Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (803)

Search Parameters:
Keywords = plasma membrane receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2229 KiB  
Article
Cell Surface Proteomics Reveals Hypoxia-Regulated Pathways in Cervical and Bladder Cancer
by Faris Alanazi, Ammar Sharif, Melissa Kidd, Emma-Jayne Keevill, Vanesa Biolatti, Richard D. Unwin, Peter Hoskin, Ananya Choudhury, Tim A. D. Smith and Conrado G. Quiles
Proteomes 2025, 13(3), 36; https://doi.org/10.3390/proteomes13030036 - 5 Aug 2025
Abstract
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we [...] Read more.
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we employed a surface proteomics workflow combining cell surface biotinylation and affinity purification prior to LC-MS/MS analysis in cervical (SiHa) and bladder (UMUC3) cancer cell lines cultured under normoxic (21% O2) or hypoxic (0.1% O2) conditions. Results: In SiHa cells, 43 hypoxia-upregulated proteins were identified exclusively in the biotin-enriched fraction, including ITGB2, ITGA7, AXL, MET, JAG2, and CAV1/CAV2. In UMUC3 cells, 32 unique upregulated PMPs were detected, including CD55, ADGRB1, SLC9A1, NECTIN3, and ACTG1. These proteins were not observed in corresponding whole-cell lysates and are associated with extracellular matrix remodelling, immune modulation, and ion transport. Biotinylation enhanced the detection of membrane-associated pathways such as ECM organisation, integrin signalling, and PI3K–Akt activation. Protein–protein interaction analysis revealed links between membrane receptors and intracellular stress regulators, including mitochondrial proteins. Conclusions: These findings demonstrate that surface biotinylation improves the sensitivity and selectivity of plasma membrane proteomics under hypoxia, revealing hypoxia-responsive proteins and pathways not captured by standard whole-cell analysis. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Figure 1

22 pages, 1000 KiB  
Review
Is the Activation of the Postsynaptic Ligand Gated Glycine- or GABAA Receptors Essential for the Receptor Clustering at Inhibitory Synapses?
by Eva Kiss, Joachim Kirsch, Jochen Kuhse and Stefan Kins
Biomedicines 2025, 13(8), 1905; https://doi.org/10.3390/biomedicines13081905 - 5 Aug 2025
Viewed by 148
Abstract
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key [...] Read more.
One major challenge in cellular neuroscience is to elucidate how the accurate alignment of presynaptic release sites with postsynaptic densely clustered ligand-gated ion channels at chemical synapses is achieved upon synapse assembly. The clustering of neurotransmitter receptors at postsynaptic sites is a key moment of synaptogenesis and determinant for effective synaptic transmission. The number of the ionotropic neurotransmitter receptors at these postsynaptic sites of both excitatory and inhibitory synapses is variable and is regulated by different mechanisms, thus allowing the modulation of synaptic strength, which is essential to tune neuronal network activity. Several well-regulated processes seem to be involved, including lateral diffusion within the plasma membrane and local anchoring as well as receptor endocytosis and recycling. The molecular mechanisms implicated are numerous and were reviewed recently in great detail. The role of pre-synaptically released neurotransmitters within the complex regulatory apparatus organizing the postsynaptic site underneath presynaptic terminals is not completely understood, even less for inhibitory synapses. In this mini review article, we focus on this aspect of synapse formation, summarizing and contrasting findings on the functional role of the neurotransmitters glycine and γ-aminobutyric acid (GABA) for initiation of postsynaptic receptor clustering and regulation of Cl channel receptor numbers at inhibitory synapses gathered over the last two decades. Full article
(This article belongs to the Special Issue Synaptic Function and Modulation in Health and Disease)
Show Figures

Figure 1

16 pages, 2512 KiB  
Article
Optimizing PH Domain-Based Biosensors for Improved Plasma Membrane PIP3 Measurements in Mammalian Cells
by Amir Damouni, Dániel J. Tóth, Aletta Schönek, Alexander Kasbary, Adél P. Boros and Péter Várnai
Cells 2025, 14(14), 1125; https://doi.org/10.3390/cells14141125 - 21 Jul 2025
Viewed by 392
Abstract
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor [...] Read more.
Phosphoinositide-binding pleckstrin homology (PH) domains interact with both phospholipids and proteins, often complicating their use as specific lipid biosensors. In this study, we introduced specific mutations into the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-specific PH domains of protein kinase B (Akt) and general receptor for phosphoinositides 1 (GRP1) that disrupt protein-mediated interactions while preserving lipid binding, in order to enhance biosensor specificity for PIP3, and evaluated their impact on plasma membrane (PM) localization and lipid-tracking ability. Using bioluminescence resonance energy transfer (BRET) and confocal microscopy, we assessed the localization of PH domains in HEK293A cells under different conditions. While Akt-PH mutants showed minimal deviations from the wild type, GRP1-PH mutants exhibited significantly reduced PM localization both at baseline and after stimulation with epidermal growth factor (EGF), insulin, or vanadate. We further developed tandem mutant GRP1-PH domain constructs to enhance PM PIP3 avidity. Additionally, our investigation into the influence of ADP ribosylation factor 6 (Arf6) activity on GRP1-PH-based biosensors revealed that while the wild-type sensors were Arf6- dependent, the mutants operated independently of Arf6 activity level. These optimized GRP1-PH constructs provide a refined biosensor system for accurate and selective detection of dynamic PIP3 signaling, expanding the toolkit for dissecting phosphoinositide-mediated pathways. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

21 pages, 9564 KiB  
Article
Sigma1 Receptor Modulates Plasma Membrane and Mitochondrial Peroxiporins
by Giorgia Pellavio, Giorgia Senise, Chiara Pia Vicenzo and Umberto Laforenza
Cells 2025, 14(14), 1082; https://doi.org/10.3390/cells14141082 - 15 Jul 2025
Viewed by 598
Abstract
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O [...] Read more.
Sigma1 receptor (S1R) and some aquaporins (AQPs) are involved in controlling oxidative stress, but only recently has their possible interaction emerged. S1R acts by interacting with proteins in the plasma membrane and organelles and AQPs by favoring the hydrogen peroxide (H2O2) cell removal. To date, the possible regulation of peroxiporins by S1R has not been explored. Using H2O2 HyPer7 biosensors and knockdown techniques, we investigated (1) the AQPs and S1R functional involvement in H2O2 diffusion through the plasma membrane and in the outer and inner mitochondrial membranes, and (2) the possible interaction between S1R and AQPs. Our data showed the functional involvement of different AQPs in the diffusion of H2O2: AQP3, AQP6, and AQP8 in the plasma membrane; AQP6 in the outer mitochondrial membrane; and AQP6 and AQP8 in the inner mitochondrial membrane. The knockdown of S1R demonstrated its involvement in the overall diffusion of H2O2 across the three compartments. The double knockdown of S1R and a single AQP indicated that AQP8 and AQP6 could be regulated by S1R. These findings demonstrate the coordinated role of AQPs in the mitochondria and the plasma membranes and that S1R modulates the AQP-facilitated H2O2 cell removal, thus controlling the oxidative status and, most likely, the oxidative stress. Full article
Show Figures

Graphical abstract

30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 411
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

27 pages, 1432 KiB  
Review
Neurosteroids Progesterone and Dehydroepiandrosterone: Molecular Mechanisms of Action in Neuroprotection and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Pharmaceuticals 2025, 18(7), 945; https://doi.org/10.3390/ph18070945 - 23 Jun 2025
Viewed by 917
Abstract
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic [...] Read more.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders. Full article
Show Figures

Figure 1

15 pages, 3968 KiB  
Article
Brain Pericytes Enhance MFSD2A Expression and Plasma Membrane Localization in Brain Endothelial Cells Through the PDGF-BB/PDGFRβ Signaling Pathway
by Takuro Iwao, Fuyuko Takata, Hisataka Aridome, Miho Yasunaga, Miki Yokoya, Junko Mizoguchi and Shinya Dohgu
Int. J. Mol. Sci. 2025, 26(13), 5949; https://doi.org/10.3390/ijms26135949 - 20 Jun 2025
Viewed by 421
Abstract
The brain actively obtains nutrients through various transporters on brain microvessel endothelial cells (BMECs). Major facilitator superfamily domain–containing protein 2a (MFSD2A) serves as a key transporter of docosahexaenoic acid (DHA) at the blood–brain barrier (BBB) and is exclusively expressed in BMECs. Although brain [...] Read more.
The brain actively obtains nutrients through various transporters on brain microvessel endothelial cells (BMECs). Major facilitator superfamily domain–containing protein 2a (MFSD2A) serves as a key transporter of docosahexaenoic acid (DHA) at the blood–brain barrier (BBB) and is exclusively expressed in BMECs. Although brain pericytes (PCs) regulate MFSD2A expression in BMECs, the underlying mechanism remains unclear. To determine whether PDGF-BB/PDGFRβ signaling between endothelial cells (ECs) and PCs affects MFSD2A protein expression and plasma membrane localization in ECs, we examined the impact of AG1296 (a PDGF receptor inhibitor) and Pdgfrb-knockdown PCs on a non-contact coculture BBB model comprising the primary cultures of rat brain ECs and PCs. The effects of PCs on MFSD2A expression, localization, and brain endothelial DHA uptake was assessed using Western blot, immunofluorescence staining, and [14C]DHA uptake by ECs, respectively. In ECs cocultured with PCs, MFSD2A expression and plasma membrane localization were significantly higher than in EC monolayers. Moreover, conditioned medium derived from PCs failed to enhance MFSD2A expression. The increased expression and membrane localization of MFSD2A were inhibited by AG1296 and Pdgfrb-knockdown PCs. Furthermore, PCs significantly increased [14C]DHA uptake by ECs. These findings suggest that PCs enhance MFSD2A expression and plasma membrane localization in ECs through PDGF-BB/PDGFRβ signaling. Full article
(This article belongs to the Collection Feature Papers in Molecular Neurobiology)
Show Figures

Graphical abstract

54 pages, 2627 KiB  
Review
Calcium Signaling Dynamics in Vascular Cells and Their Dysregulation in Vascular Disease
by Chang Dai and Raouf A. Khalil
Biomolecules 2025, 15(6), 892; https://doi.org/10.3390/biom15060892 - 18 Jun 2025
Viewed by 1281
Abstract
Calcium (Ca2+) signaling is a fundamental regulatory mechanism controlling essential processes in the endothelium, vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM), including maintaining the endothelial barrier, modulation of vascular tone, and vascular remodeling. Cytosolic free Ca2+ concentration [...] Read more.
Calcium (Ca2+) signaling is a fundamental regulatory mechanism controlling essential processes in the endothelium, vascular smooth muscle cells (VSMCs), and the extracellular matrix (ECM), including maintaining the endothelial barrier, modulation of vascular tone, and vascular remodeling. Cytosolic free Ca2+ concentration is tightly regulated by a balance between Ca2+ mobilization mechanisms, including Ca2+ release from the intracellular stores in the sarcoplasmic/endoplasmic reticulum and Ca2+ entry via voltage-dependent, transient-receptor potential, and store-operated Ca2+ channels, and Ca2+ elimination pathways including Ca2+ extrusion by the plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger and Ca2+ re-uptake by the sarco(endo)plasmic reticulum Ca2+-ATPase and the mitochondria. Some cell membranes/organelles are multifunctional and have both Ca2+ mobilization and Ca2+ removal pathways. Also, the individual Ca2+ handling pathways could be integrated to function in a regenerative, capacitative, cooperative, bidirectional, or reciprocal feed-forward or feed-back manner. Disruption of these pathways causes dysregulation of the Ca2+ signaling dynamics and leads to pathological cardiovascular conditions such as hypertension, coronary artery disease, atherosclerosis, and vascular calcification. In the endothelium, dysregulated Ca2+ signaling impairs nitric oxide production, reduces vasodilatory capacity, and increases vascular permeability. In VSMCs, Ca2+-dependent phosphorylation of the myosin light chain and Ca2+ sensitization by protein kinase-C (PKC) and Rho-kinase (ROCK) increase vascular tone and could lead to increased blood pressure and hypertension. Ca2+ activation of matrix metalloproteinases causes collagen/elastin imbalance and promotes vascular remodeling. Ca2+-dependent immune cell activation, leukocyte infiltration, and cholesterol accumulation by macrophages promote foam cell formation and atherosclerotic plaque progression. Chronic increases in VSMCs Ca2+ promote phenotypic switching to mesenchymal cells and osteogenic transformation and thereby accelerate vascular calcification and plaque instability. Emerging therapeutic strategies targeting these Ca2+-dependent mechanisms, including Ca2+ channel blockers and PKC and ROCK inhibitors, hold promise for restoring Ca2+ homeostasis and mitigating vascular disease progression. Full article
(This article belongs to the Special Issue Calcium Signaling in Cell Function and Dysfunction)
Show Figures

Figure 1

16 pages, 1003 KiB  
Review
Biological Actions of Bile Acids via Cell Surface Receptors
by Yoshimitsu Kiriyama, Hiroshi Tokumaru, Hisayo Sadamoto and Hiromi Nochi
Int. J. Mol. Sci. 2025, 26(11), 5004; https://doi.org/10.3390/ijms26115004 - 22 May 2025
Viewed by 816
Abstract
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in [...] Read more.
Bile acids (BAs) are synthesized in the liver from cholesterol and are subsequently conjugated with glycine and taurine. In the intestine, bile acids undergo various modifications, such as deconjugation, dehydrogenation, oxidation, and epimerization by the gut microbiota. These bile acids are absorbed in the intestine and transported to the liver as well as the systemic circulation. BAs can activate many types of receptors, including nuclear receptors and cell surface receptors. By activating these receptors, BAs can exert various effects on the metabolic, immune, and nervous systems. Recently, the detailed structure of TGR5, the major plasma membrane receptor for BAs, was elucidated, revealing a putative second BA binding site along with the orthosteric binding site. Furthermore, BAs act as ligands for bitter taste receptors and the Leukemia inhibitory factor receptor. In addition, the Mas-related, G-protein-coupled receptor X4 interacts with receptor activity-modifying proteins. Thus, a variety of cell surface receptors are associated with BAs, and BAs are thought to have very complex activities. This review focuses on recent advances regarding cell surface receptors for bile acids and the biological actions they mediate. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 933 KiB  
Article
Membrane ATPases and Mitochondrial Proteins in Fetal Cerebellum After Exposure to L-Glutamate During Gestation
by Adrián Tejero, David Agustín León-Navarro and Mairena Martín
Membranes 2025, 15(5), 152; https://doi.org/10.3390/membranes15050152 - 16 May 2025
Viewed by 974
Abstract
L-Glutamate (L-Glu) and its salt derivatives are widely used in the food industry as flavor enhancers. Although the consumption of these compounds is generally considered safe, some studies suggest that chronically consuming L-Glu may be associated with various disorders. In this study, Wistar [...] Read more.
L-Glutamate (L-Glu) and its salt derivatives are widely used in the food industry as flavor enhancers. Although the consumption of these compounds is generally considered safe, some studies suggest that chronically consuming L-Glu may be associated with various disorders. In this study, Wistar pregnant rats were treated daily with 1 g/L of L-Glu in their drinking water throughout the gestational period. OPA-1, DRP-1, and mitofusin 2—key proteins involved in mitochondrial fusion and fission—were analyzed by Western blot. The results showed that L-Glu exposure significantly decreased DRP-1 levels, while OPA-1 and mitofusin 2 levels were unaffected. This was accompanied by a notable decrease in mitochondrial complexes III and V. The activities of Mg2+-ATPase and Na+/K+-ATPase were also analyzed in fetal cerebellar plasma membranes. Maternal L-Glu intake significantly increased Mg2+-ATPase activity. Regarding Na+/K+-ATPase, the data showed that L-Glu exposure did not modulate the protein level or its activity. However, a positive interaction with glutamate receptors was observed in both activities, although neither AMPA nor NMDA receptors appeared to be involved. These results suggest that chronic maternal L-Glu intake during gestation modulates Mg2+-ATPase activity and protein markers of mitochondrial dynamics in the fetal cerebellum, which could affect neonatal development. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

20 pages, 4632 KiB  
Article
Endosomal H2O2 Molecules Act as Signaling Mediators in Akt/PKB Activation
by Sujin Park, Chaewon Kim, Sukyeong Heo and Dongmin Kang
Antioxidants 2025, 14(5), 594; https://doi.org/10.3390/antiox14050594 - 16 May 2025
Viewed by 586
Abstract
Receptor-mediated endocytosis (RME) is a commonly recognized receptor internalization process of receptor degradation or recycling. However, recent studies have supported that RME is closely related to signal propagation and amplification from the plasma membrane to the cytosol. Few studies have elucidated the role [...] Read more.
Receptor-mediated endocytosis (RME) is a commonly recognized receptor internalization process of receptor degradation or recycling. However, recent studies have supported that RME is closely related to signal propagation and amplification from the plasma membrane to the cytosol. Few studies have elucidated the role of H2O2, a mild oxidant among reactive oxygen species (ROS) in RME and second messenger of signal propagation. In the present study, we investigated the regulatory function of H2O2 in early endosomes during signaling throughout receptor-mediated endocytosis. In mammalian cells with a physiological amount of H2O2 generated during epidermal growth factor (EGF) activation, fluorescence imaging showed that the levels of two activating phosphorylations on Ser473 and Thr308 of Akt were transiently increased in the plasma membrane, but the predominant p-Akt on Ser473 appeared in early endosomes. To examine the role of endosomal H2O2 molecules as signaling mediators of Akt activation in endosomes, we modulated endosomal H2O2 through the ectopic expression of an endosomal-targeting catalase (Cat-Endo). The forced removal of endosomal H2O2 inhibited the Akt phosphorylation on Ser473 but not on Thr308. The levels of mSIN and rictor, two components of mTORC2 that work as a kinase in Akt phosphorylation on Ser473, were also selectively diminished in the early endosomes of Cat-Endo-expressing cells. We also observed a decrease in the endosomal level of the adaptor protein containing the PH domain, the PTB domain, and the Leucine zipper motif 1 (APPL1) protein, which is an effector of Rab5 and key player in the assembly of signaling complexes regulating the Akt pathway in Cat-Endo-expressing cells compared with those in normal cells. Therefore, the H2O2-dependent recruitment of the APPL1 adaptor protein into endosomes was required for full Akt activation. We proposed that endosomal H2O2 is a promoter of Akt signaling. Full article
(This article belongs to the Special Issue Metabolic Dysfunction and Oxidative Stress)
Show Figures

Figure 1

20 pages, 2263 KiB  
Review
Brassinosteroid Signaling Dynamics: Ubiquitination-Dependent Regulation of Core Signaling Components
by Riguang Qiu, Yan Zhou and Juan Mao
Int. J. Mol. Sci. 2025, 26(10), 4502; https://doi.org/10.3390/ijms26104502 - 8 May 2025
Viewed by 582
Abstract
Brassinosteroids (BRs) are essential phytohormones that orchestrate various stages of plant growth and development. The BR signaling cascade is mediated through a phosphorylation network involving sequential activation of the plasma membrane-localized receptor kinase Brassinosteroid-Insensitive 1 (BRI1), the cytoplasmic kinase Brassinosteroid-Insensitive 2 (BIN2), and [...] Read more.
Brassinosteroids (BRs) are essential phytohormones that orchestrate various stages of plant growth and development. The BR signaling cascade is mediated through a phosphorylation network involving sequential activation of the plasma membrane-localized receptor kinase Brassinosteroid-Insensitive 1 (BRI1), the cytoplasmic kinase Brassinosteroid-Insensitive 2 (BIN2), and the transcription factors BRI1-EMS suppressor 1 (BES1) and Brassinazole-Resistant 1 (BZR1). These transcription factors activate thousands of nuclear genes. Recent evidence highlights that ubiquitination has emerged as an equally pivotal mechanism that dynamically controls the BR signaling pathway by modulating the activity, subcellular localization, and protein stability of these core signaling components. In this review, we systematically analyze the central role of ubiquitination in determining the function, localization, and degradation of these proteins to fine-tune the outputs of BR signaling. We provide comparative perspectives on the functional conservation and divergence of ubiquitin-related regulatory components in the model plant Arabidopsis versus other plant species. Furthermore, we critically evaluate current knowledge gaps in the ubiquitin-mediated spatiotemporal control of BR signaling, offering insights into potential research directions to elucidate this sophisticated regulatory network. Full article
Show Figures

Figure 1

17 pages, 1080 KiB  
Article
Genistein Reduces Anxiety-like Behavior During Metestrus–Diestrus Phase Without Changing Estradiol or Progesterone Levels in Wistar Rats
by Juan Francisco Rodríguez-Landa, Oscar Jerónimo Olmos-Vázquez, Carlos Fabrizio Quiñonez-Bailón, Gabriel Guillén-Ruiz, Ana Karen Limón-Vázquez, Jonathan Cueto-Escobedo, Eduardo Rivadeneyra-Domínguez and Blandina Bernal-Morales
Metabolites 2025, 15(5), 311; https://doi.org/10.3390/metabo15050311 - 6 May 2025
Viewed by 629
Abstract
Background: Premenstrual syndrome is characterized by emotional changes, including anxiety and depression symptoms, which may be treated with anxiolytic and antidepressant drugs, as well as estrogen therapy. However, steroidal estrogen therapy is contraindicated for patients with a potential risk of developing estrogen-dependent [...] Read more.
Background: Premenstrual syndrome is characterized by emotional changes, including anxiety and depression symptoms, which may be treated with anxiolytic and antidepressant drugs, as well as estrogen therapy. However, steroidal estrogen therapy is contraindicated for patients with a potential risk of developing estrogen-dependent cancers through interactions with estrogen receptor α (ERα). Alternatively, genistein produces estrogenic effects in animals and humans at dietary dosages that act on the nuclear and membrane ERα, estrogen receptor β (ERβ), and the G-protein-coupled estrogen receptor (GPER). These receptors are likely involved in the anxiety symptoms observed in premenstrual disorders. The objective of this study was to evaluate the effects of genistein and 17β-estradiol on anxiety-like behavior and the plasma concentrations of estradiol and progesterone throughout the ovarian cycle of Wistar rats. Methods: The effect of the administration of 0.09 mg/kg of genistein or 17β-estradiol was evaluated using the elevated plus maze (EPM) test, locomotor activity test (LAT), and light/dark box (LDB) test, as well as by assessing the plasma concentrations of estradiol and progesterone, while considering the ovarian cycle phases. Results: Higher levels of anxiety-like behavior were detected in the metestrus–diestrus phase compared to the proestrus–estrus phase, which was associated with low concentrations of estradiol. Genistein, similarly to 17β-estradiol, significantly reduced anxiety-like behaviors in the EPM and LDB; however, 17β-estradiol, but not genistein, significantly increased the plasma estradiol concentration. No significant changes were found in locomotor activity or the plasma progesterone concentrations due to the treatments. Conclusions: These findings suggest that genistein may be useful in the development of alternative therapies to reduce the anxiety associated with low steroid hormone concentrations, which occur in premenstrual syndrome. Genistein could be an alternative to steroidal estrogen therapy to avoid potential side effects due to estradiol or antidepressant treatments, although it still requires medical care. Full article
(This article belongs to the Special Issue Analysis of Specialized Metabolites in Natural Products)
Show Figures

Graphical abstract

24 pages, 4628 KiB  
Article
Step-Wise Assembly of LAT Signaling Clusters Immediately After T Cell Receptor Triggering Contributes to Signal Propagation
by Jieqiong Lou, Elvis Pandžić, Till Böcking, Qiji Deng, Jérémie Rossy and Katharina Gaus
Int. J. Mol. Sci. 2025, 26(9), 4076; https://doi.org/10.3390/ijms26094076 - 25 Apr 2025
Viewed by 483
Abstract
Linker for activation of T cells (LAT) is an essential adaptor protein in early T cell receptor (TCR) signaling that propagates multiple signaling pathways. However, how LAT spatial organization facilitates signal initiation and propagation after TCR triggering is not clear. To differentiate de [...] Read more.
Linker for activation of T cells (LAT) is an essential adaptor protein in early T cell receptor (TCR) signaling that propagates multiple signaling pathways. However, how LAT spatial organization facilitates signal initiation and propagation after TCR triggering is not clear. To differentiate de novo assembly in the plasma membrane from pre-existing LAT vesicles and clusters, we developed imaging protocols and analyses to capture the organization and dynamics of single LAT molecules immediately after TCR engagement. We could observe individual LAT molecules in the plasma membrane that assembled into immobile signaling entities requiring LAT phosphorylation. This step-wise assembly process was temporally highly coordinated via the zeta-chain-associated protein kinase 70 (Zap70)-LAT-growth factor receptor-bound protein 2 (Grb2) pathway. While multiple spatial organization co-existed even within the plasma membrane, our data suggest that de novo plasma membrane assemblies facilitated signal propagation. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

16 pages, 2769 KiB  
Article
Differential Effects of Hearing Loss Mutations in Homomeric P2X2 and Heteromeric P2X2/3 Receptors
by Paula-Luise Wand, Xenia Brünings, Debanjan Tewari, Stefanie Reuter, Ralf Mrowka, Klaus Benndorf, Thomas Zimmer and Christian Sattler
Cells 2025, 14(7), 510; https://doi.org/10.3390/cells14070510 - 29 Mar 2025
Viewed by 564
Abstract
P2X receptors are unspecific cation channels activated by ATP. They are expressed in various tissues and found in neuronal and immune cells. In mammals, seven subunits are described, which can assemble into homomeric and heteromeric trimers. P2X2 receptors play important roles in cochlear [...] Read more.
P2X receptors are unspecific cation channels activated by ATP. They are expressed in various tissues and found in neuronal and immune cells. In mammals, seven subunits are described, which can assemble into homomeric and heteromeric trimers. P2X2 receptors play important roles in cochlear adaptation to elevated sound levels. Three mutations causing inherited progressive hearing loss have been identified. These mutations localize to the transmembrane domain 1 (V60L), the transmembrane domain 2 (G353R) and a β-sheet linking the ATP binding site to the pore (D273Y). Herein, mutations were studied in human homomeric P2X2 as well as in heteromeric P2X2/3 receptors. We measured their binding of a fluorescently labeled ATP derivative (fATP) and characterized the constructs using the patch-clamp technique. The conclusions from our results are as follows: 1. The mutations V60L and G353R show robust localization on the plasma membrane and binding of fATP, whereas the mutant D273Y has no binding to fATP. 2. The mutation V60L has an increased affinity to fATP compared with the wildtype. 3. The expression of hP2X2 V60L channels reduces cell viability, which may support its role in the pathogenesis of hearing loss. 4. All mutant P2X2 subunits can assemble into P2X2/3 heteromeric channels with distinct phenotypes. Full article
Show Figures

Figure 1

Back to TopTop