Impact of Extracorporeal Membrane Oxygenation in an Infant Treated with Vancomycin: A Case Report
Abstract
1. Introduction
2. Case Report
3. Pharmacokinetic Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilhelm, M.P. Vancomycin. Mayo Clin. Proc. 1991, 66, 1165–1170. [Google Scholar] [CrossRef] [PubMed]
- De Hoog, M.; Mouton, J.W.; van den Anker, J.N. Vancomycin: Pharmacokinetics and administration regimens in neonates. Clin. Pharmacokinet. 2004, 43, 417–440. [Google Scholar] [CrossRef] [PubMed]
- U.S. FDA. Guidance for Industry: General Considerations for Pediatric Pharmacokinetic Studies for Drugs and Biological Products; U.S. Food and Drug Administration: Silver Spring, MD, USA, 1998. Available online: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm072114.pdf (accessed on 15 August 2022).
- Gijsen, M.; Vlasselaers, D.; Spriet, I.; Allegaert, K. Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, K.; Chapman, R.; Keene, S. An overview of medical ECMO for neonates. Semin. Perinatol. 2018, 42, 68–79. [Google Scholar] [CrossRef]
- Buck, M.L. Vancomycin pharmacokinetics in neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 1998, 18, 1082–1086. [Google Scholar] [PubMed]
- Hahn, J.; Choi, J.H.; Chang, M.J. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J. Clin. Pharm. Ther. 2017, 42, 661–671. [Google Scholar] [CrossRef]
- An, S.H.; Lee, E.M.; Kim, J.Y.; Gwak, H.S. Vancomycin pharmacokinetics in critically ill neonates receiving extracorporeal membrane oxygenation. Eur. J. Hosp. Pharm. 2020, 27, e25–e29. [Google Scholar] [CrossRef]
- Moffett, B.S.; Morris, J.; Galati, M.; Munoz, F.; Arikan, A.A. Population Pharmacokinetics of Vancomycin in Pediatric Extracorporeal Membrane Oxygenation. Pediatr. Crit. Care Med. 2018, 19, 973–980. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Haycock, G.B.; Edelmann, C.M., Jr.; Spitzer, A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976, 58, 259–263. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Feld, L.G.; Langford, D.J. A simple estimate of glomerular filtration ratein full-term infants during the first year of life. J. Pediatr. 1984, 104, 849–854. [Google Scholar] [CrossRef]
- Villa, G.; Katz, N.; Ronco, C. Extracorporeal Membrane Oxygenation and the Kidney. Cardiorenal Med. 2015, 6, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.E. Basic Clinical Pharmacokinetics, 4th ed.; Technomics, Inc.: Tokyo, Japan, 2005; p. 55. [Google Scholar]
- Hoie, E.B.; Swigart, S.A.; Leuschen, M.P.; Willett, L.D.; Bolam, D.L.; Goodrich, P.D.; Bussey, M.E.; Nelson, R.M., Jr. Vancomycin pharmacokinetics in infants undergoing extracorporeal membrane oxygenation. Clin. Pharm. 1990, 9, 711–715. [Google Scholar] [PubMed]
- Pokorná, P.; Šíma, M.; Tibboel, D.; Slanař, O. Impact of haemolysis on vancomycin disposition in a full-term neonate treated with extracorporeal membrane oxygenation. Perfusion 2021, 36, 864–867. [Google Scholar] [CrossRef]
- Amaker, R.D.; DiPiro, J.T.; Bhatia, J. Pharmacokinetics of vancomycin in critically ill infants undergoing extracorporeal membrane oxygenation. Antimicrob. Agents Chemother. 1996, 40, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
- Friis-Hansen, B. Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 1971, 47 (Suppl S2), 264+. [Google Scholar]
- Smith, A.H.; Hardison, D.C.; Worden, C.R.; Fleming, G.M.; Taylor, M.B. Acute renal failure during extracorporeal support in the pediatric cardiac patient. ASAIO J. 2009, 55, 412–416. [Google Scholar] [CrossRef]
- Lu, H.; Rosenbaum, S. Developmental pharmacokinetics in pediatric populations. J. Pediatr. Pharmacol. Ther. 2014, 19, 262–276. [Google Scholar] [CrossRef]
- Donadello, K.; Roberts, J.A.; Cristallini, S.; Beumier, M.; Shekar, K.; Jacobs, F.; Belhaj, A.; Vincent, J.L.; de Backer, D.; Taccone, F.S. Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: A matched cohort study. Crit. Care 2014, 18, 632. [Google Scholar] [CrossRef]
- Young, D.G. Fluid balance in paediatric surgery. Br. J. Anaesth. 1973, 45, 953–957. [Google Scholar] [CrossRef][Green Version]
- Sherwin, J.; Heath, T.; Watt, K. Pharmacokinetics and Dosing of Anti-infective Drugs in Patients on Extracorporeal Membrane Oxygenation: A Review of the Current Literature. Clin. Ther. 2016, 38, 1976–1994. [Google Scholar] [CrossRef]
- Bartlett, R.H. Extracorporeal life support for cardiopulmonary failure. Curr. Probl. Surg. 1990, 27, 621–705. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, Infectious Diseases Society of America, Pediatric Infectious Diseases Society, and Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Mulubwa, M.; Griesel, H.A.; Mugabo, P.; Dippenaar, R.; van Wyk, L. Assessment of Vancomycin Pharmacokinetics and Dose Regimen Optimisation in Preterm Neonates. Drugs R&D 2020, 20, 105–113. [Google Scholar] [CrossRef]
- Cohen, P.; Collart, L.; Prober, C.G.; Fischer, A.F.; Blaschke, T.F. Gentamicin pharmacokinetics in neonates undergoing extracorporal membrane oxygenation. Pediatr. Infect. Dis. J. 1990, 9, 562–566. [Google Scholar] [CrossRef]
- Bhatt-Mehta, V.; Johnson, C.E.; Schumacher, R.E. Gentamicin pharmacokinetics in term neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy 1992, 12, 28–32. [Google Scholar] [PubMed]
- Southgate, W.M.; DiPiro, J.T.; Robertson, A.F. Pharmacokinetics of gentamicin in neonates on extracorporeal membrane oxygenation. Antimicrob. Agents Chemother. 1989, 33, 817–819. [Google Scholar] [CrossRef]
- Munzenberger, P.J.; Massoud, N. Pharmacokinetics of gentamicin in neonatal patients supported with extracorporeal membrane oxygenation. ASAIO Trans. 1991, 37, 16–18. [Google Scholar] [CrossRef]
- Kato, H.; Hagihara, M.; Okudaira, M.; Asai, N.; Koizumi, Y.; Yamagishi, Y.; Mikamo, H. Systematic review and meta-analysis to explore optimal therapeutic range of vancomycin trough level for infected paediatric patients with Gram-positive pathogens to reduce mortality and nephrotoxicity risk. Int. J. Antimicrob. Agents. 2021, 58, 106393. [Google Scholar] [CrossRef]
- Uda, K.; Suwa, J.; Ito, K.; Hataya, H.; Horikoshi, Y. Ototoxicity and Nephrotoxicity with Elevated Serum Concentrations Following Vancomycin Overdose: A Retrospective Case Series. J. Pediatr. Pharmacol. Ther. 2019, 24, 450–455. [Google Scholar] [CrossRef]
- Lutsar, I.; Metsvaht, T. Understanding pharmacokinetics/pharmacodynamics in managing neonatal sepsis. Curr. Opin. Infect. Dis. 2010, 23, 201–207. [Google Scholar] [CrossRef]
X−4 | X−3 | X | X+1 | X+2 | X+3 | X+4 | X+5 | X+6 | X+7 | X+8 | X+9 | X+10 | X+11 | X+12 | X+13 | X+14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plasma free Hb, g/L | 0.08 | 0.08 | 0.06 | 0.06 | 0.09 | 0.13 | 0.03 | 0.05 | 0.09 | 0.09 | |||||||
SCr, mg/dL | 0.2 | 0.4 | 0.5 | 0.5 | 0.3 | 0.3 | 0.3 | 0.5 | 0.6 | 0.7 | 0.6 | 0.6 | 0.6 | 0.4 | 0.3 | 0.3 | 0.3 |
GFR, mL/min/1.73 m2 | 138.4 | 69.2 | 55.4 | 55.4 | 92.3 | 92.3 | 92.3 | 55.4 | 46.1 | 39.5 | 46.1 | 46.1 | 46.1 | 69.2 | 92.3 | 92.3 | 92.3 |
BUN, mg/dL | 10.9 | 11.2 | 45.7 | 70.8 | 67.3 | 72.4 | 78.2 | 85.3 | 90.2 | 91.6 | 104.9 | 109.3 | 99.3 | 107.8 | 88.7 | 80.0 | 75.0 |
AST, IU | 29 | 55 | 122 | 115 | 79 | 73 | 74 | 43 | 86 | 100 | 151 | 57 | 51 | 49 | 75 | ||
ALT, IU | 25 | 16 | 34 | 26 | 23 | 19 | 20 | 13 | 21 | 30 | 43 | 53 | 50 | 56 | 57 | 58 | 58 |
Thrombocytes, 103/µL | 276 | 194 | 53 | 31 | 77 | 120 | 121 | 197 | 167 | 280 | 172 | 64 | 51 | 121 | 119 | 106 | 107 |
Total bilirubin, mg/dL | 0.2 | 2.2 | 2.4 | 3.9 | 2.3 | 2.8 | 2.8 | 1.5 | 2.5 | 4.4 | 4.7 | 4.6 | 4.2 | 3.7 | 2.9 | 2.0 | 1.6 |
Serum potassium, mmol/L | 4.5 | 4.7 | 4.9 | 3.8 | 3.6 | 3.7 | 3.5 | 4.1 | 4.6 | 5.0 | 5.0 | 4.3 | 4.4 | 3.9 | 4.3 | 3.2 | 3.2 |
CRP, mg/dL | 1.1 | 1.1 | 6.2 | 3.0 | 2.0 | 2.7 | 5.8 | 6.6 | 22.7 | 25.8 | 21.8 | 12.2 | 15.3 | 11.3 | 8.0 | 6.4 | 5.7 |
PCT, ng/mL | 2.5 | 1.5 | 0.4 | >75.0 | >75.0 | 73.3 | 71.8 | 42.7 | 19.6 | 8.0 | 7.8 | ||||||
BT, °C | 37.2 | 36.8 | 36.9 | 36.5 | 36.3 | 36.7 | 36.7 | 36.6 | 36.6 | 37.3 | 35.7 | 37.1 | 37.1 | 36.5 | 36.8 | 36.3 | 36.3 |
Urine volume, mL/day | 618 | 244 | 239 | 607 | 554 | 528 | 363 | 241 | 744 | 816 | 544 | 625 | 603 | 543 | 484 | 207 | 501 |
WBC, 103/µL | 8.8 | 3.5 | 9.5 | 7.3 | 10.5 | 9.0 | 8.6 | 11.2 | 16.9 | 17.3 | 16.3 | 20.2 | 20.8 | 21.9 | 22.1 | 19.4 | 18.6 |
VCM dose | |||||||||||||||||
165 mg/day every 8 h (37.7 mg/kg/day) | ○ | ○ | ○ | ○ | |||||||||||||
80 mg/day every 12 h (18.2 mg/kg/day) | ○ | ||||||||||||||||
40 mg/day every 24 h (9.1 mg/kg/day) | ○ | ○ | ○ | ○ | ○ | ○ | |||||||||||
VCM concentration, μg/mL | 27.1 | 18.6 | 36.1 | 22.4 | |||||||||||||
ECMO | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ||||||
Rotational frequency, rpm | 2010 | 2010 | 2010 | 2010 | 2010 | 1430 | 1770 | 1770 | 1640 | 1770 | 1570 | ||||||
Blood volume, L/min | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.1 | ||||||
Oxygen flow rate, L/min | 0.4 | 0.3 | 0.3 | 0.1 | 0.2 | 0.1 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiraishi, C.; Kato, H.; Imai, H.; Iwamoto, T. Impact of Extracorporeal Membrane Oxygenation in an Infant Treated with Vancomycin: A Case Report. Int. J. Environ. Res. Public Health 2023, 20, 1839. https://doi.org/10.3390/ijerph20031839
Shiraishi C, Kato H, Imai H, Iwamoto T. Impact of Extracorporeal Membrane Oxygenation in an Infant Treated with Vancomycin: A Case Report. International Journal of Environmental Research and Public Health. 2023; 20(3):1839. https://doi.org/10.3390/ijerph20031839
Chicago/Turabian StyleShiraishi, Chihiro, Hideo Kato, Hiroshi Imai, and Takuya Iwamoto. 2023. "Impact of Extracorporeal Membrane Oxygenation in an Infant Treated with Vancomycin: A Case Report" International Journal of Environmental Research and Public Health 20, no. 3: 1839. https://doi.org/10.3390/ijerph20031839
APA StyleShiraishi, C., Kato, H., Imai, H., & Iwamoto, T. (2023). Impact of Extracorporeal Membrane Oxygenation in an Infant Treated with Vancomycin: A Case Report. International Journal of Environmental Research and Public Health, 20(3), 1839. https://doi.org/10.3390/ijerph20031839