Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = plasma membrane half-life

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 814 KiB  
Article
Pharmacokinetics of Isavuconazole During Extracorporeal Membrane Oxygenation Support in Critically Ill Patients: A Case Series
by Laura Doménech-Moral, Sonia García-García, Alba Pau-Parra, Manuel Sosa, Adrian Puertas Sanjuan, Camilo Bonilla, Elisabeth Gallart, Laura Castellote, Patricia Faixó, Jessica Guevara, Albert Vilanova, María Martínez-Pla, Aldair Conto, Xavier Nuvials, Pilar Lalueza, Ricard Ferrer, Maria Queralt Gorgas and Jordi Riera
Antibiotics 2025, 14(6), 600; https://doi.org/10.3390/antibiotics14060600 - 12 Jun 2025
Viewed by 605
Abstract
Background/Objectives: Extracorporeal membrane oxygenation (ECMO) is increasingly used in critically ill patients, but may significantly alter the pharmacokinetics (PK) of antifungals. Data on plasma concentrations of Isavuconazole (IsaPlasm) in ECMO patients are limited. Our objective is to evaluate Isavuconazole exposure and variability in [...] Read more.
Background/Objectives: Extracorporeal membrane oxygenation (ECMO) is increasingly used in critically ill patients, but may significantly alter the pharmacokinetics (PK) of antifungals. Data on plasma concentrations of Isavuconazole (IsaPlasm) in ECMO patients are limited. Our objective is to evaluate Isavuconazole exposure and variability in critically ill COVID-19 patients receiving ECMO. Methods: We conducted a pharmacokinetic analysis of Isavuconazole in critically ill patients receiving Veno-Venous ECMO for respiratory support. Plasma concentrations were measured using therapeutic drug monitoring (TDM) at multiple time points, including sampling before and after the membrane oxygenator. PK parameters—Area Under Curve (AUC0–24), Minimum Plasma Concentration (Cmin), Elimination Half-Life (T1/2), volume of distribution (Vd), and clearance (CL)—were estimated and compared with published data in non-ECMO populations. Results: Five patients were included. The median AUC0–24 was 227.3 µg·h/mL (IQR 182.4–311.35), higher than reported in non-ECMO patients. The median Vd was 761 L (727–832), suggesting extensive peripheral distribution and potential drug sequestration in the ECMO circuit. CL was increased (1.6 L/h, IQR 1.5–3.4). Two patients with recently replaced ECMO circuits exhibited significant drug loss across the membrane. Obesity and hypoalbuminemia were identified as factors associated with altered drug exposure. Conclusions: Isavuconazole pharmacokinetics show marked variability in critically ill ECMO patients. Increased AUC and Vd, along with reduced clearance, highlight the need for individualized dosing. Full article
Show Figures

Figure 1

17 pages, 5229 KiB  
Article
YES1 Kinase Mediates the Membrane Removal of Rescued F508del-CFTR in Airway Cells by Promoting MAPK Pathway Activation via SHC1
by Patrícia Barros, Ana M. Matos, Paulo Matos and Peter Jordan
Biomolecules 2023, 13(6), 949; https://doi.org/10.3390/biom13060949 - 6 Jun 2023
Cited by 1 | Viewed by 1810
Abstract
Recent developments in CFTR modulator drugs have had a significant transformational effect on the treatment of individuals with Cystic Fibrosis (CF) who carry the most frequent F508del-CFTR mutation in at least one allele. However, the clinical effects of these revolutionary drugs remain limited [...] Read more.
Recent developments in CFTR modulator drugs have had a significant transformational effect on the treatment of individuals with Cystic Fibrosis (CF) who carry the most frequent F508del-CFTR mutation in at least one allele. However, the clinical effects of these revolutionary drugs remain limited by their inability to fully restore the plasma membrane (PM) stability of the rescued mutant channels. Here, we shed new light on the molecular mechanisms behind the reduced half-life of rescued F508del-CFTR at the PM of airway cells. We describe that YES1 protein kinase is enriched in F508del-CFTR protein PM complexes, and that its interaction with rescued channels is mediated and dependent on the adaptor protein YAP1. Moreover, we show that interference with this complex, either by depletion of one of these components or inhibiting YES1 activity, is sufficient to significantly improve the abundance and stability of modulator-rescued F508del-CFTR at the surface of airway cells. In addition, we found that this effect was mediated by a decreased phosphorylation of the scaffold protein SHC1, a key regulator of MAPK pathway activity. In fact, we showed that depletion of SHC1 or inhibition of MAPK pathway signaling was sufficient to improve rescued F508del-CFTR surface levels, whereas an ectopic increase in pathway activation downstream of SHC1, through the use of a constitutively active H-RAS protein, abrogated the stabilizing effect of YES1 inhibition on rescued F508del-CFTR. Taken together, our findings not only provide new mechanistic insights into the regulation of modulator-rescued F508del-CFTR membrane stability, but also open exciting new avenues to be further explored in CF research and treatment. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

7 pages, 325 KiB  
Case Report
Impact of Extracorporeal Membrane Oxygenation in an Infant Treated with Vancomycin: A Case Report
by Chihiro Shiraishi, Hideo Kato, Hiroshi Imai and Takuya Iwamoto
Int. J. Environ. Res. Public Health 2023, 20(3), 1839; https://doi.org/10.3390/ijerph20031839 - 19 Jan 2023
Viewed by 1668
Abstract
Vancomycin is a glycopeptide antibiotic used for prophylaxis and treatment of infections caused by methicillin-resistant Staphylococcus aureus. Although major organ sizes and functions mature during infancy, pharmacokinetic studies, especially those focused on infants, are limited. Changes in extracorporeal membrane oxygenation-related drug disposition largely [...] Read more.
Vancomycin is a glycopeptide antibiotic used for prophylaxis and treatment of infections caused by methicillin-resistant Staphylococcus aureus. Although major organ sizes and functions mature during infancy, pharmacokinetic studies, especially those focused on infants, are limited. Changes in extracorporeal membrane oxygenation-related drug disposition largely contribute to changes in pharmacokinetics. Here, pharmacokinetic profiles of vancomycin in an infant receiving extracorporeal membrane oxygenation therapy are presented. A two-month-old Japanese infant with moderately decreased renal function was started on 12.0 mg/kg vancomycin every 8 h from day X for prophylaxis of pneumonia during extracorporeal membrane oxygenation therapy. As the trough concentration of vancomycin observed on day X+3 was 27.1 μg/mL, vancomycin was then discontinued. The trough concentration decreased to 18.6 μg/mL 24 h after discontinuation, and 9.0 mg/kg vancomycin every 12 h was restarted from day X+5. On day X+6, the trough concentration increased to 36.1 μg/mL, and vancomycin therapy was again discontinued. On day X+7, the trough concentration decreased to 22.4 μg/mL. The pharmacokinetic profiles of vancomycin based on first-order conditional estimation in this infant were as follows: plasma clearance = 0.053 L/kg/hour, distribution volume = 2.19 L/kg, and half-life = 29.5 h. This research reported the prolonged half-life of vancomycin during extracorporeal membrane oxygenation in infants with moderately decreased renal function. Full article
(This article belongs to the Section Infectious Disease Epidemiology)
26 pages, 2464 KiB  
Review
Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes
by Raiane Vieira Cardoso, Patricia Ribeiro Pereira, Cyntia Silva Freitas and Vania Margaret Flosi Paschoalin
Pharmaceutics 2022, 14(12), 2808; https://doi.org/10.3390/pharmaceutics14122808 - 15 Dec 2022
Cited by 34 | Viewed by 4892
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids’ enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible [...] Read more.
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids’ enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases. Full article
(This article belongs to the Special Issue Liposomes and Lipid Nanovesicular Carriers for Drug Delivery)
Show Figures

Figure 1

12 pages, 1491 KiB  
Review
Defective Thyroglobulin: Cell Biology of Disease
by Xiaohan Zhang, Crystal Young, Yoshiaki Morishita, Kookjoo Kim, Omer O. Kabil, Oliver B. Clarke, Bruno Di Jeso and Peter Arvan
Int. J. Mol. Sci. 2022, 23(21), 13605; https://doi.org/10.3390/ijms232113605 - 6 Nov 2022
Cited by 4 | Viewed by 2958
Abstract
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted [...] Read more.
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences. Full article
(This article belongs to the Special Issue Molecular Mechanism of Hypothyroidism)
Show Figures

Figure 1

19 pages, 9751 KiB  
Review
Effects of Expanded Hemodialysis with Medium Cut-Off Membranes on Maintenance Hemodialysis Patients: A Review
by Zhuyun Zhang, Tinghang Yang, Yupei Li, Jiameng Li, Qinbo Yang, Liya Wang, Luojia Jiang and Baihai Su
Membranes 2022, 12(3), 253; https://doi.org/10.3390/membranes12030253 - 23 Feb 2022
Cited by 30 | Viewed by 8651
Abstract
Kidney failure is associated with high morbidity and mortality. Hemodialysis, the most prevalent modality of renal replacement therapy, uses the principle of semipermeable membranes to remove solutes and water in the plasma of patients with kidney failure. With the evolution of hemodialysis technology [...] Read more.
Kidney failure is associated with high morbidity and mortality. Hemodialysis, the most prevalent modality of renal replacement therapy, uses the principle of semipermeable membranes to remove solutes and water in the plasma of patients with kidney failure. With the evolution of hemodialysis technology over the last half century, the clearance of small water-soluble molecules in such patients is adequate. However, middle molecules uremic toxins are still retained in the plasma and cause cardiovascular events, anemia, and malnutrition, which significantly contribute to poor quality of life and high mortality in maintenance hemodialysis patients. A new class of membrane, defined as a medium cut-off (MCO) membrane, has emerged in recent years. Expanded hemodialysis with MCO membranes is now recognized as the artificial kidney model closest to natural kidney physiology. This review summarizes the unique morphological characteristics and internal filtration–backfiltration mechanism of MCO membranes, and describes their effects on removing uremic toxins, alleviating inflammation and cardiovascular risk, and improving quality of life in maintenance hemodialysis patients. Full article
(This article belongs to the Special Issue Membrane based Materials for Artificial Organs)
Show Figures

Figure 1

15 pages, 2416 KiB  
Article
Nanocomplex of Berberine with C60 Fullerene Is a Potent Suppressor of Lewis Lung Carcinoma Cells Invasion In Vitro and Metastatic Activity In Vivo
by Iryna Horak, Svitlana Prylutska, Iryna Krysiuk, Serhii Luhovskyi, Oleksii Hrabovsky, Nina Tverdokhleb, Daria Franskevych, Dmytro Rumiantsev, Anton Senenko, Maxim Evstigneev, Liudmyla Drobot, Olga Matyshevska, Uwe Ritter, Jacek Piosik and Yuriy Prylutskyy
Materials 2021, 14(20), 6114; https://doi.org/10.3390/ma14206114 - 15 Oct 2021
Cited by 12 | Viewed by 2752
Abstract
Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber’ low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber [...] Read more.
Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber’ low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer. Full article
Show Figures

Figure 1

11 pages, 873 KiB  
Review
Ubiquitylation of ABA Receptors and Protein Phosphatase 2C Coreceptors to Modulate ABA Signaling and Stress Response
by Alberto Coego, Jose Julian, Jorge Lozano-Juste, Gaston A. Pizzio, Abdulwahed F. Alrefaei and Pedro L. Rodriguez
Int. J. Mol. Sci. 2021, 22(13), 7103; https://doi.org/10.3390/ijms22137103 - 1 Jul 2021
Cited by 23 | Viewed by 5669
Abstract
Post-translational modifications play a fundamental role in regulating protein function and stability. In particular, protein ubiquitylation is a multifaceted modification involved in numerous aspects of plant biology. Landmark studies connected the ATP-dependent ubiquitylation of substrates to their degradation by the 26S proteasome; however, [...] Read more.
Post-translational modifications play a fundamental role in regulating protein function and stability. In particular, protein ubiquitylation is a multifaceted modification involved in numerous aspects of plant biology. Landmark studies connected the ATP-dependent ubiquitylation of substrates to their degradation by the 26S proteasome; however, nonproteolytic functions of the ubiquitin (Ub) code are also crucial to regulate protein interactions, activity, and localization. Regarding proteolytic functions of Ub, Lys-48-linked branched chains are the most common chain type for proteasomal degradation, whereas promotion of endocytosis and vacuolar degradation is triggered through monoubiquitylation or Lys63-linked chains introduced in integral or peripheral plasma membrane proteins. Hormone signaling relies on regulated protein turnover, and specifically the half-life of ABA signaling components is regulated both through the ubiquitin-26S proteasome system and the endocytic/vacuolar degradation pathway. E3 Ub ligases have been reported that target different ABA signaling core components, i.e., ABA receptors, PP2Cs, SnRK2s, and ABFs/ABI5 transcription factors. In this review, we focused specifically on the ubiquitylation of ABA receptors and PP2C coreceptors, as well as other post-translational modifications of ABA receptors (nitration and phosphorylation) that result in their ubiquitination and degradation. Full article
(This article belongs to the Special Issue Ubiquitylation in Plant Developmental and Physiological Processes)
Show Figures

Figure 1

19 pages, 116295 KiB  
Article
An Effective and Safe Enkephalin Analog for Antinociception
by K. K. DurgaRao Viswanadham, Roland Böttger, Lukas Hohenwarter, Anne Nguyen, Elham Rouhollahi, Alexander Smith, Yi-Hsuan Tsai, Yuan-Yu Chang, Christopher Llynard Ortiz, Lee-Wei Yang, Liliana Jimenez, Siyuan Li, Chan Hur and Shyh-Dar Li
Pharmaceutics 2021, 13(7), 927; https://doi.org/10.3390/pharmaceutics13070927 - 22 Jun 2021
Cited by 5 | Viewed by 4961
Abstract
Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library [...] Read more.
Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library of Leu-ENK analogs containing small hydrophobic modifications. N-pivaloyl analog KK-103 showed the highest binding affinity to the delta opioid receptor (68% relative to Leu-ENK) and an extended plasma half-life of 37 h. In the murine hot-plate model, subcutaneous KK-103 showed 10-fold improved anticonception (142%MPE·h) compared to Leu-ENK (14%MPE·h). In the formalin model, KK-103 reduced the licking and biting time to ~50% relative to the vehicle group. KK-103 was shown to act through the opioid receptors in the central nervous system. In contrast to morphine, KK-103 was longer-lasting and did not induce breathing depression, physical dependence, and tolerance, showing potential as a safe and effective analgesic. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

18 pages, 1003 KiB  
Review
Stealth Coating of Nanoparticles in Drug-Delivery Systems
by See Yee Fam, Chin Fei Chee, Chean Yeah Yong, Kok Lian Ho, Abdul Razak Mariatulqabtiah and Wen Siang Tan
Nanomaterials 2020, 10(4), 787; https://doi.org/10.3390/nano10040787 - 20 Apr 2020
Cited by 320 | Viewed by 15671
Abstract
Nanoparticles (NPs) have emerged as a powerful drug-delivery tool for cancer therapies to enhance the specificity of drug actions, while reducing the systemic side effects. Nonetheless, NPs interact massively with the surrounding physiological environments including plasma proteins upon administration into the bloodstream. Consequently, [...] Read more.
Nanoparticles (NPs) have emerged as a powerful drug-delivery tool for cancer therapies to enhance the specificity of drug actions, while reducing the systemic side effects. Nonetheless, NPs interact massively with the surrounding physiological environments including plasma proteins upon administration into the bloodstream. Consequently, they are rapidly cleared from the blood circulation by the mononuclear phagocyte system (MPS) or complement system, resulting in a premature elimination that will cause the drug release at off-target sites. By grafting a stealth coating layer onto the surface of NPs, the blood circulation half-life of nanomaterials can be improved by escaping the recognition and clearance of the immune system. This review focuses on the basic concept underlying the stealth behavior of NPs by polymer coating, whereby the fundamental surface coating characteristics such as molecular weight, surface chain density as well as conformations of polymer chains are of utmost importance for efficient protection of NPs. In addition, the most commonly used stealth polymers such as poly(ethylene glycol) (PEG), poly(2-oxazoline) (POx), and poly(zwitterions) in developing long-circulating NPs for drug delivery are also thoroughly discussed. The biomimetic strategies, including the cell-membrane camouflaging technique and CD47 functionalization for the development of stealth nano-delivery systems, are highlighted in this review as well. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

12 pages, 1262 KiB  
Article
The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity
by Anna Vita Larocca, Gianluca Toniolo, Silvia Tortorella, Marios G. Krokidis, Georgia Menounou, Giuseppe Di Bella, Chryssostomos Chatgilialoglu and Carla Ferreri
Molecules 2019, 24(17), 3085; https://doi.org/10.3390/molecules24173085 - 25 Aug 2019
Cited by 4 | Viewed by 4218
Abstract
The natural peptide somatostatin has hormonal and cytostatic effects exerted by the binding to specific receptors in various tissues. Therapeutic uses are strongly prevented by its very short biological half-life of 1–2 min due to enzymatic hydrolysis, therefore encapsulation methodologies are explored to [...] Read more.
The natural peptide somatostatin has hormonal and cytostatic effects exerted by the binding to specific receptors in various tissues. Therapeutic uses are strongly prevented by its very short biological half-life of 1–2 min due to enzymatic hydrolysis, therefore encapsulation methodologies are explored to overcome the need for continuous infusion regimes. Multilamellar liposomes made of natural phosphatidylcholine were used for the incorporation of a mixture of somatostatin and sorbitol dissolved in citrate buffer at pH = 5. Lyophilization and reconstitution of the suspension were carried out, showing the flexibility of this preparation. Full characterization of this suspension was obtained as particle size, encapsulation efficiency and retarded release properties in aqueous medium and human plasma. Liposomal somatostatin incubated at 37 °C in the presence of Fe(II) and (III) salts were used as a biomimetic model of drug-cell membrane interaction, evidencing the free radical processes of peroxidation and isomerization that transform the unsaturated fatty acid moieties of the lipid vesicles. This study offers new insights into a liposomal delivery system and highlights molecular reactivity of sulfur-containing drugs with its carrier or biological membranes for pharmacological applications. Full article
(This article belongs to the Special Issue Biomimetic Radical Chemistry and Applications)
Show Figures

Graphical abstract

17 pages, 1793 KiB  
Article
Enhanced Intestinal Permeability and Plasma Concentration of Metformin in Rats by the Repeated Administration of Red Ginseng Extract
by Sojeong Jin, Sowon Lee, Ji-Hyeon Jeon, Hyuna Kim, Min-Koo Choi and Im-Sook Song
Pharmaceutics 2019, 11(4), 189; https://doi.org/10.3390/pharmaceutics11040189 - 18 Apr 2019
Cited by 24 | Viewed by 5136
Abstract
We aimed to assess the potential herb–drug interactions between Korean red ginseng extract (RGE) and metformin in rats in terms of the modulation of metformin transporters, such as organic cation transporter (Oct), multiple toxin and extrusion protein (Mate), and plasma membrane monoamine transporter [...] Read more.
We aimed to assess the potential herb–drug interactions between Korean red ginseng extract (RGE) and metformin in rats in terms of the modulation of metformin transporters, such as organic cation transporter (Oct), multiple toxin and extrusion protein (Mate), and plasma membrane monoamine transporter (Pmat). Single treatment of RGE did not inhibit the in vitro transport activity of OCT1/2 up to 500 µg/mL and inhibited MATE1/2-K with high IC50 value (more than 147.8 µg/mL), suggesting that concomitant used of RGE did not directly inhibit OCT- and MATE-mediated metformin uptake. However, 1-week repeated administration of RGE (1.5 g/kg/day) (1WRA) to rats showed different alterations in mRNA levels of Oct1 depending on the tissue type. RGE increased intestinal Oct1 but decreased hepatic Oct1. However, neither renal Oct1/Oct2 nor Mate1/Pmat expression in duodenum, jejunum, ileum, liver, and kidney were changed in 1WRA rats. RGE repeated dose also increased the intestinal permeability of metformin; however, the permeability of 3-O-methyl-d-glucose and Lucifer yellow was not changed in 1WRA rats, suggesting that the increased permeability of metformin by multiple doses of RGE is substrate-specific. On pharmacokinetic analysis, plasma metformin concentrations following intravenous injection were not changed in 1WRA, consistent with no significant change in renal Oct1, Oct2, and mate1. Repeated doses of RGE for 1 week significantly increased the plasma concentration of metformin, with increased half-life and urinary excretion of metformin following oral administration of metformin (50 mg/kg), which could be attributed to the increased absorption of metformin. In conclusion, repeated administration of RGE showed in vivo pharmacokinetic herb–drug interaction with metformin, with regard to its plasma exposure and increased absorption in rats. These results were consistent with increased intestinal Oct1 and its functional consequence, therefore, the combined therapeutic efficacy needs further evaluation before the combination and repeated administration of RGE and metformin, an Oct1 substrate drug. Full article
Show Figures

Graphical abstract

12 pages, 3935 KiB  
Article
Preparation and Characterization of Erythrocyte Membrane-Camouflaged Berberine Hydrochloride-Loaded Gelatin Nanoparticles
by Jing Su, Ran Zhang, Yumei Lian, Zul Kamal, Zhongyao Cheng, Yujiao Qiu and Mingfeng Qiu
Pharmaceutics 2019, 11(2), 93; https://doi.org/10.3390/pharmaceutics11020093 - 22 Feb 2019
Cited by 23 | Viewed by 6762
Abstract
The discovery of a new pharmacological application of berberine hydrochloride (BH) made it more clinically valuable. However, the further development of BH was hampered by its short half-life and side effects after intravenous injection. To overcome these problems, a novel BH delivery system [...] Read more.
The discovery of a new pharmacological application of berberine hydrochloride (BH) made it more clinically valuable. However, the further development of BH was hampered by its short half-life and side effects after intravenous injection. To overcome these problems, a novel BH delivery system was developed using natural red blood cell membrane-camouflaged BH-loaded gelatin nanoparticles (RBGPs) to reduce the toxicity associated with injections and achieve sustained release. The size of the RBGPs was 260.3 ± 4.1 nm, with an obvious core–shell structure, and the membrane proteins of the RBGPs were mostly retained. The RBGP system showed significant immune-evading capabilities and little cytotoxicity to human embryonic kidney (HEK) 293T cells and LO2 cells. Finally, RBGPs improved the sustained releasing effect of BH significantly. When the cumulative release time reached 120 h, the cumulative release rate of RBGPs was 78.42%. In brief, RBGPs hold the potential to achieve long circulation and sustained-release of BH, avoid side effects caused by high plasma concentration in common injection formulations, and broaden the clinical applications of BH. Full article
Show Figures

Figure 1

21 pages, 2149 KiB  
Article
Relative Contribution of PIN-Containing Secretory Vesicles and Plasma Membrane PINs to the Directed Auxin Transport: Theoretical Estimation
by Sander Hille, Maria Akhmanova, Matouš Glanc, Alexander Johnson and Jiří Friml
Int. J. Mol. Sci. 2018, 19(11), 3566; https://doi.org/10.3390/ijms19113566 - 12 Nov 2018
Cited by 13 | Viewed by 4252
Abstract
The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping [...] Read more.
The intercellular transport of auxin is driven by PIN-formed (PIN) auxin efflux carriers. PINs are localized at the plasma membrane (PM) and on constitutively recycling endomembrane vesicles. Therefore, PINs can mediate auxin transport either by direct translocation across the PM or by pumping auxin into secretory vesicles (SVs), leading to its secretory release upon fusion with the PM. Which of these two mechanisms dominates is a matter of debate. Here, we addressed the issue with a mathematical modeling approach. We demonstrate that the efficiency of secretory transport depends on SV size, half-life of PINs on the PM, pH, exocytosis frequency and PIN density. 3D structured illumination microscopy (SIM) was used to determine PIN density on the PM. Combining this data with published values of the other parameters, we show that the transport activity of PINs in SVs would have to be at least 1000× greater than on the PM in order to produce a comparable macroscopic auxin transport. If both transport mechanisms operated simultaneously and PINs were equally active on SVs and PM, the contribution of secretion to the total auxin flux would be negligible. In conclusion, while secretory vesicle-mediated transport of auxin is an intriguing and theoretically possible model, it is unlikely to be a major mechanism of auxin transport in planta. Full article
(This article belongs to the Special Issue Auxins and Cytokinins in Plant Development)
Show Figures

Figure 1

16 pages, 1658 KiB  
Article
Bioavailability of Eurycomanone in Its Pure Form and in a Standardised Eurycoma longifolia Water Extract
by Norzahirah Ahmad, Dodheri Syed Samiulla, Bee Ping Teh, Murizal Zainol, Nor Azlina Zolkifli, Amirrudin Muhammad, Emylyn Matom, Azlina Zulkapli, Noor Rain Abdullah, Zakiah Ismail and Ami Fazlin Syed Mohamed
Pharmaceutics 2018, 10(3), 90; https://doi.org/10.3390/pharmaceutics10030090 - 11 Jul 2018
Cited by 15 | Viewed by 7347
Abstract
Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food [...] Read more.
Eurycoma longifolia is one of the commonly consumed herbal preparations and its major chemical compound, eurycomanone, has been described to have antimalarial, antipyretic, aphrodisiac, and cytotoxic activities. Today, the consumption of E. longifolia is popular through the incorporation of its extract in food items, most frequently in drinks such as tea and coffee. In the current study, the characterisation of the physicochemical and pharmacokinetic (PK) attributes of eurycomanone were conducted via a series of in vitro and in vivo studies in rats and mice. The solubility and chemical stability of eurycomanone under the conditions of the gastrointestinal tract environment were determined. The permeability of eurycomanone was investigated by determining its distribution coefficient in aqueous and organic environments and its permeability using the parallel artificial membrane permeability assay system and Caco-2 cultured cells. Eurycomanone’s stability in plasma and its protein-binding ability were measured by using an equilibrium dialysis method. Its stability in liver microsomes across species (mice, rat, dog, monkey, and human) and rat liver hepatocytes was also investigated. Along with the PK evaluations of eurycomanone in mice and rats, the PK parameters for the Malaysian Standard (MS: 2409:201) standardised water extract of E. longifolia were also evaluated in rats. Both rodent models showed that eurycomanone in both the compound form and extract form had a half-life of 0.30 h. The differences in the bioavailability of eurycomanone in the compound form between the rats (11.8%) and mice (54.9%) suggests that the PK parameters cannot be directly extrapolated to humans. The results also suggest that eurycomanone is not readily absorbed across biological membranes. However, once absorbed, the compound is not easily metabolised (is stable), hence retaining its bioactive properties, which may be responsible for the various reported biological activities. Full article
(This article belongs to the Special Issue Drug Metabolism, Pharmacokinetics and Bioanalysis)
Show Figures

Graphical abstract

Back to TopTop