Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,865)

Search Parameters:
Keywords = plasma power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2393 KiB  
Article
Impact of Cu-Site Dopants on Thermoelectric Power Factor for Famatinite (Cu3SbS4) Nanomaterials
by Jacob E. Daniel, Evan Watkins, Mitchel S. Jensen, Allen Benton, Apparao Rao, Sriparna Bhattacharya and Mary E. Anderson
Electron. Mater. 2025, 6(3), 10; https://doi.org/10.3390/electronicmat6030010 - 6 Aug 2025
Abstract
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, [...] Read more.
Famatinite (Cu3SbS4) is an earth-abundant, nontoxic material with potential for thermoelectric energy generation applications. Herein, rapid, energy-efficient, and facile one-pot modified polyol synthesis was utilized to produce gram-scale quantities of phase-pure famatinite (Cu2.7M0.3SbS4, M = Cu, Zn, Mn) nanoparticles (diameter 20–30 nm) with controllable and stoichiometric incorporation of transition metal dopants on the Cu-site. To produce pellets for thermoelectric characterization, the densification process by spark plasma sintering was optimized for individual samples based on thermal stability determined using differential scanning calorimetry and thermogravimetric analysis. Electronic transport properties of undoped and doped famatinite nanoparticles were studied from 225–575 K, and the thermoelectric power factor was calculated. This is the first time electronic transport properties of famatinite doped with Zn or Mn have been studied. All famatinite samples had similar resistivities (>0.8 mΩ·m) in the measured temperature range. However, the Mn-doped famatinite nanomaterials exhibited a thermoelectric power factor of 10.3 mW·m−1·K−1 at 575 K, which represented a significant increase relative to the undoped nanomaterials and Zn-doped nanomaterials engendered by an elevated Seebeck coefficient of ~220 µV·K−1 at 575 K. Future investigations into optimizing the thermoelectric properties of Mn-doped famatinite nanomaterials are promising avenues of research for producing low-cost, environmentally friendly, high-performing thermoelectric materials. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials—Third Edition)
Show Figures

Figure 1

25 pages, 4865 KiB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 - 1 Aug 2025
Viewed by 326
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

22 pages, 1287 KiB  
Article
Comparative Analysis of the Gardner Equation in Plasma Physics Using Analytical and Neural Network Methods
by Zain Majeed, Adil Jhangeer, F. M. Mahomed, Hassan Almusawa and F. D. Zaman
Symmetry 2025, 17(8), 1218; https://doi.org/10.3390/sym17081218 - 1 Aug 2025
Viewed by 125
Abstract
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result [...] Read more.
In the present paper, a mathematical analysis of the Gardner equation with varying coefficients has been performed to give a more realistic model of physical phenomena, especially in regards to plasma physics. First, a Lie symmetry analysis was carried out, as a result of which a symmetry classification following the different representations of the variable coefficients was systematically derived. The reduced ordinary differential equation obtained is solved using the power-series method and solutions to the equation are represented graphically to give an idea of their dynamical behavior. Moreover, a fully connected neural network has been included as an efficient computation method to deal with the complexity of the reduced equation, by using traveling-wave transformation. The validity and correctness of the solutions provided by the neural networks have been rigorously tested and the solutions provided by the neural networks have been thoroughly compared with those generated by the Runge–Kutta method, which is a conventional and well-recognized numerical method. The impact of a variation in the loss function of different coefficients has also been discussed, and it has also been found that the dispersive coefficient affects the convergence rate of the loss contribution considerably compared to the other coefficients. The results of the current work can be used to improve knowledge on the nonlinear dynamics of waves in plasma physics. They also show how efficient it is to combine the approaches, which consists in the use of analytical and semi-analytical methods and methods based on neural networks, to solve nonlinear differential equations with variable coefficients of a complex nature. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

17 pages, 2920 KiB  
Article
Device Reliability Analysis of NNBI Beam Source System Based on Fault Tree
by Qian Cao and Lizhen Liang
Appl. Sci. 2025, 15(15), 8556; https://doi.org/10.3390/app15158556 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
Negative Ion Source Neutral beam Injection (NNBI), as a critical auxiliary heating system for magnetic confinement fusion devices, directly affects the plasma heating efficiency of tokamak devices through the reliability of its beam source system. The single-shot experiment constitutes a significant experimental program [...] Read more.
Negative Ion Source Neutral beam Injection (NNBI), as a critical auxiliary heating system for magnetic confinement fusion devices, directly affects the plasma heating efficiency of tokamak devices through the reliability of its beam source system. The single-shot experiment constitutes a significant experimental program for NNBI. This study addresses the frequent equipment failures encountered by the NNBI beam source system during a cycle of experiments, employing fault tree analysis (FTA) to conduct a systematic reliability assessment. Utilizing the AutoFTA 3.9 software platform, a fault tree model of the beam source system was established. Minimal cut set analysis was performed to identify the system’s weak points. The research employed AutoFTA 3.9 for both qualitative analysis and quantitative calculations, obtaining the failure probabilities of critical components. Furthermore, the F-V importance measure and mean time between failures (MTBF) were applied to analyze the system. This provides a theoretical basis and practical engineering guidance for enhancing the operational reliability of the NNBI system. The evaluation methodology developed in this study can be extended and applied to the reliability analysis of other high-power particle acceleration systems. Full article
Show Figures

Figure 1

22 pages, 3360 KiB  
Article
Effect of Atmospheric Cold Plasma Treatment on the Microorganism Growth, Diversity, and Quality of Coconut Water During Refrigerator Storage
by Lixian Zeng, Wenyue Gu, Yuanyuan Wang, Wentao Deng, Jiamei Wang and Liming Zhang
Foods 2025, 14(15), 2709; https://doi.org/10.3390/foods14152709 - 1 Aug 2025
Viewed by 207
Abstract
To study the effect of cold plasma (CP) on the refrigerator shelf life of coconut water, microorganism growth and diversity and physicochemical properties were investigated. Results indicated that CP treatment did not cause significant color changes in coconut water, with turbidity remaining lower [...] Read more.
To study the effect of cold plasma (CP) on the refrigerator shelf life of coconut water, microorganism growth and diversity and physicochemical properties were investigated. Results indicated that CP treatment did not cause significant color changes in coconut water, with turbidity remaining lower than the control even after 6 days of storage. Enzymatic activity analysis revealed reduced polyphenol oxidase (PPO) and peroxidase (POD) levels in treated samples. Specifically, the 12 s CP treatment resulted in the lowest antioxidant capacity values: 15.77 Fe2+/g for ferric reducing antioxidant power (FRAP), 37.15% for DPPH radical scavenging, and 39.51% for ABTS+ radical scavenging. Microbial enumeration showed that extended CP treatment effectively inhibited the growth of total viable counts, psychrophilic bacteria, lactic acid bacteria, and yeast. High-throughput sequencing identified Leuconostoc, Carnobacterium, and Lactobacillus as the dominant bacterial genera. During storage, Carnobacterium was the primary genus in the early stage, while Leuconostoc emerged as the dominant genus by the end of the storage period. In summary, CP as an effective non-thermal technology was able to maintain quality and antioxidant capacity, inhibit microbial growth, and delay the spoilage in coconut water to help extend the refrigerated shelf life of the product. Full article
Show Figures

Figure 1

17 pages, 438 KiB  
Article
Analytic Solutions and Conservation Laws of a 2D Generalized Fifth-Order KdV Equation with Power Law Nonlinearity Describing Motions in Shallow Water Under a Gravity Field of Long Waves
by Chaudry Masood Khalique and Boikanyo Pretty Sebogodi
AppliedMath 2025, 5(3), 96; https://doi.org/10.3390/appliedmath5030096 (registering DOI) - 31 Jul 2025
Viewed by 110
Abstract
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly [...] Read more.
The Korteweg–de Vries (KdV) equation is a nonlinear evolution equation that reflects a wide variety of dispersive wave occurrences with limited amplitude. It has also been used to describe a range of major physical phenomena, such as shallow water waves that interact weakly and nonlinearly, acoustic waves on a crystal lattice, lengthy internal waves in density-graded oceans, and ion acoustic waves in plasma. The KdV equation is one of the most well-known soliton models, and it provides a good platform for further research into other equations. The KdV equation has several forms. The aim of this study is to introduce and investigate a (2+1)-dimensional generalized fifth-order KdV equation with power law nonlinearity (gFKdVp). The research methodology employed is the Lie group analysis. Using the point symmetries of the gFKdVp equation, we transform this equation into several nonlinear ordinary differential equations (ODEs), which we solve by employing different strategies that include Kudryashov’s method, the (G/G) expansion method, and the power series expansion method. To demonstrate the physical behavior of the equation, 3D, density, and 2D graphs of the obtained solutions are presented. Finally, utilizing the multiplier technique and Ibragimov’s method, we derive conserved vectors of the gFKdVp equation. These include the conservation of energy and momentum. Thus, the major conclusion of the study is that analytic solutions and conservation laws of the gFKdVp equation are determined. Full article
Show Figures

Figure 1

11 pages, 343 KiB  
Article
Endoreversible Stirling Cycles: Plasma Engines at Maximal Power
by Gregory Behrendt and Sebastian Deffner
Entropy 2025, 27(8), 807; https://doi.org/10.3390/e27080807 - 28 Jul 2025
Viewed by 448
Abstract
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually [...] Read more.
Endoreversible engine cycles are a cornerstone of finite-time thermodynamics. We show that endoreversible Stirling engines operating with a one-component plasma as a working medium run at maximal power output with the Curzon–Ahlborn efficiency. As a main result, we elucidate that this is actually a consequence of the fact that the caloric equation of state depends only linearly on temperature and only additively on volume. In particular, neither the exact form of the mechanical equation of state nor the full fundamental relation are required. Thus, our findings immediately generalize to a larger class of working plasmas, far beyond simple ideal gases. In addition, we show that for plasmas described by the photonic equation of state, the efficiency is significantly lower. This is in stark contrast to endoreversible Otto cycles, for which photonic engines have an efficiency larger than the Curzon–Ahlborn efficiency. Full article
(This article belongs to the Special Issue The First Half Century of Finite-Time Thermodynamics)
Show Figures

Figure 1

15 pages, 1252 KiB  
Article
Origanum vulgare L. Essential Oil Mitigates Palmitic Acid-Induced Impairments in Insulin Signaling and Glucose Uptake in Human Adipocytes
by Andrea Müller, Jonathan Martinez-Pinto, Claudia Foerster, Mario Díaz-Dosque, Liliam Monsalve, Pedro Cisternas, Barbara Angel and Paulina Ormazabal
Pharmaceuticals 2025, 18(8), 1128; https://doi.org/10.3390/ph18081128 - 28 Jul 2025
Viewed by 304
Abstract
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is [...] Read more.
Background: Obesity is associated with insulin resistance (IR) and characterized by impaired activation of the PI3K/AKT route and glucose uptake. Elevated plasma levels of palmitic acid (PA) diminish insulin signaling in vitro and in vivo. Origanum vulgare L. essential oil (OVEO) is rich in monoterpenes with protective effects against IR. Objective: The study aimed to assess total phenols content and antioxidant activity of OVEO and its cytotoxicity, as well as its effect on insulin signaling and glucose uptake in PA-treated adipocytes. Methods: The quantification of total phenolic content was determined using the Folin–Ciocalteu method, while the antioxidant capacity of OVEO was assessed by DPPH (2,2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods. The cytotoxicity of OVEO (0.1–10 µg/mL) was assessed using the MTS assay. SW872 adipocytes were incubated with 0.4 mM PA for 24 h, with or without a 2 h preincubation of OVEO, and then stimulated with insulin (100 nM, 10 min) or a vehicle. Phosphorylation of Tyr-IRS-1, Ser-AKT, and Thr-AS160 was analyzed by Western blot, and glucose uptake was measured using 2-NBDG. Results: OVEO contained phenols and exhibits antioxidant capacity. All the concentrations of OVEO assessed were not cytotoxic on SW872 adipocytes. PA decreased basal phospho-AS160 as well as insulin-stimulated phospho-IRS1, phospho-AKT, phospho-AS160 and glucose uptake, while OVEO co-treatment enhanced these markers. Conclusions: These findings suggest a beneficial effect of OVEO on the PA-impaired insulin pathway and glucose uptake, which might be explained by its phenolic content and antioxidant capacity, highlighting its potential as a complementary therapeutic agent for IR and related metabolic disorders. Full article
Show Figures

Graphical abstract

18 pages, 4643 KiB  
Article
The Effect of Non-Transferred Plasma Torch Electrodes on Plasma Jet: A Computational Study
by Sai Likitha Siddanathi, Lars-Göran Westerberg, Hans O. Åkerstedt, Henrik Wiinikka and Alexey Sepman
Appl. Sci. 2025, 15(15), 8367; https://doi.org/10.3390/app15158367 - 28 Jul 2025
Viewed by 192
Abstract
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on [...] Read more.
This study explores how different electrode shapes affect plasma flow in a non-transferred plasma torch. Various cathode geometries—including conical, tapered, flat, and cylindrical—were examined alongside stepped anode designs. A 2D axisymmetric computational model was employed to assess the impact of these shapes on plasma behavior. The results reveal that different cathode designs require varying current levels to maintain a consistent power output. This paper presents the changes in electric conductivity and electric potential for different input currents across the arc formation path (from the cathode tip to the anode beginning) and relating to Ohm’s law. Significant variations in plasma jet velocity and temperature were observed, especially near the cathode tip. The study concludes by evaluating thermal efficiency across geometry configurations. Flat cathodes demonstrated the highest efficiency, while the anode shape had minimal impact. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

24 pages, 1990 KiB  
Article
Metabolomic Analysis of Breast Cancer in Colombian Patients: Exploring Molecular Signatures in Different Subtypes and Stages
by Lizeth León-Carreño, Daniel Pardo-Rodriguez, Andrea Del Pilar Hernandez-Rodriguez, Juliana Ramírez-Prieto, Gabriela López-Molina, Ana G. Claros, Daniela Cortes-Guerra, Julian Alberto-Camargo, Wilson Rubiano-Forero, Adrian Sandoval-Hernandez, Mónica P. Cala and Alejandro Ondo-Mendez
Int. J. Mol. Sci. 2025, 26(15), 7230; https://doi.org/10.3390/ijms26157230 - 26 Jul 2025
Viewed by 372
Abstract
Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a [...] Read more.
Breast cancer (BC) is a neoplasm characterized by high heterogeneity and is influenced by intrinsic molecular subtypes and clinical stage, aspects that remain underexplored in the Colombian population. This study aimed to characterize metabolic alterations associated with subtypes and disease progression in a group of newly diagnosed, treatment-naive Colombian women using an untargeted metabolomics approach. To improve metabolite coverage, samples were analyzed using LC-QTOF-MS and GC-QTOF-MS, along with amino acid profiling. The Luminal B subtype exhibited elevated levels of long-chain acylcarnitines and higher free fatty acid concentrations than the other subtypes. It also presented elevated levels of carbohydrates and essential glycolytic intermediates, suggesting that this subtype may adopt a hybrid metabolic phenotype characterized by increased glycolytic flux as well as enhanced fatty acid catabolism. Tumor, Node, and Metastasis (TNM) staging analysis revealed progressive metabolic reprogramming of BC. In advanced stages, a sustained increase in phosphatidylcholines and a decrease in lysophosphatidylcholines were observed, reflecting lipid alterations associated with key roles in tumor progression. In early stages (I-II), plasma metabolites with high discriminatory power were identified, such as glutamic acid, ribose, and glycerol, which are associated with dysfunctions in energy and carbohydrate metabolism. These results highlight metabolomics as a promising tool for the early diagnosis, clinical follow-up, and molecular characterization of BC. Full article
(This article belongs to the Special Issue Molecular Crosstalk in Breast Cancer Progression and Therapies)
Show Figures

Graphical abstract

18 pages, 6673 KiB  
Article
Tribological Properties of MoN/TiN Multilayer Coatings Prepared via High-Power Impulse Magnetron Sputtering
by Jiaming Xu, Ping Zhang, Jianjian Yu, Puyou Ying, Tao Yang, Jianbo Wu, Tianle Wang, Nikolai Myshkin and Vladimir Levchenko
Lubricants 2025, 13(8), 319; https://doi.org/10.3390/lubricants13080319 - 22 Jul 2025
Viewed by 370
Abstract
To address the limitations of single-layer nitride coatings, such as poor load adaptability and low long-term durability, MoN/TiN multilayer coatings were prepared via high-power impulse magnetron sputtering (HiPIMS). HiPIMS produces highly ionized plasmas that enable intense ion bombardment, yielding nitride films with enhanced [...] Read more.
To address the limitations of single-layer nitride coatings, such as poor load adaptability and low long-term durability, MoN/TiN multilayer coatings were prepared via high-power impulse magnetron sputtering (HiPIMS). HiPIMS produces highly ionized plasmas that enable intense ion bombardment, yielding nitride films with enhanced mechanical strength, durability, and thermal stability versus conventional methods. The multilayer coating demonstrated a low coefficient of friction (COF, ~0.4) and wear rate (1.31 × 10−7 mm3/[N·m]). In contrast, both TiN and MoN coatings failed at 5 N and 10 N loads, respectively. Under increasing loads, the multilayer coating maintained stable wear rates (1.84–3.06 × 10−7 mm3/[N·m]) below 20 N, and ultimately failed at 25 N. Furthermore, the MoN layer contributes to COF reduction. Grazing-incidence X-ray diffraction analysis confirmed the enhanced crystallographic stability of the multilayer coating, thereby revealing a dominant (111) orientation. The multilayer architecture suppresses crack propagation while effectively balancing hardness and toughness, offering a promising design for extreme-load applications. Full article
Show Figures

Figure 1

22 pages, 527 KiB  
Article
Impact of Chronic Nitrate and Citrulline Malate Supplementation on Performance and Recovery in Spanish Professional Female Soccer Players: A Randomized Controlled Trial
by Marta Ramírez-Munera, Raúl Arcusa, Francisco Javier López-Román, Vicente Ávila-Gandía, Silvia Pérez-Piñero, Juan Carlos Muñoz-Carrillo, Antonio Jesús Luque-Rubia and Javier Marhuenda
Nutrients 2025, 17(14), 2381; https://doi.org/10.3390/nu17142381 - 21 Jul 2025
Viewed by 687
Abstract
Background: Pre-season training is critical for developing tolerance to high physical demands in professional soccer, and nitric oxide (NO) precursors such as dietary nitrate (NO3) and citrulline malate (CM) can support performance and recovery during this demanding phase. This [...] Read more.
Background: Pre-season training is critical for developing tolerance to high physical demands in professional soccer, and nitric oxide (NO) precursors such as dietary nitrate (NO3) and citrulline malate (CM) can support performance and recovery during this demanding phase. This study aimed to examine the effects of a four-week supplementation protocol combining 500 mg of NO3 from amaranth extract and 8 g of CM (NIT + CM) on external training load and post-match recovery in professional female soccer players during pre-season. Methods: A randomized, double-blind, placebo-controlled trial was conducted with 34 female soccer players who received either the NIT + CM product or a placebo for four weeks during pre-season. Global positioning system (GPS)-derived external load was recorded throughout the intervention. Performance tests—a countermovement jump (CMJ) test and the Wingate anaerobic test (WAnT)—and blood sampling for plasma NO3 and nitrite (NO2) concentrations were conducted at baseline and the day after a competitive match. Results: The supplementation with NIT + CM increased maximal speed (Vmax) throughout training and match play. During post-match testing, the NIT + CM group exhibited a significantly smaller decline in mean (Pmean) and minimum (Pmin) power during the WAnT, along with reduced power loss in both the first (0–15 s) and second (15–30 s) intervals. Plasma NO3 concentrations significantly increased from baseline in the NIT + CM group and remained elevated 24 h after the final dose, confirming sustained systemic exposure. Conclusions: Chronic NIT + CM supplementation may enhance Vmax and help preserve anaerobic performance the day after a match. These effects could reflect improved tolerance to high training loads and sustained NO3 availability during recovery. Full article
Show Figures

Graphical abstract

12 pages, 1874 KiB  
Article
Influence of 50 Hz and 20 kHz Plasma Generator Frequency on Ammonia Decomposition for Hydrogen Recovery
by Michalina Perron, Mateusz Wiosna, Wojciech Gajewski, Krzysztof Krawczyk and Michał Młotek
Energies 2025, 18(14), 3841; https://doi.org/10.3390/en18143841 - 19 Jul 2025
Viewed by 271
Abstract
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient [...] Read more.
The development of alternative energy is crucial to realizing the goals of the Paris Agreement. Hydrogen is a key energy carrier, and ammonia is considered its practical storage medium due to its high H2 content and efficient storage and transportation. However, efficient NH3 decomposition methods are needed to recover stored hydrogen. Plasma-assisted decomposition offers a potential solution, but high energy consumption, mainly due to inefficient power supply systems, remains a challenge. This study examines the impact of varying the driving frequency of a gliding discharge plasma system on ammonia decomposition, comparing low-frequency 50 Hz and high-frequency 20 kHz power supplies. Results show that high-frequency plasma enhances electron density and energy distribution, increasing the amount of vibrationally excited nitrogen molecules. This improves catalyst activation, leading to higher ammonia conversion and hydrogen production. Compared to the thyristor-powered system, the high-frequency system increased ammonia decomposition productivity by 30% and reduced energy consumption by 36% using a coprecipitated catalyst. These findings emphasize the importance of a plasma generator optimizing plasma-assisted ammonia decomposition and improving efficiency in hydrogen production. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

26 pages, 6652 KiB  
Article
Platelet-Rich Plasma (PRP) Mitigates Silver Nanoparticle (AgNP)-Induced Pulmonary Fibrosis via iNOS/CD68/CASP3/TWIST1 Regulation: An Experimental Study and Bioinformatics Analysis
by Shaimaa R. Abdelmohsen, Ranya M. Abdelgalil, Asmaa M. Elmaghraby, Amira M. Negm, Reham Hammad, Eleni K. Efthimiadou, Sara Seriah, Hekmat M. El Magdoub, Hemat Elariny, Islam Farrag, Nahla El Shenawy, Doaa Abdelrahaman, Hussain Almalki, Ahmed A. Askar, Marwa M. El-Mosely, Fatma El Zahraa Abd El Hakam and Nadia M. Hamdy
Int. J. Mol. Sci. 2025, 26(14), 6782; https://doi.org/10.3390/ijms26146782 - 15 Jul 2025
Viewed by 423
Abstract
Platelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has [...] Read more.
Platelet-rich plasma (PRP) has become an increasingly valuable biologic approach for personalized regenerative medicine because of its potent anti-inflammatory/healing effects. It is thought to be an excellent source of growth factors that can promote tissue healing and lessen fibrosis. Although this treatment has demonstrated effectiveness in numerous disease areas, its impact on pulmonary fibrosis (PF) caused by silver nanoparticles (AgNPs) via its antiapoptotic effects remains to be explored. AgNPs were synthesized biologically by Bacillus megaterium ATCC 55000. AgNP characterization was carried out via UV–Vis spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) imaging to reveal monodispersed spheres with a mean diameter of 45.17 nm. A total of 48 male Wistar rats divided into six groups, with 8 rats per group, were used in the current study on the basis of sample size and power. The groups used were the PRP donor, control, AgNP, AgNP + PRP, AgNP + dexamethasone (Dexa) rat groups, and a recovery group. Body weights, hydroxyproline (HP) levels, and CASP3 and TWIST1 gene expression levels were assessed. H&E and Sirius Red staining were performed. Immunohistochemical studies for inducible nitric oxide synthase (iNOS) and cluster of differentiation 68 (CD68) with histomorphometry were conducted. A significant reduction in body weight (BWt) was noted in the AgNP group compared with the AgNP + PRP group (p < 0.001). HP, CASP3, and TWIST1 expression levels were significantly increased by AgNPs but decreased upon PRP (p < 0.001) treatment. Compared with those in the control group, the adverse effects of AgNPs included PF, lung alveolar collapse, thickening of the interalveolar septa, widespread lymphocytic infiltration, increased alveolar macrophage CD68 expression, and iNOS positivity in the cells lining the alveoli. This work revealed that PRP treatment markedly improved the histopathological and immunohistochemical findings observed in the AgNP group in a manner comparable to that of the Dexa. In conclusion, these results demonstrated the therapeutic potential of PRP in a PF rat model induced via AgNPs. This study revealed that PRP treatment significantly improved the histopathological and immunohistochemical alterations observed in the AgNP-induced group, with effects comparable to those of the Dexa. In conclusion, these findings highlight the therapeutic potential of PRP in a rat model of AgNP-induced PF. Full article
(This article belongs to the Special Issue New Advances in Cancer Genomics)
Show Figures

Figure 1

Back to TopTop