Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = plasma pyrolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 379
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

57 pages, 3664 KiB  
Review
Advancing Municipal Solid Waste Management Through Gasification Technology
by Uzeru Haruna Kun and Ewelina Ksepko
Processes 2025, 13(7), 2000; https://doi.org/10.3390/pr13072000 - 24 Jun 2025
Cited by 1 | Viewed by 823
Abstract
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated [...] Read more.
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated that gasification is superior to incineration and pyrolysis, resulting in lower harmful emissions and improved energy efficiency, which aligns with sustainability goals. Key operational findings indicate that adjusting the temperature to 800–900 °C leads to the consumption of CO2 and the production of CO via the Boudouard reaction. Air gasification produces syngas yields of up to 76.99 wt% at 703 °C, while oxygen gasification demonstrates a carbon conversion efficiency of 80.2%. Steam and CO2 gasification prove to be effective for producing H2 and CO, respectively. Catalysts, especially nickel-based ones, are effective in reducing tar and enhancing syngas quality. Innovative approaches, such as co-gasification, plasma and solar-assisted gasification, chemical looping, and integration with carbon capture, artificial intelligence (AI), and the Internet of Things (IoT), show promise in improving process performance and reducing technical and economic hurdles. The review identifies research gaps in catalyst development, feedstock variability, and system integration, emphasizing the need for integrated research, policy, and investment to fully realize the potential of gasification in the clean energy transition and sustainable MSW management. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

18 pages, 1759 KiB  
Article
Economic Viability of Hydrogen Production via Plasma Thermal Degradation of Natural Gas
by Dejan Cvetinović, Aleksandar Erić, Jovana Anđelković, Nikola Ćetenović, Marina Jovanović and Vukman Bakić
Processes 2025, 13(6), 1888; https://doi.org/10.3390/pr13061888 - 14 Jun 2025
Cited by 1 | Viewed by 881
Abstract
This study evaluated the economic feasibility of producing hydrogen from natural gas via thermal degradation in a plasma reactor. Plasma pyrolysis, where natural gas passes through the space between electrodes and serves as the working medium, enables high hydrogen yields without emitting carbon [...] Read more.
This study evaluated the economic feasibility of producing hydrogen from natural gas via thermal degradation in a plasma reactor. Plasma pyrolysis, where natural gas passes through the space between electrodes and serves as the working medium, enables high hydrogen yields without emitting carbon monoxide or carbon dioxide. Instead, the primary products are hydrogen and solid carbon. Unlike conventional methods, this approach requires no catalysts, addressing a major technological limitation. A thermodynamic equilibrium model based on Gibbs free energy minimization was used to analyze the process over a temperature range of 500–2500 K. The results indicate an optimal temperature of approximately 1500 K, which achieved a 99.5% methane conversion by mass. Considering the capital and operating costs and profit margins, the hydrogen production cost was estimated at 3.49 EUR/kg. The sensitivity analysis revealed that the price of solid carbon had the most significant impact, which potentially raised the hydrogen cost to 4.53 EUR/kg or reduced it to 1.70 EUR/kg. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

21 pages, 5135 KiB  
Article
Development of a Gold Nanoparticle Dispersion for Plasma Jet Printing on Solid Substrates
by Lan Kresnik, Peter Majerič, Darja Feizpour and Rebeka Rudolf
Materials 2025, 18(12), 2713; https://doi.org/10.3390/ma18122713 - 9 Jun 2025
Viewed by 440
Abstract
Gold nanoparticles (AuNPs) were synthesised using ultrasonic spray pyrolysis (USP) with the addition of polyvinylpyrrolidone (PVP) as a stabilising agent and subsequently dried via lyophilisation. The resulting dried AuNPs were redispersed in ethanol and homogenised to ensure uniform dispersion. This AuNP dispersion was [...] Read more.
Gold nanoparticles (AuNPs) were synthesised using ultrasonic spray pyrolysis (USP) with the addition of polyvinylpyrrolidone (PVP) as a stabilising agent and subsequently dried via lyophilisation. The resulting dried AuNPs were redispersed in ethanol and homogenised to ensure uniform dispersion. This AuNP dispersion was then deposited onto a ceramic substrate—aluminum oxide (Al2O3)—using plasma jet printing. Comprehensive characterisation of the dispersion, AuNPs, and the resulting printed lines was performed using the following methods: inductively coupled plasma optical emission spectroscopy (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible spectroscopy (UV-Vis), dynamic light scattering (DLS), measurements of dispersion viscosity and printed line roughness. ICP-OES confirmed consistent gold content in the AuNP dispersion, while the SEM and EDS analyses revealed predominantly spherical AuNPs with minimal aggregation and similar size distributions. TEM, SAED, and STEM/EDS confirmed that the crystalline structure and elemental composition of the AuNPs had diverse morphologies and strong gold signals. The UV-Vis, DLS, and zeta potential measurements indicated moderate colloidal stability, and thermogravimetric analysis (TGA) verified the AuNPs dispersion’s composition. The AuNP dispersion exhibited thixotropic behaviour favourable for printing applications, while confocal microscopy confirmed smooth, uniform printed traces, with an average surface line roughness of 1.65 µm. The successful use of plasma printing with the AuNP dispersion highlights its potential for functional material applications in electronics. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

32 pages, 2378 KiB  
Review
Pyrolysis Process, Reactors, Products, and Applications: A Review
by Prakhar Talwar, Mariana Alzate Agudelo and Sonil Nanda
Energies 2025, 18(11), 2979; https://doi.org/10.3390/en18112979 - 5 Jun 2025
Cited by 3 | Viewed by 1759
Abstract
With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse [...] Read more.
With the rapid growth of the global population, increasing per capita energy demands, and waste generation, the need for innovative strategies to mitigate greenhouse gas emissions and effective waste management has become paramount. Pyrolysis, a thermochemical conversion process, facilitates the transformation of diverse biomass feedstocks, including agricultural biomass, forestry waste, and other carbonaceous wastes, into valuable biofuels such as bio-oil, biochar, and producer gas. The article reviews the benefits of pyrolysis as an effective and scalable technique for biofuel production from waste biomass. The review describes the different types of pyrolysis processes, such as slow, intermediate, fast, and catalytic, focusing on the effects of process parameters like temperature, heating rate, and residence time on biofuel yields and properties. The review also highlights the configurations and operating principles of different reactors used for pyrolysis, such as fixed bed, fluidized bed, entrained flow, plasma system, and microwaves. The review examines the factors affecting reactor performance, including energy consumption and feedstock attributes while highlighting the necessity of optimizing these systems to improve sustainability and economic feasibility in pyrolysis processes. The diverse value-added applications of biochar, bio-oil, and producer gas obtained from biomass pyrolysis are also discussed. Full article
(This article belongs to the Collection Bio-Energy Reviews)
Show Figures

Figure 1

27 pages, 3572 KiB  
Article
Bibliometric Analysis of Medical Waste Research Using Python-Driven Algorithm
by Ilie Cirstea, Andrei-Flavius Radu, Delia Mirela Tit, Ada Radu, Gabriela Bungau and Paul Andrei Negru
Algorithms 2025, 18(6), 312; https://doi.org/10.3390/a18060312 - 26 May 2025
Viewed by 451
Abstract
The management of medical waste (MW) is a critical global challenge, contributing to toxic effects on humans, environmental degradation, and economic burdens. Despite advancements, gaps remain in adopting sustainable waste disposal practices, with limited bibliometric analysis in this field. The rising volume of [...] Read more.
The management of medical waste (MW) is a critical global challenge, contributing to toxic effects on humans, environmental degradation, and economic burdens. Despite advancements, gaps remain in adopting sustainable waste disposal practices, with limited bibliometric analysis in this field. The rising volume of MW, exacerbated by global health crises, strains existing systems. This study uses bibliometric analysis of 3025 publications from 1975 to 2024, employing Web of Science data with specific Boolean operators and keywords for efficient searching algorithms. Data visualization and analysis were carried out with software such as VOSviewer version 1.6.20 and Bibliometrix 5.0.0, along with custom Python 3.12.3 thesaurus files to standardize terminology. The results reveal a significant rise in publications post-2000, particularly during the COVID-19 pandemic, with China, India, and the US as major contributors. South Korea stands out for high citation rates. Network analysis identified collaboration patterns, while trend mapping highlighted a shift toward sustainable waste management practices. The evaluation insights revealed a clear transition from incineration-based methods toward sustainable and innovative solutions such as autoclaving, plasma pyrolysis, and advanced oxidation processes, driven by environmental concerns and regulatory frameworks. This study underscores the implications of MW and the importance of analyzing publication trends over time to understand the ongoing need for development, grounded in a legislative policy framework, which is essential for advancing sustainable practices in MW management. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Graphical abstract

13 pages, 6762 KiB  
Article
Plasma-Assisted Gasification of Cellulose via Dielectric Barrier Discharge
by Eiji Minami and Haruo Kawamoto
Hydrogen 2025, 6(2), 36; https://doi.org/10.3390/hydrogen6020036 - 21 May 2025
Viewed by 721
Abstract
The gasification of cellulose typically requires high temperatures (>600 °C) due to the thermal stability of levoglucosan, a major intermediate formed during pyrolysis. In this study, we investigated the gasification behavior of cellulose by combining infrared (IR) heating with low-power dielectric barrier discharge [...] Read more.
The gasification of cellulose typically requires high temperatures (>600 °C) due to the thermal stability of levoglucosan, a major intermediate formed during pyrolysis. In this study, we investigated the gasification behavior of cellulose by combining infrared (IR) heating with low-power dielectric barrier discharge (DBD) plasma treatment. Cellulose filter paper was first pyrolyzed using localized IR irradiation (2 kW for 30 s), generating mist-like volatile products including levoglucosan. These volatiles were then exposed to DBD plasma (16–64 W for 1 or 3 min) under Ar flow. Despite the relatively low estimated gas temperatures below 240 °C in the plasma region, gas yields, including H2 and CO, increased markedly with discharge power, reaching up to 72.6 wt% at 64 W for 3 min—more than four times that obtained with IR heating alone. These results indicate that DBD plasma facilitates the gasification of pyrolysis volatiles under significantly lower temperature conditions than those required in conventional thermal gasification. This approach may offer a route toward low-temperature biomass gasification with reduced tar, coke, and clinker formation. Full article
Show Figures

Figure 1

27 pages, 2530 KiB  
Review
Recent Advances in Electrified Methane Pyrolysis Technologies for Turquoise Hydrogen Production
by Hossein Rohani, Galina Sudiiarova, Stephen Matthew Lyth and Arash Badakhsh
Energies 2025, 18(9), 2393; https://doi.org/10.3390/en18092393 - 7 May 2025
Viewed by 2507
Abstract
The global campaign to reach net zero will necessitate the use of hydrogen as an efficient way to store renewable electricity at large scale. Methane pyrolysis is rapidly gaining traction as an enabling technology to produce low-cost hydrogen without directly emitting carbon dioxide. [...] Read more.
The global campaign to reach net zero will necessitate the use of hydrogen as an efficient way to store renewable electricity at large scale. Methane pyrolysis is rapidly gaining traction as an enabling technology to produce low-cost hydrogen without directly emitting carbon dioxide. It offers a scalable and sustainable alternative to steam reforming whilst being compatible with existing infrastructure. The process most commonly uses thermal energy to decompose methane (CH4) into hydrogen gas (H2) and solid carbon (C). The electrification of this reaction is of great significance, allowing it to be driven by excess renewable electricity rather than fossil fuels, and eliminating indirect emissions. This review discusses the most recent technological advances in electrified methane pyrolysis and the relative merits of the mainstream reactor technologies in this space (plasma, microwave, fluidised bed, and direct resistive heating). This study also examines the economic viability of the process, considering energy costs, and the market potential of both turquoise hydrogen and solid carbon products. Whilst these technologies offer emission-free hydrogen production, challenges such as carbon deposition, reactor stability, and high energy consumption must be addressed for large-scale adoption. Future research should focus on process optimisation, advanced reactor designs, and policy frameworks to support commercialisation. With continued technological innovation and sufficient investment, electrified methane pyrolysis has the potential to become the primary route for sustainable production of hydrogen at industrial scale. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

23 pages, 9536 KiB  
Review
Prospects for the Valorization of Wind Turbine Blade Waste: Fiber Recovery and Recycling
by Regina Kalpokaitė-Dičkuvienė and Vilma Snapkauskienė
Sustainability 2025, 17(9), 4202; https://doi.org/10.3390/su17094202 - 6 May 2025
Cited by 1 | Viewed by 885
Abstract
The article reviews the literature on the potential utilization of decommissioned wind turbine blade waste (WTBW) in construction materials, including geopolymers, which are rarely discussed. The review indicates that only the mechanical processing of WTBW creates prerequisites for its possible use as fillers [...] Read more.
The article reviews the literature on the potential utilization of decommissioned wind turbine blade waste (WTBW) in construction materials, including geopolymers, which are rarely discussed. The review indicates that only the mechanical processing of WTBW creates prerequisites for its possible use as fillers in construction materials; however, adjustments to the composition of binding materials are necessary. Wind turbine blades (WTBs) are usually made from strong and durable composite materials, thus posing serious recycling and environmental challenges. Thermal process methods are promising approaches for recovering glass fibers from thermosets of WTBW through pyrolysis or converting WTBW into fibers via plasma processing. Preliminary durability studies of such recovered and recycled glass fibers have demonstrated their potential application in geopolymers or cement-based materials. Implementing these technologies would expand the waste management system, completing recycling and reuse solutions. To successfully adopt more environmentally friendly solutions, further development of geopolymer production processes and sustainable fiber recovery is recommended. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

20 pages, 6264 KiB  
Article
A Study on the Impact of Vanadium Doping on the Structural, Optical, and Optoelectrical Properties of ZnS Thin Films for Optoelectronic Applications
by H. Y. S. Al-Zahrani, I. M. El Radaf and A. Lahmar
Micromachines 2025, 16(3), 337; https://doi.org/10.3390/mi16030337 - 14 Mar 2025
Viewed by 671
Abstract
This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural [...] Read more.
This study details the manufacture of vanadium-doped ZnS thin films via a cost-effective spray pyrolysis technique at varying concentrations of vanadium (4, 8, and 12 wt.%). The XRD data demonstrate the hexagonal structure of the vanadium-doped ZnS layers. The analysis of their structural properties indicates that the crystallite size (D) of the vanadium-doped ZnS films decreased as the vanadium concentration rose. The strain and dislocation density of the analyzed films were enhanced by increasing the vanadium content from 4 to 12 wt.%. The linear optical results of the vanadium-doped ZnS films revealed that the refractive index values were improved from 2.31 to 3.49 by increasing the vanadium concentration in the analyzed samples. Further, the rise in vanadium content enhanced the absorption coefficient. The energy gap (Eg) study indicates that the vanadium-doped ZnS films exhibited direct optical transitions, with the Eg values diminishing from 3.74 to 3.15 eV as the vanadium concentration increased. The optoelectrical analysis shows that the rise in vanadium concentration increases the dispersion energy from 9.48 to 12.76 eV and reduces the oscillator energy from 3.69 to 2.17 eV. The optical carrier concentration of these layers was improved from 1.49 × 1053 to 2.15 × 1053, while the plasma frequency was decreased from 4.34 × 1013 to 3.67 × 1013 by boosting the vanadium concentration from 4 to 12 wt.%. Simultaneously, the increase in vanadium content improves the nonlinear optical parameters of the vanadium-doped ZnS films. The hot probe method identifies these samples as n-type semiconductors. The findings suggest that these samples serve as an innovative window layer. Full article
Show Figures

Figure 1

39 pages, 5294 KiB  
Review
Large Scale Synthesis of Carbon Dots and Their Applications: A Review
by Zhujun Huang and Lili Ren
Molecules 2025, 30(4), 774; https://doi.org/10.3390/molecules30040774 - 7 Feb 2025
Cited by 10 | Viewed by 2871
Abstract
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale [...] Read more.
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale synthesis methods into liquid-phase (hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia, aldol condensation polymerization), gas-phase (plasma synthesis), solid-phase (pyrolysis, oxidation/carbonization, ball milling), and emerging techniques (microfluidic, ultrasonic, molten-salt). Notably, microwave-assisted and solid-state synthesis methods show promise for industrial production due to their scalability and efficiency. Despite these advances, challenges persist in optimizing synthesis reproducibility, reducing energy consumption, and developing purification methods and quality control strategies. Addressing these issues will be critical for transitioning CDs from laboratory research to real-world applications. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

17 pages, 1193 KiB  
Review
Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and IoT: Strategies for Energy Byproducts and Resource Recovery
by Yishuang Li, Yanbei Duan, Zelong Wang, Ndungutse Jean Maurice, Mugabekazi Joie Claire, Nasir Ali and Abdulmoseen Segun Giwa
Processes 2025, 13(2), 321; https://doi.org/10.3390/pr13020321 - 24 Jan 2025
Cited by 1 | Viewed by 2633
Abstract
The escalating challenges of municipal solid waste (MSW) management, exacerbated by the classification of MSW as hazardous waste due to the presence of heavy metals (HMs) and toxic compounds, necessitate innovative treatment strategies. Plasma pyrolysis has emerged as a promising technology for converting [...] Read more.
The escalating challenges of municipal solid waste (MSW) management, exacerbated by the classification of MSW as hazardous waste due to the presence of heavy metals (HMs) and toxic compounds, necessitate innovative treatment strategies. Plasma pyrolysis has emerged as a promising technology for converting MSW into valuable energy byproducts, such as syngas, bio-oil, and slag, while significantly reducing waste volume. However, maintaining optimal operational parameters during the plasma pyrolysis process remains a complex challenge that can adversely affect both the efficiency and the quality and quantity of outputs. To address this issue, the integration of the Internet of Things (IoT) presents a transformative approach. By leveraging IoT technologies, real-time monitoring and advanced data analytics can be employed to optimize the operational conditions of plasma pyrolysis systems, ensuring consistent performance and maximizing resource recovery. This review explores the synergistic integration of plasma pyrolysis and IoT as a novel strategy for MSW management. The slag from plasma treatment can be efficiently channeled into anaerobic digestion (AD) systems, promoting resource recovery through biogas production and the generation of nutrient-rich digestate. This synergy not only mitigates the environmental impacts associated with traditional MSW disposal methods but also paves the way for sustainable energy recovery and resource management. Ultimately, this review presents a comprehensive framework for exploiting plasma pyrolysis and IoT in addressing the pressing issues of hazardous MSW, thereby fostering a circular economy through innovative waste-to-energy solutions. Full article
Show Figures

Figure 1

21 pages, 1095 KiB  
Review
Effects of Calcium-Oxide-Modified Biochar on the Anaerobic Digestion of Vacuum Blackwater
by Ping Fa Chiang, Teng Ling Zhang, Abdulmoseen Segun Giwa, Ndungutse Jean Maurice, Mugabekazi Joie Claire, Nasir Ali, Ehtisham Shafique and Mohammadtaghi Vakili
Molecules 2025, 30(2), 215; https://doi.org/10.3390/molecules30020215 - 7 Jan 2025
Cited by 3 | Viewed by 2083
Abstract
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and [...] Read more.
The increasing global population and urbanization have led to significant challenges in waste management, particularly concerning vacuum blackwater (VBW), which is the wastewater generated from vacuum toilets. Traditional treatment methods, such as landfilling and composting, often fall short in terms of efficiency and sustainability. Anaerobic digestion (AD) has emerged as a promising alternative, offering benefits such as biogas production and digestate generation. However, the performance of AD can be influenced by various factors, including the composition of the feedstock, pH levels, and the presence of inhibitors. This review investigates the effects of calcium oxide (CaO)-modified biochar (BC) as an additive in AD of VBW. Modifying BC with CaO enhances its alkalinity, nutrient retention, and adsorption capacity, creating a more favorable environment for microorganisms and promoting biogas production, which serves as a valuable source of heat, fuel and electricity. Additionally, the digestate can be processed through plasma pyrolysis to ensure the complete destruction of pathogens while promoting resource utilization. Plasma pyrolysis operates at extremely high temperatures, effectively sterilizing the digestate and eliminating both pathogens and harmful contaminants. This process not only guarantees the safety of the end products, but also transforms organic materials into valuable outputs such as syngas and slag. The syngas produced is a versatile energy carrier that can be utilized as a source of hydrogen, electricity, and heat, making it a valuable resource for various applications, including fuel cells and power generation. Furthermore, the slag has potential for reuse as an additive in the AD process or as a biofertilizer to enhance soil properties. This study aims to provide insights into the benefits of using modified BC as a co-substrate in AD systems. The findings will contribute to the development of more sustainable and efficient waste management strategies, addressing the challenges associated with VBW treatment while promoting renewable energy production. Full article
(This article belongs to the Topic Advances in Organic Solid Waste and Wastewater Management)
Show Figures

Graphical abstract

24 pages, 3409 KiB  
Article
Analysis of the Composition and Properties of Municipal Solid Waste from Various Cities in Kazakhstan
by Sergey A. Glazyrin, Yelaman K. Aibuldinov, Eldar E. Kopishev, Mikhail G. Zhumagulov and Zarina A. Bimurzina
Energies 2024, 17(24), 6426; https://doi.org/10.3390/en17246426 - 20 Dec 2024
Cited by 2 | Viewed by 2824
Abstract
According to the Bureau of National Statistics of the Republic of Kazakhstan, by the end of 2023, approximately 120 million tons of municipal solid waste (MSW) had been generated across over 3200 landfills in the country. About 4.5 million tons are generated annually, [...] Read more.
According to the Bureau of National Statistics of the Republic of Kazakhstan, by the end of 2023, approximately 120 million tons of municipal solid waste (MSW) had been generated across over 3200 landfills in the country. About 4.5 million tons are generated annually, of which only about 15% are recycled. The accumulation of both unsorted and sorted waste poses significant environmental risks, primarily through the generation of methane, a greenhouse gas that is 28 times more dangerous than carbon dioxide in contributing to the planet’s greenhouse effect over a century and 84 times more effective over a 20-year timeframe. The objective of this research is to examine the physicochemical composition, as well as the physical and thermal-chemical properties, of municipal solid waste from six cities in Kazakhstan: Astana, Almaty, Shymkent, Aktobe, Karaganda, and Ust-Kamenogorsk. Unlike existing studies, this study has a uniform waste sample, which includes the complete emptying of dozens of containers from different areas of the cities under consideration. Thus, the average composition of solid waste across the cities was maintained. Analysis of the physicochemical composition was conducted for both unsorted and sorted municipal solid waste from all cities, determining the total and analytical moisture content, ash content, and volatile matter, as well as the higher and lower calorific values. The calorific value of unsorted waste by city was as follows, in kJ/kg: Astana,8850.37; Almaty, 9244.57; Atobe, 9596.41; Shymkent, 9425.48; Karaganda, 8902.8; Ust-Kamenogorsk, 9669.07. The calorific value of sorted waste was as follows, in kJ/kg: Astana, 11,922.79; Almaty, 11,692.31; Atobe, 11,913.13; Shymkent, 12,494.38; Karaganda, 11,671.92; Ust-Kamenogorsk, 12,462.52. The efficiency of sorting was estimated as the first stage of MSW processing. The efficiency factor of the manual sorting process in practice was 0.4–0.8. The results obtained enable the evaluation of technologies for the effective management of municipal solid waste and facilitate experimental investigations into semi-industrial pyrolysis, combustion, plasma processing, and composting facilities. Full article
(This article belongs to the Topic Advances in Organic Solid Waste and Wastewater Management)
Show Figures

Figure 1

16 pages, 2223 KiB  
Article
The Gasification and Pyrolysis of Biomass Using a Plasma System
by Vladimir E. Messerle, Alexandr B. Ustimenko, Oleg A. Lavrichshev and Marina K. Nugman
Energies 2024, 17(22), 5594; https://doi.org/10.3390/en17225594 - 8 Nov 2024
Cited by 2 | Viewed by 1567
Abstract
This research paper analyzes the use of plasma technology to process biomass in the form of dried, mixed animal manure (dung containing 30% moisture). The irrational use of manure as well as huge quantities of it can negatively impact the environment. In comparison [...] Read more.
This research paper analyzes the use of plasma technology to process biomass in the form of dried, mixed animal manure (dung containing 30% moisture). The irrational use of manure as well as huge quantities of it can negatively impact the environment. In comparison to biomass fermentation, the plasma processing of manure can greatly enhance the production of fuel gas, primarily synthesis gas (CO + H2). The organic part of dung, including the moisture, is represented by carbon, hydrogen, and oxygen with a total concentration of 95.21%, while the mineral part is only 4.79%. A numerical analysis of dung plasma gasification and pyrolysis was conducted using the thermodynamic code TERRA. For 300–3000 K and 0.1 MPa pressure, the dung gasification and pyrolysis were calculated with 100% dung + 25% air and 100% dung + 25% nitrogen, respectively. Calculations were performed to determine the specific energy consumption of the process, the composition of the products of gasification, and the extent of the carbon gasification. At 1500 K, the dung gasification and pyrolysis consumed 1.28 and 1.33 kWh/kg of specific energy, respectively. A direct-current plasma torch with a power rating of 70 kW and a plasma reactor with a dung processing capacity of 50 kg/h were used for the dung processing experiments. The plasma reactor consumed 1.5 and 1.4 kWh/kg when pyrolyzing and gasifying the dung. A maximum temperature of 1887 K was reached in the reactor. The plasma pyrolysis of dung and the plasma–air gasification of dung produced gases with specific heats of combustion of 10,500 and 10,340 kJ/kg, respectively. Calculations and experiments on dung plasma processing showed satisfactory agreement. In this research, exergy analysis was used to quantify the efficiency of the plasma gasification of biomass. One of the research tasks was to develop a methodology and establish standards for the further standardization of monitoring the toxic emissions of dioxins, furans, and Benzo[a]pyrene. Full article
(This article belongs to the Special Issue Design and Implementation of Renewable Energy Systems—2nd Edition)
Show Figures

Graphical abstract

Back to TopTop