additively manufactured Ti-TiB composite shows isotropic fatigue properties with respect to fatigue crack growth. Furthermore, the fatigue crack growth mechanisms in this additive composite material were identified as void nucleation/coalescence and the bypassing of particles and matrix, depending on the interparticle distance. Full article
(This article belongs to the Special Issue Latest Insights in Metal Fatigue, Failure, and Fracture)
Show Figures

Figure 1

12 pages, 6244 KiB  
Article
Effects of Nitrogen on Microstructure and Properties of SDSS 2507 Weld Joints by Gas Focusing Plasma Arc Welding
by Tianqing Li, Kai Wang and Yucheng Lei
Materials 2024, 17(21), 5375; https://doi.org/10.3390/ma17215375 - 3 Nov 2024
Viewed by 1225
Abstract
Regulating the phase ratio between austenite and ferrite in welded joints is crucial for welding super duplex stainless steel. Nitrogen plays a significant role in maintaining an optimal phase ratio. In this study, the focusing gas channel of gas-focused plasma arc welding was [...] Read more.
Regulating the phase ratio between austenite and ferrite in welded joints is crucial for welding super duplex stainless steel. Nitrogen plays a significant role in maintaining an optimal phase ratio. In this study, the focusing gas channel of gas-focused plasma arc welding was utilized to introduce nitrogen into the arc plasma, which was then transferred to the weld pool. Experiments with and without nitrogen addition were designed and conducted to examine the effects of nitrogen on the microstructure and properties of SDSS 2507 weld joints. The results show that nitrogen addition increased the austenite content in the weld metal from 22.2% to 40.2%. Nitrogen also altered the microstructure of the austenite, changing it from thin grain boundary austenite and small intragranular austenite to a large volume of coarse, side-plate Widmanstätten austenite. The ferrite in the weld metal exhibited a preferred orientation during growth, while the austenite showed a disordered orientation. Additionally, the maximum texture intensity of the ferrite decreased with nitrogen addition. Nitrogen addition led to an increase in the microhardness of the austenite in the weld metal, attributed to the solid solution strengthening effect of nitrogen and increased dislocation tangling, while it decreased the microhardness of the ferrite. This study enhances the welding theory of 2507 super duplex stainless steel and guides the practical application of gas-focused plasma arc welding for 2507 super duplex stainless steel. Full article
(This article belongs to the Special Issue Advances in Welding Process and Materials (2nd Edition))
Show Figures

Figure 1

20 pages, 5459 KiB  
Article
Comparative Studies on the Radiative Heat Transfer in Arc Plasma and Its Impact in a Model of a Free-Burning Arc
by Margarita Baeva, Yann Cressault and Petr Kloc
Plasma 2024, 7(3), 631-650; https://doi.org/10.3390/plasma7030033 - 5 Aug 2024
Cited by 1 | Viewed by 1903
Abstract
The radiative heat transfer in arc plasma models is considered from the point of view of its description in terms of a net emission coefficient, the method of spherical harmonics in its lowest order, and the discrete ordinate method. Net emission coefficients are [...] Read more.
The radiative heat transfer in arc plasma models is considered from the point of view of its description in terms of a net emission coefficient, the method of spherical harmonics in its lowest order, and the discrete ordinate method. Net emission coefficients are computed, applying approximate analytical and numerical approaches and a multi-band representation of the spectral absorption coefficient with three kinds of its averaging and two datasets. Self-consistent access to the radiative heat transfer is applied to a two-dimensional axisymmetric model of a free-burning arc in argon at atmospheric pressure. The results obtained from the models employing the net emission coefficient, the method of spherical harmonics, and the discrete ordinate method are compared. Full article
Show Figures

Graphical abstract

16 pages, 16682 KiB  
Article
Dispersed CeO2 Nanorods with Low-Speed Mixing for Mechanical Properties Promotion of PTA Steel Coatings
by Jun-Yu Yue, Peng-Cheng Jiao, Yi Sui, Fei Lu, Rui-Ying Zhang, Wei-Dong Chen and Li-Sha Zhao
Coatings 2024, 14(6), 713; https://doi.org/10.3390/coatings14060713 - 5 Jun 2024
Cited by 1 | Viewed by 1308
Abstract
The plasma-transferred arc technology has been observed to induce preferential grain orientation in multiple directions, leading to nonuniform grain growth within the alloy coating material. The addition of nano-oxides can act as heterogeneous nucleation sites, reducing the preferred orientation of grains. In this [...] Read more.
The plasma-transferred arc technology has been observed to induce preferential grain orientation in multiple directions, leading to nonuniform grain growth within the alloy coating material. The addition of nano-oxides can act as heterogeneous nucleation sites, reducing the preferred orientation of grains. In this study, a low-speed mixing method was employed to coat highly dispersed CeO2 nanorods (CNRs) onto the surface of 14Cr2NiSiVMn alloy powder particles. The aim was to analyze the influence of dispersed CNRs on grain growth orientation in different directions and the refinement and heterogeneous nucleation effect of CNR additives. The addition of 0.5 wt.% CNRs resulted in the refinement of dendritic grains along both the perpendicular and parallel directions to the coating cladding direction, leading to the formation of more uniform equiaxed crystals. The combination of Ce with Si and V elements formed submicron particles, which promoted grain nucleation and reduced defects in the coating. Consequently, the mechanical performance of the sample significantly improved. In the deposition direction, there was a notable improvement in microhardness (20.4%), tensile strength (97.6%), and elongation (59.0%). In the perpendicular deposition direction, the tensile strength increased by 88.1%, and the elongation increased by 33.9%. Additionally, the weight loss due to wear decreased by 44.2%, and the relative wear resistance improved by 79.3%. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

Back to TopTop