Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (173)

Search Parameters:
Keywords = plasma nitrite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 449 KiB  
Article
Decreased Endogenous Nitric Oxide Production in Patients with Acute Decompensated Heart Failure with Preserved Ejection Fraction
by Roman Falls, Bing H. Wang, Sara Vogrin and Christopher J. Neil
J. Clin. Med. 2025, 14(17), 5928; https://doi.org/10.3390/jcm14175928 - 22 Aug 2025
Viewed by 45
Abstract
Background: Heart failure with a preserved ejection fraction (HFpEF) accounts for approximately 50% of patients with heart failure. Endothelial dysfunction has been documented in HFpEF, and impaired nitric oxide (NO) production may be a contributing factor in patients decompensating from chronic to acute [...] Read more.
Background: Heart failure with a preserved ejection fraction (HFpEF) accounts for approximately 50% of patients with heart failure. Endothelial dysfunction has been documented in HFpEF, and impaired nitric oxide (NO) production may be a contributing factor in patients decompensating from chronic to acute HFpEF. Plasma nitrite (NO2), but not plasma nitrate (NO3), is highly reflective of local nitric oxide production. However, plasma NO2 levels in relation to chronic and acute HFpEF patients have not been studied. Methods: Plasma NO2 and NO3 concentrations were quantified with gas-phase chemiluminescence. Plasma asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO production, and arterial stiffness were also quantified. Samples were collected from 19 participants with chronic HFpEF and 16 participants with acute HFpEF. Results: Plasma NO2 concentrations were lower in participants with acute HFpEF when compared to the chronic HFpEF group (p = 0.022). NO3, ADMA and indices of arterial stiffness did not display any significant between-group differences. Conclusions: We present novel NO2 data, which has not been previously quantified in patients with acute HFpEF. Our results indicate that plasma concentrations of NO2 may be decreased in patients with acute HFpEF compared to patients with chronic HFpEF, suggesting a dysregulated NO pathway. Further studies are required to confirm these findings in this patient population. Full article
Show Figures

Figure 1

22 pages, 527 KiB  
Article
Impact of Chronic Nitrate and Citrulline Malate Supplementation on Performance and Recovery in Spanish Professional Female Soccer Players: A Randomized Controlled Trial
by Marta Ramírez-Munera, Raúl Arcusa, Francisco Javier López-Román, Vicente Ávila-Gandía, Silvia Pérez-Piñero, Juan Carlos Muñoz-Carrillo, Antonio Jesús Luque-Rubia and Javier Marhuenda
Nutrients 2025, 17(14), 2381; https://doi.org/10.3390/nu17142381 - 21 Jul 2025
Viewed by 1017
Abstract
Background: Pre-season training is critical for developing tolerance to high physical demands in professional soccer, and nitric oxide (NO) precursors such as dietary nitrate (NO3) and citrulline malate (CM) can support performance and recovery during this demanding phase. This [...] Read more.
Background: Pre-season training is critical for developing tolerance to high physical demands in professional soccer, and nitric oxide (NO) precursors such as dietary nitrate (NO3) and citrulline malate (CM) can support performance and recovery during this demanding phase. This study aimed to examine the effects of a four-week supplementation protocol combining 500 mg of NO3 from amaranth extract and 8 g of CM (NIT + CM) on external training load and post-match recovery in professional female soccer players during pre-season. Methods: A randomized, double-blind, placebo-controlled trial was conducted with 34 female soccer players who received either the NIT + CM product or a placebo for four weeks during pre-season. Global positioning system (GPS)-derived external load was recorded throughout the intervention. Performance tests—a countermovement jump (CMJ) test and the Wingate anaerobic test (WAnT)—and blood sampling for plasma NO3 and nitrite (NO2) concentrations were conducted at baseline and the day after a competitive match. Results: The supplementation with NIT + CM increased maximal speed (Vmax) throughout training and match play. During post-match testing, the NIT + CM group exhibited a significantly smaller decline in mean (Pmean) and minimum (Pmin) power during the WAnT, along with reduced power loss in both the first (0–15 s) and second (15–30 s) intervals. Plasma NO3 concentrations significantly increased from baseline in the NIT + CM group and remained elevated 24 h after the final dose, confirming sustained systemic exposure. Conclusions: Chronic NIT + CM supplementation may enhance Vmax and help preserve anaerobic performance the day after a match. These effects could reflect improved tolerance to high training loads and sustained NO3 availability during recovery. Full article
Show Figures

Graphical abstract

38 pages, 783 KiB  
Review
Clean-Label Strategies for the Replacement of Nitrite, Ascorbate, and Phosphate in Meat Products: A Review
by Minhyeong Kim, Su Min Bae, Yeongmi Yoo, Jibin Park and Jong Youn Jeong
Foods 2025, 14(14), 2442; https://doi.org/10.3390/foods14142442 - 11 Jul 2025
Viewed by 905
Abstract
The clean-label movement has markedly increased consumer demand for meat products free from synthetic additives, such as sodium nitrite, ascorbate, and phosphate. This review summarizes strategies to replace these additives with natural alternatives while preserving the functional and quality properties of traditionally cured [...] Read more.
The clean-label movement has markedly increased consumer demand for meat products free from synthetic additives, such as sodium nitrite, ascorbate, and phosphate. This review summarizes strategies to replace these additives with natural alternatives while preserving the functional and quality properties of traditionally cured meats. Nitrite replacement commonly employs nitrate-rich vegetables, alongside nitrate-reducing starter cultures or pre-converted nitrite powders for adequate nitric oxide production and meat pigment stabilization. Ascorbate substitutes include vitamin C-rich materials and polyphenol-based antioxidants from green tea and rosemary, supporting nitrite reduction and contributing to meat pigment and oxidative stability. To compensate for phosphate functions, natural substitutes such as hydrocolloids, dietary fibers, protein isolates, and calcium powders from eggshells or oyster shells have shown partial success in restoring water-holding capacity, pH buffering, and textural integrity. In addition, non-thermal processing technologies, such as high-pressure processing, ultrasound, and cold plasma are explored as complementary strategies to enhance the efficacy of natural ingredients and support industrial scalability. However, challenges persist regarding ingredient variability, dose-dependent effects, and consistency in functional performance. Future research should focus on synergistic ingredient combinations, formulation standardization, and scalable application in industrial production to ensure the production of high-quality clean-label meat products. Full article
Show Figures

Figure 1

12 pages, 981 KiB  
Article
The Pharmacokinetics of Saliva and Plasma N-Oxides Following a Single Administration of a Plant-Based Bioequivalent Inorganic Nitrate Oral Supplement in an Open-Label, Phase 1, Single-Arm Study
by Macy E. Stahl, Emily E. Grammer, Jason D. Allen and Arthur Weltman
J. Clin. Med. 2025, 14(13), 4581; https://doi.org/10.3390/jcm14134581 - 27 Jun 2025
Viewed by 552
Abstract
Background/Objective: Hypertension and other modifiable risk factors for cardiovascular disease are characterized by a dysfunctional vascular endothelium and decreased nitric oxide (NO) bioavailability. The oral supplementation of inorganic nitrate (NO3) has been shown to increase the salivary and plasma nitrite [...] Read more.
Background/Objective: Hypertension and other modifiable risk factors for cardiovascular disease are characterized by a dysfunctional vascular endothelium and decreased nitric oxide (NO) bioavailability. The oral supplementation of inorganic nitrate (NO3) has been shown to increase the salivary and plasma nitrite (NO2), a precursor to NO, though there may be significant variation in the pharmacokinetics of this process between different supplements. The purpose of this open-label, phase 1, single-arm study was to investigate the pharmacokinetic profile of the plasma and salivary NO3 and NO2 concentrations following the administration of a single serving of a plant-based bioequivalent inorganic nitrate oral supplement (“Berkeley Life Nitric Oxide Foundation Capsules”, Chicago, IL, USA). Methods: Nine males and three females (age: 33 ± 15 years; BP: 129 ± 6 mmHg; BMI: 27.58 ± 4.27 kg/m2) participated in the protocol. Following the baseline collection of saliva and plasma samples, the participants consumed 314 mg (two capsules) of the supplement. Saliva and plasma samples were collected at 2 h, 4 h, 8 h, and 24 h post consumption. Results: The peak salivary NO3 (13,326.12 ± 4926.60 µM), salivary NO2 (1375.27 ± 679.28 µM), plasma NO3 (498.37 ± 168.89 µM), and plasma NO2 (231.66 ± 97.26 nM) were observed at 2 h post-supplementation (p < 0.01 vs. the baseline). The concentrations of the salivary and plasma NO2 remained elevated at 8 h after administration (220% and 50% above the baseline, respectively), and the concentrations of the salivary and plasma NO3 remained elevated at 24 h after administration (22% and 50% above the baseline, respectively). Conclusions: These data suggest that a single serving of “Berkeley Life Nitric Oxide Foundation Capsules” taken once to twice per day is a viable strategy to provide sustained salivary and plasma NO3 and NO2 availability over 24 h and therefore may provide a viable approach for long-term blood pressure maintenance. Full article
Show Figures

Figure 1

12 pages, 30669 KiB  
Article
Multimodal Comparison of Cold Atmospheric Plasma Sources for Disinfection
by Leonardo Zampieri, Rita Agus, Brayden Myers, Roberto Cavazzana, Luigi Cordaro, Gianluca De Masi, Matteo Zuin, Claudia Riccardi, Ivo Furno and Emilio Martines
Appl. Sci. 2025, 15(13), 7037; https://doi.org/10.3390/app15137037 - 23 Jun 2025
Viewed by 541
Abstract
While atmospheric pressure plasma sources are emerging as potentially innovative instruments in medicine, some aspects of the interaction between plasma and biological substrates remain unclear. The high diversity in both sources and applications in the literature, and the lack of a systematic testing [...] Read more.
While atmospheric pressure plasma sources are emerging as potentially innovative instruments in medicine, some aspects of the interaction between plasma and biological substrates remain unclear. The high diversity in both sources and applications in the literature, and the lack of a systematic testing protocol, has resulted in a wide variety of devices that cannot be efficiently compared with one another. In this work, an integrated benchmark involving physical, chemical, and biological diagnostics is proposed. The setup is designed to be stable and fixed, while remaining adaptable to different sources. Three different sources, for a total of five configurations, are compared, demonstrating the possibility of obtaining multimodal data. Comparing the biological effects in terms of E. coli abatement between direct and indirect treatments allowed for the exclusion of short-timescale species and phenomena to have a key role in the abatement. The chemical characterisation describes the equilibrium of reactive oxygen and nitrogen species in treated samples, whose presence in the water has been found to be coherent with the plasma operating gas and the nitrogen vibrational temperatures. Nitrate, nitrite and peroxide are excluded from having an autonomous role in the inactivation biochemistry, suggesting the presence of a synergistic effect. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

23 pages, 7027 KiB  
Article
Plasma-Activated Water (PAW) Decontamination of Foodborne Bacteria in Shucked Oyster Meats Using a Compact Flow-Through Generator
by Phuthidhorn Thana, Dheerawan Boonyawan, Mathin Jaikua, Woranika Promsart, Athitta Rueangwong, Sunisa Ungwiwatkul, Kanyarak Prasertboonyai and Jakkrawut Maitip
Foods 2025, 14(9), 1502; https://doi.org/10.3390/foods14091502 - 25 Apr 2025
Cited by 1 | Viewed by 642
Abstract
This study explored the effectiveness of plasma-activated water (PAW), generated by a newly developed compact generator, for decontaminating foodborne bacteria in oyster meats. The generator effectively produced PAW with antibacterial activity when the water passed through the plasma reactor in a single cycle. [...] Read more.
This study explored the effectiveness of plasma-activated water (PAW), generated by a newly developed compact generator, for decontaminating foodborne bacteria in oyster meats. The generator effectively produced PAW with antibacterial activity when the water passed through the plasma reactor in a single cycle. The temperature of the PAW produced by the developed device did not exceed 40 °C, enabling its direct application to biological tissues immediately after production and discharge from the plasma reactor. The effects of flow rates and post-discharge times on key reactive species—including hydrogen peroxide, nitrite, and nitrate—were analyzed, along with pH and temperature. Freshly produced PAW can completely inhibit both E. coli and S. aureus in vitro, with a 5-log reduction within 5 min of treatment. Application to oyster meats led to an 86.6% and 87.9% inactivation of V. cholerae and V. parahaemolyticus, respectively. These research findings indicate that PAW generated using the developed compact flow-through generator holds promise as a food safety solution for households. The fact that complete foodborne pathogen elimination was not achieved emphasizes the need for further optimization. Full article
Show Figures

Figure 1

21 pages, 7008 KiB  
Article
Competitive Bio-Accumulation Between Ammonia and Nitrite Results in Their Antagonistic Toxicity to Hypophthalmichthys molitrix: Antioxidant and Immune Responses and Metabolic Detoxification Evidence
by Honghui Guo, Yiwen Li, Heng Ge, Hang Sha, Xiangzhong Luo, Guiwei Zou and Hongwei Liang
Antioxidants 2025, 14(4), 453; https://doi.org/10.3390/antiox14040453 - 10 Apr 2025
Viewed by 628
Abstract
Ammonia and nitrite, as major aquatic pollutants, exhibit significant toxicity toward aquatic organisms. However, their interactive effects on fish are unclear. Aiming to determine their interactive effects, silver carp (Hypophthalmichthys molitrix) were exposed to ammonia, nitrite or ammonia + nitrite for [...] Read more.
Ammonia and nitrite, as major aquatic pollutants, exhibit significant toxicity toward aquatic organisms. However, their interactive effects on fish are unclear. Aiming to determine their interactive effects, silver carp (Hypophthalmichthys molitrix) were exposed to ammonia, nitrite or ammonia + nitrite for 72 h. Silver carp exhibited pathological damage in the liver and spleen and significant increases in MDA, SOD and CAT in the liver and plasma after ammonia or nitrite exposure. Thus, ammonia and nitrite caused significant histology damage through inducing oxidative stress, and the antioxidative response of SOD−CAT was initiated by silver carp to defend them. A transcriptomic analysis suggested that disruptions in immune responses and metabolism were the main toxic effects caused by ammonia and nitrite. Specifically, nitrite decreased splenic TNF-α and IL-1β but increased splenic C4. Ammonia decreased splenic TNF-α and C4 but increased splenic IL-1β. We noted significant interactions between ammonia and nitrite, and the pathological changes and IBR in the co-exposure groups were less severe than those in the single-factor exposure groups, indicating that ammonia and nitrite have an antagonistic effect. Significant decreases in plasmatic ammonia and NO2+NO3 were induced by nitrite and ammonia, respectively. Moreover, the plasmatic glutamine, urea-N, and glutamine synthetase and glutamate dehydrogenase activities increased significantly under ammonia and nitrite exposure, while T-NOS decreased significantly. These results suggest an antagonistic interaction between ammonia and nitrite in silver carp, possibly resulting from competitive bioaccumulation. Consequently, the simultaneous monitoring and control of both ammonia and nitrite concentrations are essential to mitigate their compounded toxic effects, which might be exacerbated under isolated exposure conditions. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Environmental Toxicity)
Show Figures

Figure 1

20 pages, 838 KiB  
Review
A Review of Decontamination of Aspergillus spp. and Aflatoxin Control for Grains and Nuts with Atmospheric Cold Plasma
by Miral Javed, Wei Cao, Linyi Tang and Kevin M. Keener
Toxins 2025, 17(3), 129; https://doi.org/10.3390/toxins17030129 - 10 Mar 2025
Cited by 1 | Viewed by 1808
Abstract
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global [...] Read more.
Aspergillus spp. and their produced aflatoxins are responsible for contaminating 25–30% of the global food supply, including many grains, and nuts which when consumed are detrimental to human and animal health. Despite regulatory frameworks, Aspergillus spp. and aflatoxin contamination is still a global challenge, especially in cereal-based matrices and their derived by-products. The methods for reducing Aspergillus spp. and aflatoxin contamination involve various approaches, including physical, chemical, and biological control strategies. Recently, a novel technology, atmospheric cold plasma (ACP), has emerged which can reduce mold populations and also degrade these toxins. ACP is a non-thermal technology that operates at room temperature and atmospheric pressure. It can reduce mold and toxins from grains and seeds without affecting food quality or leaving any chemical residue. ACP is the conversion of a gas, such as air, into a reactive gas. Specifically, an electrical charge is applied to the “working” gas (air) leading to the breakdown of diatomic oxygen, diatomic nitrogen, and water vapor into a mixture of radicals (e.g., atomic oxygen, atomic nitrogen, atomic hydrogen, hydroxyls), metastable species, and ions (e.g., nitrate, nitrite, peroxynitrate). In a cold plasma process, approximately 5% or less of the working gas is ionized. However, cold plasma treatment can generate over 1000 ppm of reactive gas species (RGS). The final result is a range of bactericidal and fungicidal molecules such as ozone, peroxides, nitrates, and many others. This review provides an overview of the mechanisms and chemistry of ACP and its application in inactivating Aspergillus spp. and degrading aflatoxins, serving as a novel treatment to enhance the safety and quality of grains and nuts. The final section of the review discusses the commercialization status of ACP treatment. Full article
(This article belongs to the Special Issue Aspergillus flavus and Aflatoxins (3rd Edition))
Show Figures

Figure 1

17 pages, 2377 KiB  
Article
Regulation of NO-Generating System Activity in Cucumber Root Response to Cold
by Małgorzata Reda, Katarzyna Kabała, Jan Stanisławski, Kacper Szczepski and Małgorzata Janicka
Int. J. Mol. Sci. 2025, 26(4), 1599; https://doi.org/10.3390/ijms26041599 - 13 Feb 2025
Cited by 1 | Viewed by 688
Abstract
Nitric oxide (NO) functions as a signaling molecule in plant adaptation to changing environmental conditions. NO levels were found to increase in plants in response to low temperatures (LTs). However, knowledge of the pathways involved in enhanced NO production under cold stress is [...] Read more.
Nitric oxide (NO) functions as a signaling molecule in plant adaptation to changing environmental conditions. NO levels were found to increase in plants in response to low temperatures (LTs). However, knowledge of the pathways involved in enhanced NO production under cold stress is still limited. For this reason, we aimed to determine the role of different NO sources in NO generation in cucumber roots exposed to 10 °C for short (1 d) and long (6 d) periods. The short-term treatment of seedlings with LT markedly increased plasma membrane-bound nitrate reductase (PM-NR) activity and induced the expression of three genes encoding NR in cucumber (CsNR1-3). On the other hand, long-term exposure was related to both increased cytoplasmic NR (cNR) activity and induced expression of the CsARC gene, encoding the amidoxime-reducing component (ARC) protein. The decrease in nitrite reductase (NiR) activity and the higher NO2/NO3 ratio in the roots of plants exposed to LTs for 1 d suggest that tissue conditions may favor NR-dependent NO production. Regardless of NR stimulation, a significant increase in NOS-like activity was observed in the roots, especially during the long-term treatment of plants with LT. These results indicate that diverse NO-producing routes, both reductive and oxidative, are activated in cucumber tissues at different stages of cold stress. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 8089 KiB  
Article
Effects of 3-(4-Hydroxy-3-methoxyphenyl)propionic Acid on Regulating Oxidative Stress and Muscle Fiber Composition
by Yishan Tong, Sihui Ma, Riyo Awa, Takashi Tagawa, Yasuhiro Seki, Tiehan Cao, Haruki Kobori and Katsuhiko Suzuki
Nutrients 2025, 17(4), 668; https://doi.org/10.3390/nu17040668 - 13 Feb 2025
Viewed by 1526
Abstract
Background/Objectives: Our previous study demonstrated that 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HMPA) administration improved grip strength and reduced blood urea nitrogen levels, but its underlying mechanisms remain unclear. This study aimed to investigate the effects of HMPA on oxidative stress and muscle fiber composition, emphasizing [...] Read more.
Background/Objectives: Our previous study demonstrated that 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HMPA) administration improved grip strength and reduced blood urea nitrogen levels, but its underlying mechanisms remain unclear. This study aimed to investigate the effects of HMPA on oxidative stress and muscle fiber composition, emphasizing its potential role in modulating redox signaling pathways and influencing muscle development. Methods: Eight-week-old male C57BL/6 mice were orally administered HMPA solution (50 or 500 mg/kg/day) or distilled water (10 mL/kg) for 14 days, and then divided into sedentary and exhaustive exercise groups to evaluate oxidative stress status, myosin heavy chain (MHC) isoform expression, and underlying mechanisms. Results: Both low and high doses of HMPA reduced oxidative stress by decreasing plasma reactive oxygen metabolites. High-dose HMPA reduced plasma nitrite/nitrate levels and enhanced antioxidant capacity post-exercise, accompanied by changes in the mRNA abundance of antioxidant enzymes (e.g., Sod1 and Nqo1) and reductions in the mRNA abundance of nitric oxide synthases (e.g., Nos2 and Nos3) in the soleus. Additionally, high-dose HMPA administration increased the protein expression of MYH4 in the soleus, while low-dose HMPA enhanced the gene expression of Myh4 and Igf1, suggesting that HMPA may promote fast-twitch fiber hypertrophy through the activation of the IGF-1 pathway. Furthermore, low-dose HMPA significantly increased the gene expression of Sirt1 and Nrf1, as well as AMPK phosphorylation post-exercise, suggesting low-dose HMPA may improve mitochondrial biogenesis and exercise adaptation. Conclusions: These findings suggest that HMPA may serve as a dietary supplement to regulate redox balance, enhance antioxidant defenses, and promote the formation of fast-twitch fibers. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Graphical abstract

20 pages, 4238 KiB  
Article
Is Industrial-Scale Wastewater Treatment Possible with a Commercially Available Atmospheric Pressure Plasma System? A Practical Study Using the Example of a Car Wash
by Michał Szulc, Carmen Kirner, Jörg Götz and Jochen Schein
Water 2025, 17(3), 413; https://doi.org/10.3390/w17030413 - 2 Feb 2025
Viewed by 1008
Abstract
The topic of water reuse is becoming increasingly important. It might be possible to use the well-known antibacterial effect of atmospheric pressure plasma due to its special mixture of reactive species, UV, and electromagnetic fields in a scaled-up, industrially interesting area to remove [...] Read more.
The topic of water reuse is becoming increasingly important. It might be possible to use the well-known antibacterial effect of atmospheric pressure plasma due to its special mixture of reactive species, UV, and electromagnetic fields in a scaled-up, industrially interesting area to remove bacteria from wastewater, and thus, make it usable again. To review this question, water volumes of 5L and of different qualities (turbidity and different degrees of hardness) were treated with a commercially available plasma system. The change in water-specific values such as pH, EC, ORP, nitrate, and nitrite content was determined. To test the antibacterial effect, both direct and indirect treatment of the test germ Pseudomonas aeruginosa was conducted. In the first case, the inoculated water samples were plasma-treated, while in the second case, the water samples were treated before inoculation with the germ. The viable bacteria were counted via the spread plate method. The best reduction rate of at least 6 log levels was achieved when inoculated deionized water samples were treated directly with plasma. A significant reduction in viability was also observed in directly treated clear tap water samples, whereby the different degrees of hardness did not influence the effectiveness of the plasma. The bacterial load remained almost unchanged when reused water samples from a car wash were treated. Based on the results, a possible application in a car wash was discussed including a cost estimation and possible limitations. Full article
(This article belongs to the Special Issue Advanced Technologies for Wastewater Treatment and Water Reuse)
Show Figures

Figure 1

11 pages, 3338 KiB  
Technical Note
Chemical Analysis of Plasma-Activated Culture Media by Ion Chromatography
by Marcello Locatelli, Miryam Perrucci, Marwa Balaha, Tirtha-Raj Acharya, Nagendra-Kumar Kaushik, Eun-Ha Choi, Monica Rapino and Vittoria Perrotti
Pharmaceuticals 2025, 18(2), 199; https://doi.org/10.3390/ph18020199 - 1 Feb 2025
Cited by 2 | Viewed by 1192
Abstract
Background: Currently, the procedures and methods applied in biological and medical fields for the determination of reactive oxygen and nitrogen species (RONS), primarily rely on spectrophotometric techniques, which involve the use of colorimetric reagents. While these methods are widely accepted, they exhibit [...] Read more.
Background: Currently, the procedures and methods applied in biological and medical fields for the determination of reactive oxygen and nitrogen species (RONS), primarily rely on spectrophotometric techniques, which involve the use of colorimetric reagents. While these methods are widely accepted, they exhibit significant limitations from an analytical standpoint, particularly due to potential inaccuracies, artifacts, and pronounced susceptibility to matrix effects. The purpose of this Technical Note is to demonstrate the application of ion chromatography—a robust and well-established analytical technique—for the quantification of RONS produced in cell culture media through the exposure to cold atmospheric plasma (CAP), an innovative therapeutic approach for cancer treatment, known as CAP indirect treatment. In addition, the present protocol proposes to apply the pharmacokinetics principles to the RONS generated in plasma-treated liquids (PTLs) following CAP exposure. Methods: The strategy involves elucidating the kinetic profiles of certain characteristic species by evaluating their half-life in the specific media used for cell cultures and investigating their “pharmacokinetic” (PK) profile. In this approach the drug dose is represented by the plasma power and the infusion time corresponds to the exposure time of the culture medium to CAP. Volume-dependent results were shown, focusing on nitrites and nitrates activities, justifying cellular inhibition. Results: This methodology enables the correlation of the PTL biological effects on different cell lines with the PK profiles (dose/time) obtained via ion chromatography. Conclusions: In conclusion, being a simple and green method, it could be used as an alternative to toxic reactions and analytical techniques with higher detection limits, while achieving good resolution. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 4167 KiB  
Article
Urtica dioica L. Leaf Extract Dose-Dependently Modulates Oxidative Stress in the Kidney and Exerts Anti-Fibrotic and Anti-Inflammatory Properties by the Molecular Mechanisms Independent of NRF-2 Signalization Mirroring the Effects of Losartan in SHR
by Una-Jovana Vajic, Nevena Mihailovic-Stanojevic, Danijela Karanovic, Maja Zivotic, Milan Ivanov, Djurdjica Jovovic, Jelica Grujic-Milanovic and Zoran Miloradovic
Int. J. Mol. Sci. 2024, 25(24), 13272; https://doi.org/10.3390/ijms252413272 - 11 Dec 2024
Cited by 2 | Viewed by 1629
Abstract
Previously, we confirmed systemic antihypertensive and antioxidant properties of Urtica dioica L. leaf extract (UE) in spontaneously hypertensive rats (SHR). Here, we aimed to evaluate whether UE can alter the NO and Nrf-2 signaling to prevent local oxidative stress and kidney damage in [...] Read more.
Previously, we confirmed systemic antihypertensive and antioxidant properties of Urtica dioica L. leaf extract (UE) in spontaneously hypertensive rats (SHR). Here, we aimed to evaluate whether UE can alter the NO and Nrf-2 signaling to prevent local oxidative stress and kidney damage in the model of essential hypertension. SHR were divided into five groups: SHRC-control, received 0.5 mL/day of water, SHR+L received 10 mg/kg/day of losartan, SHR+UE10, SHR+UE50, and SHR+UE200 received 10, 50, and 200 mg/kg/day during next 4 weeks. At the end of the experiment, urine samples were collected for albuminuria and nitrate/nitrite assessment. Mean arterial pressure (MAP) was measured, and blood samples were collected for plasma creatinine evaluation. Kidneys were analyzed for nitrate/nitrite, oxidative stress, and target molecules by biochemical, Western blot, and immunofluorescent techniques. Losartan and UE50 significantly reduced MAP, albuminuria, oxidative stress, fibroinflammatory markers, and NRF-2/CAT/SOD signaling, with a significant increase in 6-nitrotryptophan and eNOS expressions compared to control. The effects of UE showed dose dependence. Beneficial effects of UE and losartan were independent of NRF-2 signalization in SHR. Interestingly, all treatments induced the increase in 6-nitrotryptophan expression, thus further studies are needed to elucidate the mechanisms of such nitrated tryptophan. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Oxidative Stress in Kidney Disease)
Show Figures

Graphical abstract

15 pages, 4504 KiB  
Article
Optimization of Transcardiac Perfusion for More Accurately Evaluating Biodistribution of Large Molecules
by Zuoxu Xie, Annie Guo and Ekta Kadakia
Int. J. Mol. Sci. 2024, 25(22), 12180; https://doi.org/10.3390/ijms252212180 - 13 Nov 2024
Cited by 1 | Viewed by 2046
Abstract
The accurate assessment of drug concentrations in biodistribution studies is crucial for evaluating the efficacy and toxicity of compounds in drug development. As the concentration of biologics in plasma can be higher than in tissue due to their potentially low volume of distribution, [...] Read more.
The accurate assessment of drug concentrations in biodistribution studies is crucial for evaluating the efficacy and toxicity of compounds in drug development. As the concentration of biologics in plasma can be higher than in tissue due to their potentially low volume of distribution, transcardiac perfusion is commonly employed to reduce the influence of excess drugs in residual blood. However, there is a lack of consistency in the literature on the conditions and methods of perfusion. To enhance blood removal during transcardiac perfusion, sodium nitrite (NaNO2), a vasodilator, has been widely used with concentrations up to 5% in publications. However, we found that such high NaNO2 could disrupt the BBB during perfusion, which should be avoided in experiments. In this study, we examined the impact of various vasodilators on blood–brain barrier integrity and vascular permeability using the ratio of FITC-Dextran to Texas Red-Dextran (FITC/Texas Red). Additionally, we optimized perfusion conditions—including euthanasia method and perfusion flow rate—based on hemoglobin levels and the FITC/Texas Red ratio in tissues. Despite the superiority of NaNO2 in terms of solubility and cost over other vasodilators, we found that 2% NaNO2 disrupted blood–brain barrier integrity, significantly altering the FITC/Texas Red ratio. In contrast, 100 mM NaNO2 did not significantly affect this ratio. Moreover, under Ketamine/Xylazine (Ket/Xyl) anesthesia, which reduced blood clot formation compared to CO2 euthanasia, 100 mM NaNO2 achieved the lowest hemoglobin levels in the brain. Compared to other vasodilators and the PBS control group, 100 mM NaNO2 decreased the tissue/plasma ratio (Kp,t) but not brain/plasma ratio (Kp,b) of hIgG1 and human transferrin. We have developed a method to efficiently evaluate blood–brain barrier integrity during transcardiac perfusion. The combination of Ket/Xyl anesthesia and 100 mM NaNO2 effectively removes residual blood from tissues without significantly affecting blood vessel permeability. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

23 pages, 4611 KiB  
Article
Unveiling the Predictive Model for Macrovascular Complications in Type 2 Diabetes Mellitus: microRNAs Expression, Lipid Profile, and Oxidative Stress Markers
by Ayauly Duisenbek, María D. Avilés Pérez, Miguel Pérez, José Miguel Aguilar Benitez, Víctor Roger Pereira Pérez, Juan Gorts Ortega, Botagoz Ussipbek, Arailym Yessenbekova, Gabriela C. López-Armas, Nurzhanyat Ablaikhanova, Fabiola Olivieri, Germaine Escames, Darío Acuña-Castroviejo and Iryna Rusanova
Int. J. Mol. Sci. 2024, 25(21), 11763; https://doi.org/10.3390/ijms252111763 - 1 Nov 2024
Cited by 4 | Viewed by 2048
Abstract
To assay new circulating markers related to macrovascular complications (MVC) in type 2 diabetes mellitus (T2DM), we carried out a descriptive cross-sectional study. We recruited 30 controls (CG), 34 patients with T2DM (DG), and 28 patients with T2DM and vascular complications (DG+C); among [...] Read more.
To assay new circulating markers related to macrovascular complications (MVC) in type 2 diabetes mellitus (T2DM), we carried out a descriptive cross-sectional study. We recruited 30 controls (CG), 34 patients with T2DM (DG), and 28 patients with T2DM and vascular complications (DG+C); among them, 22 presented MVC. Peripheral blood was used to determine redox status (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; glucose-6-phosphate dehydrogenase, G6PD) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO), nitrite levels in plasma (NOx). Inflammatory markers (IL-1β, IL-6, IL-10, IL-18, MCP-1, TNF-α) and the relative expression of c-miRNAs were analyzed. The real-time PCR results showed that the expressions of miR-155-5p, miR-21-5p, miR-146a-3p, and miR-210-3p were significantly higher in the DG group compared to the CG. The DG+C group presented statistically relevant differences with CG for four miRs: the increased expression of miR-484-5p, miR-21-5p, and miR-210-3p, and decreased expression of miR-126a-3p. Moreover, miR-126a-3p was significantly less expressed in DG+C compared to DG. The application of binary logistic regression analysis and construction of receiving operator characteristic curves (ROC) revealed two models with high predictive values for vascular complications presence: (1) HbAc1, creatinine, total cholesterol (TC), LPO, GPx, SOD, miR-126, miR-484 (Exp(B) = 0.926, chi2 = 34.093, p < 0.001; AUC = 0.913). (2) HbAc1, creatinine, TC, IL-6, LPO, miR-126, miR-484 (Exp(B) = 0.958, Chi2 = 33.863, p < 0.001; AUC = 0.938). Moreover, our data demonstrated that gender, TC, GPx, CAT, and miR-484 were associated with MVC and exhibited higher predictive values (Exp(B) = 0.528, p = 0.024, Chi2 = 28.214, AUC = 0.904) than classical variables (Exp(B) 0.462, p = 0.007, Chi2 = 18.814, AUC = 0.850). miR-126, miR-484, IL-6, SOD, CAT, and GPx participate in vascular damage development in the studied diabetic population and should be considered for future studies. Full article
(This article belongs to the Special Issue Cellular and Molecular Progression of Cardiovascular Diseases)
Show Figures

Graphical abstract

Back to TopTop