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Abstract: Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic
index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body
fluids’ enzymes and/or unsuitable physicochemical conditions while preserving the surrounding
healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause
immunogenicity following intravenous or topical administration. Still, their most important char-
acteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or
hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a
suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully
with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life
in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent
processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization
and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful
translation from animal studies to clinical trials is still an important challenge surrounding the
approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine
based on the design of functionalized nano-delivery systems bearing highly specific molecules to
drive therapies is a promising strategy to treat degenerative diseases.

Keywords: nano-delivery systems; liposomal formulations; liposomal marketed formulations;
liposome–cell interaction; protein and peptide encapsulation

1. A General Overview of the Remarkable Role of Nature in Providing Potential
Pharmacological Compounds

Nature has long proved an outstanding source of bioactive molecules with vast struc-
tural complexity and diversity. These have been used for millennia, mainly as compo-
nent mixtures in crude extracts, as a unique strategy to treat several physiopathological
conditions, including wounds, infectious diseases and other disorders [1,2]. In contrast,
conventional drugs approved for therapeutic use are mainly represented by synthetic and
small molecules ranging from 900 to 1500 Da designed and chemically synthetized to fit a
pre-determined target via high-throughput screening. However, since the targets for small
therapeutic molecules represent only 2–5% of the human genome products, the search for
alternative therapeutics capable of expanding the number of new targets has increased the
number of studies on natural therapeutic biomolecules, comprising searches in diverse
classes, including natural macromolecules particularly proteins, peptides and polysaccha-
rides [3,4]. The first efforts to identify and isolate active principles from natural extracts
began in the 19th century with the isolation of the anti-malarial quinine, the opiate analgesic
morphine and salicylic acid, creating the medicinal use of naturally isolated compounds.
Since then, many other bioactive compounds have been isolated, mainly alkaloids, such as
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caffeine, nicotine, codeine, atropine, colchicine, cocaine and capsaicin [5]. The utilization of
unmodified natural molecules increased by 43% during the 1930s (Figure 1). After this pe-
riod, a decline in the number of unmodified natural products entering clinical practices took
place, although the number of published data on natural products and bioactive molecules
has increased. The past 30 years have been marked by a profile shift characterized by the
replacement of unmodified natural molecules by semisynthetic and synthetic derivatives
chemically designed but inspired by natural molecules (Figure 1) [6]. This profile shift was
stimulated by the emergence of modern high-throughput platforms for screening and syn-
thetic combinatorial strategies aimed at the fast discovery of new drug candidates similar
to or analogs of natural molecules displaying special activities identified over the years,
conducted through semi-synthetic modifications or by total synthesis, but still maintaining
their pharmacophore. Moreover, the generation of synthetic/semisynthetic analogs is in
contrast to time-consuming and high-cost methodologies applied to the identification of
natural compounds in crude extracts, followed by their isolation and obtention in bulk
amounts, impacting the emergence of new but unmodified natural pharmacological com-
pounds for clinical use [7–9]. Because of this, the chemical synthesis of natural products
was prioritized to optimize pharmaceutical production, improving the purity, quality and
yields of bioactive compounds with reduced costs. Salicylic acid was the first natural
product synthesized in 1853, copying the natural molecule [5].
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Figure 1. Number of reports on bioactive molecules and natural products over the years, retrieved
by an advanced search on the Pubmed database (https://pubmed.ncbi.nlm.nih.gov accessed on
5 July 2022) combining the terms “natural products” OR “bioactive molecules”. The number of
publications contrast with FDA-approved unmodified natural drugs, which reached 43% in the 1930s.
With the emergence of modern high-throughput platforms for screening and synthetic combinatorial
strategies, synthetic/semi-synthetic drugs inspired by natural molecules reported throughout the
years predominate over unmodified natural drugs in the market, increasing from 34% in 2010 to
50% currently.

The number of compounds approved by the FDA for clinical use classified as natural-
based synthetic and semi-synthetic and purely natural compounds comprised 34% of the
top 100 best-selling medicines in 2010, increasing to about 50% today, as a result of the
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cumulative knowledge reported in studies on bioactive molecules over the past 20 years,
expanding the hall of new pharmaceutical molecules (Figure 1) [3,10].

Natural bioactive compounds can be found in living organisms from both edible or
non-edible sources, mainly plants, including fruits, vegetables, whole grains, legumes, oils
and others, but also animals and microorganisms such as bacteria and fungi, as well as
algae [11]. The most studied bioactive compounds are polyphenols, such as curcumin,
resveratrol, epigallocatechin gallate (EGCG), quercetin and anthocyanin, followed by
polyunsaturated fatty acids such as docosahexaenoic acid (DHA), eicosapentaenoic acid
(EPA) and arachidonic acid (ARA). However, native proteins or enzymes, as well as their
bioactive peptides encrypted in primary structures, are being considered the next genera-
tion of pharmacological compounds. Several studies have been developed addressing plant
lectins and milk proteins as non-toxic but highly effective drugs to treat several diseases.
Moreover, bioactive polysaccharides, including lentinan and grifolan, vitamins, carotenoids,
alkaloids and even mineral elements such as Zn, Fe, Mg, Ca, Na and P can have a positive
impact on human health. These natural compounds exhibit various health-promoting ef-
fects such as antioxidant [12], antitumoral [13], immunomodulatory [14], anti-diabetic and
anti-obesity [15,16], antiviral [17], anti-inflammatory [18] and neuroprotector activity [19],
among others.

Therefore, natural bioactive compounds and their structural analogs—the natural-
inspired molecules—have profoundly impacted the history of drug discovery, especially
concerning cancer and infectious diseases, and continue providing pharmaceuticals able
to treat almost all health disorders while composing the hall of new active agents in their
unaltered, synthetic or semi-synthetic forms [1,8,9].

The short half-life of natural bioactive compounds in the blood stream or human
tissues is maybe the main obstacle toward their use as medicines due to their chemical
instability toward processing and storage conditions, as well as easy degradation, which
may be associated with impaired permeability and low bioavailability and absorption,
compromising the target drug moiety [20]. Drug delivery systems have long emerged as
an alternative to improve bioactive compound pharmacokinetics and therapeutic indices,
leading to their desired performance.

2. Evolution of Drug Delivery Systems and the Emergence of Nanotechnology in
Clinical Treatments

Drug performance depends primarily on the type of delivery and release rate in order
to guarantee a sustained drug amount that matches the therapeutic index between the
maximum safe concentration and above the minimum effectiveness in the blood stream,
avoiding abrupt peak concentrations as a result of massive drug release or the need for
multiple doses to achieve drug effectiveness. These limitations encouraged the search for
an ideal drug delivery system to substitute pills and capsules that release active compounds
in aqueous media, termed immediate release (IR) formulations. The pioneer strategy in this
regard comprised Spansules®, a first-generation drug delivery system, where micro-pellets
were coated with a water-soluble wax of varied thicknesses, allowing for the controlled
release of oral drugs for up to 12 h, leading to a constant concentration in blood. The
first-generation drug delivery period, which ran from the 1950s to the 1970s, was also
marked by the development of silicon- or dextran-based transdermal formulations based
on controlled release, mainly through dissolution and diffusion (Figure 2). Both delivery
systems faced several challenges, leading to advanced-generation systems [21].



Pharmaceutics 2022, 14, 2808 4 of 26

Pharmaceutics 2022, 14, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 2. Development of controlled drug delivery systems. Three distinct development phases—
1st, 2nd and 3rd generations—are highlighted based on therapeutic products approved by the FDA 
since the 1950s, when Spansule®, the first drug release system, was approved for clinical use. The 
main highlights of each phase are depicted in the central column, while the main synthetic or bio-
logical material used in the drug delivery system preparation is indicated in the left column. The 
advent of nanotechnological drug delivery strategies is highlighted in red during the last decade of 
the second development phase. Future perspectives are exhibited at the bottom panel. Created using 
Mind the Graph (https://mindthegraph.com accessed on 14 August 2022). 
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Figure 2. Development of controlled drug delivery systems. Three distinct development phases—1st,
2nd and 3rd generations—are highlighted based on therapeutic products approved by the FDA since
the 1950s, when Spansule®, the first drug release system, was approved for clinical use. The main
highlights of each phase are depicted in the central column, while the main synthetic or biological
material used in the drug delivery system preparation is indicated in the left column. The advent of
nanotechnological drug delivery strategies is highlighted in red during the last decade of the second
development phase. Future perspectives are exhibited at the bottom panel. Created using Mind the
Graph (https://mindthegraph.com accessed on 14 August 2022).

The second generation of drug delivery formulations began in 1980 and lasted until
2010 and came with the understanding that it is not indispensable that drug concen-
trations be maintained at fixed levels. This period was marked by the development of
smart polymers and hydrogels that evolved alongside biodegradable microparticles, solid
implants and in situ gel-forming implants capable of delivering long-term release and
stimuli-responsive bioactive compounds. Finally, nano-delivery systems emerged, where
nanoparticles obtained from biodegradable polymers, polymeric micelles, lipids, chitosan
and dendrimers are used to carry anticancer agents and gene sequences. The need to
overcome biological and physicochemical barriers gave rise to the third generation of
drug delivery systems, in which advanced nanomaterials enable the delivery of poorly
water-soluble and/or very labile drugs or cell components, including peptides, proteins
and DNA or RNA sequences. Novel delivery concepts include targeted drug delivery using
nanoparticles and self-regulated drug delivery [21]. However, few drugs were approved
by the FDA, even though much experimental evidence has proven that drug delivery
employing nanotechnology systems could enhance the effectiveness of anticancer drugs
against tumors in animal models [10].

According to the National Nanotechnology Initiative (2021), nanotechnology involves
the manipulation of nanoparticles ranging from 1 to 100 nm, and their use is widespread in
several areas, including engineering, physics and informatics. However, nanotechnology
applications for pharmaceutical purposes may cause the most significant impact on human
health and, because of this, has been considered the most promissory technology for
treatments against degenerative pathologies such as cancer [22,23] and central nervous
system disorders [24,25], as well as in antiviral therapy to aid in SARS-CoV-2 immunization
and treatment [26,27].

https://mindthegraph.com
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The morphology of nano-scaled particles led to the optimization of treatments by
enabling nano-materials to reach physiological sites that used to remain inaccessible, such
as specific areas of the brain damaged by synucleinopathies or brain neoplasms, which
require the ability to cross the blood–brain barrier to achieve therapeutic intervention
success [25]. Moreover, nanomaterials exhibit a large surface/volume ratio, potentiating
drug effects on target sites (cell, tissue or organ), comprising efficient bioactive molecule
nanocarriers that can be encapsulated through adsorption, core entrapment or covalent
surface binding. The nano-encapsulated bioactive molecule is released constantly and in
a controlled manner, reducing adequate drug dosages to achieve pharmacological effects
and minimize side effects widely attributed to conventional pharmaceuticals [28–30].

Nano-encapsulated compounds can be protected from degradation in the bloodstream.
They can still reach intracellular compartments via endosomes through passive permeabil-
ity, releasing bioactive compounds into the cytoplasm or directing them to intracellular
targets with ligands associated with nano-capsule internalization [31]. In anti-tumorigenic
therapies, the passive accumulation of anticancer drugs at the tumor localization can be
increased by facilitating the permeability and retention effect (EPR), a phenomenon follow-
ing the local inflammatory status of tumor blood vessels that become leaky, allowing for
the passage and accumulation of nanometric materials in tumor tissues [32–35].

The primary chemical composition of nanoparticles described for medicinal therapy
treatments comprises organic or inorganic compounds. The former includes natural or
synthetic polymers such as chitosan, collagen, glycerol, polylactic-co-glycolic acid (PLGA)
and dendrimers, as well as lipid-based materials, such as liposomes and micelles. At
the same time, inorganic nanoparticles comprise gold nano-shells, metal oxides, carbon
nanotubes and quantum dots (Figure 2) [36]. Molecules for therapeutic purposes can
be encapsulated by these nanoparticles or complexed to them by adsorption or cova-
lent binding to the nanocarrier surface. Depending on the carried bioactive compound,
these nanoconjugates may be used to treat several pathologies, including degenerative
diseases such as atherosclerosis and Parkinson’s disease, as well as cancers, as mentioned
previously (Table 1).

Table 1. Pre-clinical studies on nano-delivery systems demonstrated in cell cultures and animal
models for the loading of therapeutics aiming at the treatment of several health disorders.

Nano-Delivery System Therapeutic Agent Loading
Mechanism Pathology Biological Assay Pharmacological Response Ref.

Nanostructured lipid
carriers (NLCs)

Tocotrienol/
Simvastatin

Core
co-encapsulation

Mammary
adenocarcinoma

In vitro (+SA
lineage)

Improved anti-proliferative
TRF and SIM effect
upon encapsulation

[37]

Solid lipid
nanoparticles (SLN) Linalool Encapsulation

Hepatocarcinoma
Lung

adenocarcinoma

In vitro (HepG2 and
A549 cell lineages)

Improved cytotoxic effect on
human lung- and

liver-derived tumor cells
(A549 and HepG2) at

> 1.0 mM in a dose/time-
dependent manner

[38]

Lipid nano-capsules Simvastatin Encapsulation Breast carcinoma In vitro (MCF-7
lineage)

Increased cytotoxicity at IC50
= 1.4 ± 0.02 mg/mL [39]

Folic acid-chitosan Vincristine Encapsulation Non-small-cell lung
cancer (NSCLC)

In vitro (NCI-H460
lineage)

Anticancer activity at a
4:25 formulation against

non-small-cell lung cancer
(NCI-H460).

[40]

Liposomes (III) complexes Encapsulation Several types
of cancer

In vitro (HepG2;
HTC-116; HeLa;
A549; BEL-7402;

SGC-7901; Eca-109;
B-16 and human

liver cell L02)
In vivo (mice)

Ir-1-Lipo and Ir-2-Lipo
induced apoptosis at 55.6%
and 69.3% levels. Improved
anticancer activity against

A549 cells;
Ir-2-Lipo effectively inhibited

tumor growth in a
murine model

[41]
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Table 1. Cont.

Nano-Delivery System Therapeutic Agent Loading
Mechanism Pathology Biological Assay Pharmacological Response Ref.

PGS-coated cationic
liposomes with Bcl-2

siRNA-corona
Doxorubicin (Dox) Electrostatic

adsorption
Hepatocellular

carcinoma

In vitro (Bel7402
sensitive cells and

Bel7402/5-FU
MDR cells)

In vivo (mice)

7-fold improved anticancer
effect by apoptosis induction
and tumor growth inhibition

compared to free Dox

[42]

Poly lactic-co-glycolic
acid (PLGA)

nanofibers (NFs)
Metformin Encapsulation Lung

adenocarcinoma
In vitro (A549
cell lineage)

Significant cytotoxicity
against A549 cells by
apoptosis induction

[43]

Polyamidoamine
(PAMAM) dendrimers

Methotrexate (MTX)
and D-

glucose (GLU)
Encapsulation Breast cancer In vitro (MDA

MB-231 lineage

OS-PAMAM-MTX-GLU
displaying higher anticancer
potential compared to free
MTX after a 4 h exposure

without significantly
affecting healthy human

HaCat cells

[44]

Polyamidoamine
(PAMAM) dendrimers

Liver-x-receptor
(LXR)

Specific receptor
binding Atherosclerosis

In vitro
(mouse peritoneal

macrophages)
In vivo (mice)

mDNP-LXR-L-mediated
delivery reduced in the

expression of
metalloproteinase 9 (MMP-9);

followed by plaque size
reduction and

decreased necrosis

[45]

Gold nanoclusters
(AuNCs)

N-isobutyryl-L-
cysteine

(L-NIBC)
Au-S bond Parkinson’s disease

In vitro (PC12 and
SH-SY5Y lineages)

In vivo (mice)

AuNCs exhibited superior
neuroprotective effects in
1-metil-4-phenilyridine

(MPP+) lesioned cell and
1-methyl-4-phenylpyridine

(MPTP) induced mouse
PD models

[46]

PD—Parkinson’s disease.

The application of hydrophobically modified chitosan nanoparticles in the delivery
of silibinin, a flavo-lignan isolated from the seeds of the milk thistle plant, was shown
to improve the response promoted by a sustained release and enhance the solubility of
this poorly aqueous soluble compound [47]. Similarly, resveratrol (RV), a polyphenol non-
flavonoid commonly found in red or dark grapes, encapsulated in albumin nanoparticles
(NPs) and functionalized with the tripeptide arginine-glycine-aspartate (RGD), demon-
strated a prolonged RV blood circulation time and increased content surrounding a target
tumor by 8.1-fold compared to free-RV. In a murine model, RV-NPs-RGD suppressed tumor
growth with no relapse after 35 days of treatment, while progressive tumor growth was
observed in an RV-free treatment, indicating that RV-NPs-RGD should be considered a
promising chemotherapy agent [48,49].

Curcumin, another widely studied natural antioxidant and anticancer compound
derived from turmeric or saffron, displays limited clinical application due to its molecule
instability and poor solubility. However, curcumin encapsulated in solid lipid nanopar-
ticles displays a high antiproliferative effect against SKBR3 cancer cells compared to free
curcumin, with nanoencapsulation improving this compound’s bioavailability. Moreover,
nano-encapsulated curcumin induced high-extension SKBR3 cell apoptosis (36.7%) and
pronounced cell migration inhibition [50].

The co-encapsulation of tocotrienol (TRF) and simvastatin (SIM) in lipid nanoparticles
has been reported as displaying an anti-proliferative effect on the breast adenocarcinoma
+SA cell line, with an IC50 of 0.52 µM, when compared to each pharmaceutical separately.
Nearly 25 to 40% of SIM is released over 48 h, with a quicker release in the first 10 h,
followed by a slower and controlled kinetic release throughout the following 38 h [37].
Similarly, when lianol (LN) was encapsulated in solid nanoparticles, it affected HepG2
hepatocarcinoma and A549 pulmonary adenocarcinoma cell lines [38].

Folic acid conjugated through ionic interactions with chitosan nanoparticles (FA-CS)
loaded with vincristine induces apoptosis in 75% of NCI-H460 lung cancer cells, in contrast
to unloaded nanoparticles (31%) [40]. Nanoencapsulation efficiency can be increased when
prepared at 4:25 (v/v) of vincristine/FA-CS, reaching a 95% efficiency and loading capacity
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of 48.65%, reinforcing promising anticancer effects on tumorigenic lung cells [40]. Similar
effects were observed using PLGA (poly lactic-co-glycolic acid) nanofibers coated with
metformin (MET), which exhibited cytotoxicity against A549 lung cancer cells after 48 h
compared to free MET [43].

Liposome encapsulation improves the pharmacological effects of bioactive molecules,
including metallic complexes, contributing to toxicity constraints by decreasing effective
doses. Encapsulation of iridium III complexes (Ir-1, Ir-2 and Ir-3) in nano-liposomes, for
example, was shown to improve their anticancer activity against several human carcinoma
lineages, such as HepG2, hepatocellular carcinoma; HTC-116, colon cancer; HeLa, cervical
cancer; A549, lung carcinoma; BEL-7402, hepatocellular carcinoma; SGC- 7901, gastric
adenocarcinoma; and Eca-109, esophagus cancer cell, and against B16 mouse melanoma
cells but no toxicity against healthy nih3T3 murine cells. On the other hand, no activity
was observed for free Ir-2, and the nano-liposomal formulation exhibited a superior IC50
compared to cisplatin, especially against the A549 cell line. The intraperitoneal administra-
tion of the nano-liposomal formulation loaded with the Ir-2 complex for 10 consecutive
days prior to A549 carcinogenic cell inoculation in mice resulted in 57.45% tumor mass
reduction. In vitro assays have shown that encapsulated complexes stimulate apoptotic
activity induced by increased intracellular ROS and cell cycle arrest at G0/G1 phases [41].
Similarly, TPGS-coated liposomes with SiRNA-corona Bcl-2 loaded with doxorubicin (Dox)
promoted a 7-fold reduction in mice tumoral mass compared to free Dox [42]. Dendrimer
nanoparticles of poly(amidoamine) (PAMAM) have also been successfully used to deliver
methotrexate and D-glucose (PAMAM-MTX-GLU), inhibiting MDA-MB 231 breast cancer
cells [44].

In addition to their use in anti-tumorigenic therapy, nanoparticles can be applied
to treat other pathologies, including atherosclerosis and Parkinson’s disease. Mannose-
functionalized dendrimer nanoparticles (mDNP) have been formulated to selectively de-
liver LXR-L, the liver receptor ligand, to macrophages associated with atherosclerotic
plaque [45]. Four weeks of mDNP-LXR-L administration in LDL-receptor knockout mice
led to nearly a 10% reduction in atherosclerotic plaque, necrosis area and inflammatory
response evaluated by the expression of the metalloproteinase 9 (MMP-9) gene, regulated
by NF-kB, the nuclear factor kappa B. In contrast, no increases in the expression of hepatic
lipogenic or plasma lipid genes were observed. Gold nanoparticles (AuNCs) containing
N-isobutyryl-L-cysteine (L-NIBC) are promising in the treatment of Parkinson’s disease. An
in vitro assay of the effect of 1-methyl-4-phenyliridine (MPP) on SH-SY5Y cells showed that
the nanoparticles inhibited synuclein fiber aggregation and formation in the brain while
also preventing the formation of Lewy bodies and the death and dysfunction of neurons, all
histological characteristics observed in Parkinson’s disease [46]. These data corroborated
results described in mice pre-inoculated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and treated with AuNCs, which promoted the regression of
behavioral disorders determined by the open field, swimming and rotarod tests, reinforcing
the potential of nanoparticles loaded with L-NIBC to treat Parkinson’s disease.

The therapeutic efficacy of several pharmaceuticals has been improved by nanopar-
ticles displaying the high potential of drugs complexed to nanomaterials to treat neo-
plasms, neurodegeneration and atherosclerosis, among other physiopathological conditions
(Table 1). However, despite the significant science and technology advances in obtaining
nanocarriers for pharmaceuticals, the time required for optimization and regulation aiming
at their commercialization can take at least thirteen years, without considering pre-clinical
studies and large-scale production, as well as phase 0, I, II and III clinical trials that must
precede the submission and approval of health regulatory agencies to finally reach phase
IV, as defined by the American Cancer Society [51,52].

A nano-liposomal formulation of doxorubicin (DOX), Doxil®, was the first drug- func-
tionalized nanoparticle formulation approved by the U.S. Food and Drug Administration
(FDA) in 1995. Doxil® can accumulate in solid tumors due to the EPR phenomena, ef-
fectively treating several cancers, including metastatic ovarian cancer and AIDS-related
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Kaposi’s sarcoma [53–55]. The anti-tumorigenic effect of Doxil® is attributed to its DNA
interleaving ability and topoisomerase II inhibition, resulting in the downregulation of
DNA replication and RNA transcription. Doxil® is not readily cleared from plasma by
the mononuclear phagocytic system (MPS), which allows the continuous release of en-
capsulated DOX, improving its therapeutic performance compared to free-DOX [56,57].
Another available chemotherapy formulation is Abraxane®, in which paclitaxel is efficiently
encapsulated in albumin nanoparticles. Abraxane®, approved by the FDA in 2005 and
originally used to treat breast cancer, was expanded to treat advanced pancreatic carci-
noma in 2013 [58]. Its formulation improves paclitaxel bioavailability, resulting in higher
intra-tumoral paclitaxel concentrations facilitated by endothelial transcytosis through the
albumin receptor-mediated (gp60) [59]. Other examples of nanostructured drugs developed
for cancer therapy or diagnosis are depicted in Figure 3.
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2.1. Challenges and Successful Strategies for the Therapeutic Use of Proteins and Peptides

The market for macromolecules such as proteins and peptides as pharmaceuticals
has increased significantly in recent years due to their promising therapeutic benefits.
Many natural peptides and proteins have been approved for clinical use, and many others
are in the pre-clinical or clinical trial stages [60–62]. A total of 208 new drugs were ap-
proved from 2015 to 2019, 58 of which are biological compounds, including 15 peptides
or peptide-containing molecules. These molecules have been applied to different clinical
purposes, acting as hormones, antigens, antibodies, enzymes, vaccines and nutraceuti-
cals for various purposes, including in the treatment of tumors, metabolic disorders and
infections [63–65]. Although highly explored, oral delivery, the most preferred and accept-
able route of administration, is limited due to poor absorption, gastrointestinal degradation
and low solubility in the bloodstream and intracellular aqueous environments [66]. Thus,
studies involving proteins and peptides are being performed to avoid these restrictive
physicochemical characteristics [67–70].

Low-molecular-mass conventional pharmaceuticals display high cytotoxicity, as these
compounds can access several cellular and intracellular compartments indiscriminately
and non-specifically, triggering toxicological effects along with their health-promoting
ability, as noted for conventional chemotherapeutic drugs. In contrast, high-molecular-
weight proteins and peptides displaying diversified structural features, which impair their
free transit in the body, present a lower probability of causing toxic effects and superior
target selectivity but poor stability [5,71]. Proteins and their derivatives are very labile,
degrade at room temperature and physiological conditions and are sensitive to proteases,
pH variations and ionic media composition promoted by various compounds found in
body fluids. Before reaching their cell or tissue targets, these molecules must also be able to
overcome physiological barriers that vary according to the administration route. Through
oral administration, proteins and peptides transit across the gastrointestinal tract where
biochemical, mucus and cellular barriers comprise limiting factors for their stability, which
justifies their poor bioavailability as low as 0.1%. In the stomach, gastric juice at extremely
acidic pH values between 1.0 and 2.0 confers an optimal environment for pepsin action
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toward these macromolecules. Moreover, pH variations contribute to protein and peptide
instability, altering their global charge and resulting in the loss of or reduction in function,
structural character and solubility. Protein and peptides are exposed to pH shifts along the
intestinal trait as pH 4.0–5.5 in the duodenum, pH 5.5–7.0 at the jejunum and pH 7.0–7.5 in
the ileum. In the intestine, proteases such as trypsin, chymotrypsin, carboxypeptidases,
elastases, aminopeptidases, endopeptidases and γ-glutamyl transpeptidases cleave peptide
linkages. Additionally, to be absorbed, proteins and peptides need to reach epithelial
cells by crossing a double mucus layer that lines the gastrointestinal tract, conferring a
physical barrier. Mucus is a hydrogel-like substance rich in mucin and proteases, which
can trap proteins and peptides, limiting their diffusion and exposing them to proteolytic
activity. The portion of peptides and proteins that reach epithelial cells must still cross the
cellular barrier that strictly limits molecule transport by the transcellular route to lipophilic
molecules and by the paracellular route to molecules of less than 13Å, which excludes most
intact macromolecules [31,52]. In the bloodstream or tissues, peptides and proteins can
rapidly vanish through the classical drug clearance phenomenon or immunogenicity-driven
adverse effects triggered by degradation, aggregation or post-translational modifications
and antigen-based immune response [5,63,71].

Many strategies have been developed to avoid repeated administration of protein and
peptide drugs and achieve their therapeutic efficacy, such as structural modifications or
alterations of surrounding conditions and the use of drug carriers that may be combined
with other strategies (Table 2) [72]. Their structural characteristics can be manipulated by
incorporating non-usual amino acids into the peptide backbone, altering their primary
amino acid sequence by altering intramolecular bonding, chemical backbone modifica-
tions and the use of PEG (Table 2). Increments in half-life, stability, receptor affinity or
controlled toxicity have been observed following the incorporation of non-natural amino
acids to the anti-diuretic desmopressin (DDAVP®), and conjugating PEG has achieved
immunogenicity reductions with regard to the bovine enzyme Pegademase (Adegan®),
used to treat severe combined immunodeficiency disease. Surrounding conditions can be
modified using adjuvants such as protease inhibitors, pH modifiers, permeation enhancers,
immunomodulators and hyaluronidases. Oral administration of the glucagon-like pep-
tide (GLP-1) (Rybelsus®) associated with SNAC (sodium N-[8-(2-hydroxybenzoyl) amino
caprylate]) neutralizes gastric juice pH, preventing peptide backbone degradation and
improving transcellular drug absorption. Non-invasive alternatives for administering
proteins and peptides have been developed, including the first oral glucagon-like peptide
(Rybelsus®) and insulin-associated fumaryl diketopiperazine to produce an inhalation
powder (Afrezza®). Moreover, improved selectivity for CD86 and CD80 receptors has
been obtained by amino acid replacement in the immunosuppressor protein Belatacept
(Nulojix®), while the use of a depot system can be applied to extend the half-life of Leupro-
lide (Lupron Depot®) [5,71].

2.2. Nano-Delivery Strategies for Protein and Peptide Drugs

Nano-delivery systems, particularly nano-liposomes, have been successfully applied to
overcome most physiological barriers found in parenteral, oral, pulmonary, nasal, ocular or
topical administrations, in combination or not with the aforementioned techniques [71,73].
The unique amphiphilic nature of liposome phospholipids allows the encapsulation of
lipophilic active molecules in the lipidic bilayer, hydrophilic molecules into the aqueous
core and amphiphilic compounds in the interface. Moreover, nano-capsules can be function-
alized with surface molecules aiming at targeted delivery, immune system evasion, stability
or other specific purposes. Additional advantages offered by this drug delivery system
include biodegradability, biocompatibility and low immunogenicity, with insignificant
toxicity, configuring a promising nanocarrier for macromolecules [74].
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Table 2. Representative non-nano- and nano-delivery systems for protein/peptide drugs approved
by the American Food and Drug Administration or European Medicines Agency to treat health
disorders.

Therapeutic Indication Marketed Protein and
Peptide Drugs Active Principle Delivery Strategy Administration

Route

Cancer
1- Lazertinib (leclaza®)
2- Pegaspargase (Oncaspar®)
3- Mepact®

1- EGFR-tyrosine kinase inhibitor
2- L-asparaginase
3- Muramyl tripeptide
phosphatidyl ethanolamine

1- Amino acid modification
2- Polymeric nanoparticle (PEG)
3- Liposome encapsulation

1- Oral
2- IM/IV
3- IV

Diabetes 1- Insulin degludec Tresiba®

2- Lixisenatide (Adlyxin®)

1- Insulin
2- Glucagon-like peptide-1
receptor agonist

1- Amino acid modification
2- Amino acid modification and
amidation

1- SC
2- SC

Immune modulation
1- Belatacept (Nulojix®)
2- Pegfilgrastim (Neulasta®)
3- Sandimmune Neoral®

1- CTLA4 antibody
2- G-CSF
3- Cyclosporine A

1- Amino acid substitution
2- Polymeric nanoparticle (PEG)
3- Lipid-based formulation

1- IV
2- on-body injection
3- oral

Infection
1- Bezlotoxumab (Zinplava®)
2- Ibalizumab-uiyk (Trogarzo®)
3- Peginterferon-α2a Pegasys®

1- Monoclonal antibody against
Clostridium difficile toxins A and B
2- Monoclonal antibody
CD4-directed
3- Interferon-α2a

1- Natural
2- Natural
3- Polymeric nanoparticle (PEG)

1- IV
2- IV
3- IV

Approved by the EMA—European Medicines Agency; CTLA4—cytotoxic T-lymphocyte antigen 4; EGFR—epidermal
growth factor receptor; G-CSF—growth-colony stimulating factor; IM—intramuscular; IV—intravenous; SC—subcutaneous.

As demonstrated for other natural compounds, proteins and peptides can be encapsu-
lated within colloidal particles absorbed by cells, subsequently releasing the active principle
and reaching systemic circulation [67,70,75]. Additionally, these macromolecules can be
conjugated with ligands on the surface of nanoparticles to facilitate intestinal absorption,
targeting intestinal receptors or transporters [76,77]. Some protein-loaded liposomes have
been approved for clinical use, with many others in the pre-clinical stage, delineating a
hopeful future for the efficient and specific targeting of protein and peptide drugs [62].

The first use of proteins in association with a nano-liposomal system approved by the
FDA in 1994 was in the vaccine against hepatitis A (Epaxal®), where virus-derived proteins
are incorporated onto liposome surfaces, targeting the nanocarrier to immune cells. The
same strategy was applied to flu vaccines in the 1990s. Curosurf® is a suspension that
contains a mixture of phospholipids and two surfactant proteins, SP-B and SP-C, marketed
in particle sizes from 30 µm to 50 nm to treat neonatal respiratory distress syndrome,
preventing alveolar collapse [62]. Polymeric nanoparticles are also employed to deliver
the growth-colony stimulating factor, Interferon-α2a and L-asparaginase to modulate the
immune system, treat infections and against cancer (Table 2).

Many other promising possibilities, still under investigation, are now being reported.
Lactoferrin (Lf), for example, has been complexed to doxorubicin (DOX) to lead this
drug to hepatocellular carcinoma (HCH) cells, where Lf specifically interacts with the
asialoglycoprotein receptor (ASGPR) leading to an antitumoral response [77]. Mice treated
with pegylated liposome (Lf-PLS) loaded with DOX displayed superior delayed growth
of HepG2 cells compared to DOX-loaded PLS and free DOX, improving the absorption
by target cells and resulting in an inhibitory effect on ASGPR-positive HCC cell lines.
The results indicate that Lf-PLS loaded with DOX may be a potential drug-targeting
delivery system for HCC treatment. Moreover, Lf per se is a bioactive protein encapsulated
in nano-emulsions [78] and liposomes [79,80], among others. Simulated digestion of
encapsulated lactoferrin (LF) has demonstrated that this compound is protected against
gastric juice degradation, with no apparent damage to the liposome bilayer structure, even
under low pH and pepsin proteolysis conditions [79,80]. Based on this, this formulation
seems promising for the oral administration of proteins and peptides, as lactoferrin and
other proteins mentioned below exhibit immunomodulatory properties and lead to anti-
proliferative effects by inducing apoptosis in cancer cells [81–84].

Bromelain nanoencapsulation, for example, improved the anti-tumorigenic effect of
this compound by prolonging its release in various tumor cell lines, including U251; MCF-7;
OVCAR-03; NCI-ADR/RES; NCI-H460; PC-3; HT-29; K562; and HaCaT and healthy human
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cells and keratinocyte migration and proliferation in the scratch assay. Cell migration was
inhibited by 90% after 24 h [85].

Promising anticancer effects of nano-encapsulated proteins have also been observed
for taro lectin, tarin, coated by pegylated nano-liposomes. The pharmacological proper-
ties of tarin seem to be preserved, whereas bioavailability and therapeutic effectiveness
were improved. Nano-liposomal tarin, a lectin isolated by our group from a Colocasia
esculenta extract, inhibited human cancer cell lines such as glioblastoma (U-87 MG) and
adenocarcinoma (MDA-MB-231) with a CI50 of 39.36 µg/mL and 71.38 µg/mL, respec-
tively, comparable to the conventional chemotherapeutics cisplatin and temozolomide.
Furthermore, no toxicity was observed against healthy mouse L929 fibroblasts and bone
marrow cells. Although no inhibition was detected for free tarin up to 50 µg/mL after
24 h of exposure, no activity was observed for empty liposomes, and thus, antitumoral
ability can be attributed to tarin only [86–89]. Moreover, taro antitumoral activity against
MDA-MB-231 and other cancer cell lines has been demonstrated and attributed to tarin
in previous studies [90,91]. Similarly, the lectin from Lepidium sativum encapsulated in chi-
tosan exhibited significant cytotoxic effects against hepatocellular carcinoma cells (HepG2)
in a dose-dependent manner, reaching up to 66% inhibition [92].

Nanoencapsulation has also proven a suitable technique for developing anticancer
peptides. Bioactive peptides from rice husks encapsulated in chitosan, at 0.1%, 0.2% and
0.3% (w/v) protein hydrolysates, for example, gradually suppressed the cellular viability of
several human tumorigenic cell lines, such as A549, MDA-MB-231 and MCF7, while VERO
cells, a non-carcinogenic line, were not affected by the protein hydrolysates, indicating that
peptides within the peptide pool were released [93].

3. Liposomal Formulation Performance: Characteristics, Functionalization
and Internalization

An effective liposomal formulation can be achieved by choosing the suitable lipid
composition, proper functionalization and a smart targeting strategy. Phospholipid selec-
tion, considering the head group and chain length and number of liposome components,
are crucial in determining liposome safety, stability and efficiency [94]. Besides their chemi-
cal composition, liposome efficiency depends on their stiffness, surface charge and lipid
organization, as surface modifications interfere with liposome stability and can be handled
to expand its use [95,96].

The main liposome components are glycerophospholipids, amphiphilic lipids com-
posed of a glycerol molecule linked to a phosphate group and two fatty acid chains that can
be either saturated or unsaturated. Phosphatidylcholine and phosphatidylethanolamine,
abundant in plants and animals, are the most employed to form liposomes [97,98]. Lipo-
somes can acquire positive, negative or neutral charges depending on the phospholipid
head and chain, which confer their overall characteristics and functionalities [99,100]. Sta-
bility can be conferred to liposomes formed by phospholipids with longer tails and low
degrees of unsaturation and ether linkages. Phospholipids with longer saturated hydro-
carbon chains display a remarkable ability to interact with each other and form tightly
ordered bilayer structures. On the other hand, shorter unsaturated hydrocarbon chains
form liposomes with fluid and disordered bilayers [94,101].

Synthetic phospholipids can be formed by the modification of the head groups,
aliphatic chains and alcohols of natural phospholipids, creating an enormous variety
of synthetic phospholipids, such as 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-
dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-glycero- 3-phosphocholine
(DOPC), 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG), 1,2-dipalmitoyl-sn-glycero-
3-phosphoglycerol (DPPG), 1,2-dioleoyl-sn-glycerol -3-phosphoethanolamine, (DOPE) and
1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), which have proven to be more
stable [102].

Liposomes are formed by the hydrophilic interactions between polar head groups,
the van der Waals forces between hydrocarbon chains, holding the long hydrocarbon tails
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together, and hydrogen linkages with H2O. In turn, H2O repels the hydrophobic chains,
and the liposomes self-assemble spontaneously into a closed bilayer [102,103].

Liposomes can be classified as neutral, anionic and cationic according to lipid bilayer
components. They can assume different 3D structures, as unilamellar vesicles (ULVs),
multilamellar vesicles (MLVs) or multivesicular vesicles (MVVs). ULVs contain a single-
lipid-bilayer membrane and can vary in size, with small unilamellar vesicles (SUVs) mea-
suring between 30 and 100 nm, large unilamellar vesicles (LUVs) from 100 to 300 nm and
giant unilamellar vesicles (GUVs) from 1 to 100 µm. In multilamellar vesicles, layers are
concentric, while in MVVs, several smaller vesicles encase the interior of another vesicle
(Figure 4, panel A) [104,105]. Another liposome formed by two bilayer membranes, the
double-layer vesicle, comprises a framework that can improve liposome stability, which
delays and sustains the release of their load [106].
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In addition to phospholipids, its main components, cholesterol, glycol-derivatives
including propylene glycol and polyethylene glycol (PEG) and even polymers such as
chitosan, can increase liposome stability. These components can promote pronounced
effects on healthy tissues and cells and activate or suppress immune responses [107,108].
Cholesterol incorporation into liposome bilayers can influence their fluidity, reducing their
permeability and increasing in vitro and in vivo stabilities. Cholesterol, a hydrophobic
molecule, induces a dense phospholipid packing and inhibits interactions among lipid
chains interspersed between them, promoting liposome membrane stabilization [109–111].
The cholesterol molecule accommodates its hydroxyl group close to the hydrophilic region
of phospholipids, and its aromatic ring lays parallel to the fatty acid chains in the lipid
bilayer [112]. In the absence of cholesterol, liposomes can interact with proteins such as
albumin, transferrin, macroglobulin and high-density lipoproteins (HDL), destabilizing
the liposomal membrane structure and, consequently, decreasing drug delivery system
performance [113–115].

Polymers such as chitosan are also used for liposomal surface modification, leading to
a protective shell on the liposome surface, mainly for oral drug delivery [108,116]. Glycols
such as propylene glycol incorporated into phospholipid vesicles with polyethylene glycol
(PEG) have been advocated as flexible lipid vesicles to improve drug delivery systems
targeting the skin [117,118]. Different PEGs on liposome surfaces can prolong their half-
lives in the bloodstream, from a few minutes considering conventional liposomes to several
hours for stealth liposomes, also called PEGylated liposomes [112]. One of the main
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disadvantages of conventional liposomes is their rapid elimination from the bloodstream,
and they arrive in organs and tissues of the reticuloendothelial system, such as the liver
and spleen [119]. The increases in liposome-circulating lifetimes promoted by PEG depend
on the amount of grafted PEG and the molecular weight of the polymer. PEG longer
chains typically increase the bloodstream residence time, reported as higher for PEGylated
liposomes containing PEG 1900 and PEG 5000 compared to PEG 750 and PEG 120 [120,121].
Their molecular weight determines the conformation of PEG polymers on the surface
of liposomes and PEG surface density in mushroom (low concentration) or brush (high
concentration) regimes [122]. PEG concentrations from 5% to 10% (molar ratio) result in
improvements in the degree of liposome stealth, and higher PEG concentrations (brush
regimen) input to liposomes lead to high resistance to phagocytosis and poor activation of
the human complement system [123].

PEG-enhanced liposome surfaces are associated with a cloaking effect, mimicking
water-like structures, thus providing a steric barrier that prevents protein adsorption
to liposome surfaces and their recognition by the mononuclear macrophage phagocytic
system that would otherwise lead to rapid liposome clearance [94,102]. On the other hand,
repeated venous administrations of PEGylated liposomes in animals at certain intervals
induce immune responses, resulting in the loss of long-circulating characteristics and
accelerating the blood clearance (ABC) phenomenon [124,125]. It has been suggested that
anti-PEG IgM, produced by the spleen in response to a first dose, selectively binds to
PEG chains in a second dose administered several days later and subsequently activates
the complement system, one of the main opsonins, increasing the liver uptake of the
following doses [125,126]. The occurrence and magnitude of the ABC phenomenon are
influenced by the dose and physicochemical properties of PEGylated liposomes and the
time interval between liposome administration and the encapsulated drug [127]. Many
approaches have been tested to minimize the immunogenicity of the PEG moiety following
repeated administrations. PEG lipids presenting a shorter alkyl chain can dissociate more
quickly from the lipid bilayer, such as mPEG-DSPE and mPEG-CH, attenuating the ABC
phenomenon [128,129].

3.1. Liposome Functionalization

Since their discovery, liposomes have been produced with different characteristics based
on their composition and functionalization. The first generation of liposomes designed for
therapeutic use are termed conventional liposomes (Figure 4, panel C) [120,130,131]. These
liposomes were neutral-, cationic- or anionic-charged phospholipids, usually combined
with cholesterol, to promote liposomal bilayer stabilization [102,132]. However, their short
life in the bloodstream due to rapid capture by the reticuloendothelial system is very
inconvenient [120]. Binding of opsonins that recognize liposomes as foreign particles is
the first signal for liposome elimination from plasma by phagocytosis in the mononuclear
phagocytic system [133].

The second generation of liposomes created stealthy, long-lasting and/or PEGylated
liposomes aiming to improve their performance, as mentioned previously. This strategy
mainly involves coating the surface of the liposomal membrane with biocompatible hy-
drophilic polymer conjugates such as PEG, chitosan and others, increasing the repulsive
forces between liposomes and other serum components (Figure 4, panel C) [134]. This
strategy reduces immunogenicity and macrophage uptake, increasing their half-life in the
bloodstream and reducing the toxicity of the encapsulated compound [94,102]. Methods for
anchoring PEG to the liposome membrane involve physical adsorption of the polymer onto
liposome surfaces, incorporation of the PEG-lipid conjugate during liposome preparation
or the covalent attachment of reactive groups on the surface of pre-formed liposomes [120].
However, a significant restriction of stealth liposomes is their large body biodistribution,
not selectively delivered to specific target cells [135]. Due to this limitation, ligand-targeted
liposomes were designed to orientate compound delivery to target tissues, improving
therapy selectivity [120]. In addition to PEG, liposomes can be functionalized by attaching
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glycoproteins, polysaccharides or ligands for specific receptors, such as antibodies, small
molecules or peptides [133,135]. The ligand can target specific receptors overexpressed
on the surface of unhealthy cells, binding to them and resulting in minimal off-target
effects [136,137].

The design of liposomes functionalized by antibodies called immunoliposomes, and
liposomes responsive to stimuli, is also being considered (Figure 4, panel C) [138]. Immuno-
liposomes functionalized by the chemical coupling of antibodies or their fragments result
in high-specificity target antigens. [139]. In stimulus-sensitive liposomes, drug release
occurs through physical-chemical changes or biochemical stimuli, such as pH, temperature,
redox potential, enzyme and electrolyte concentrations, ultrasound and electric or mag-
netic fields [140,141]. The most common stimulus-responsive liposomes are pH- and/or
temperature-sensitive liposomes [37,142].

Multifunctional liposomes display modified surfaces aiming at multiple functions
resulting in liposomes with a wide range of functionalities [133]. Theranostic liposomes
are nanoparticles coating the bioimaging compound and the therapeutic agent applied for
diagnosis and treatment [132,143]. Dual-targeting liposomes are functionalized with two
different ligands that can also be successfully designed [133].

3.2. Liposome Internalization and Delivery Mechanism

The poor knowledge of the mechanisms involved in cellular liposome internalization
has impaired advanced drug delivery by these nano-devices to treat neoplastic diseases,
boost innate immunity and even, in gene silencing, hinder or block the production of harm-
ful proteins, including transcriptional factors. The internalization of this nanosized particle
in the target cell occurs through endocytosis, where the cell membrane surrounds the nano-
device in some sites and engulfs it into a vesicle that is detached from the cell membrane,
penetrates the cytosol and continues its route to the intracellular target organelle after
overcoming endosomal entrapment [144,145] (Figure 5). Conventional classification of en-
docytic pathways is divided into phagocytosis, related to the internalization of macromolec-
ular structures through the invagination of the cell membrane, or pinocytosis, regarding the
internalization of nanosized particles. Pinocytosis is classified according to the coating pro-
teins on the endocytic particle in a clathrin-dependent or clathrin-independent way, which
can be mediated by caveolae. The clathrin-mediated endocytic pathway can also involve
the dynamin, a large GTPase that assembles into polymers on the budding membranes and
mediates fission during the clathrin-dependent process [144,146]. Using a set of pharma-
cological inhibitors such as concanavalin A, chlorpromazine, dynasore, genistein, filipin,
MBCD, nystatin, EIPA and cytochalasin D has shed some light onto nanocarrier transport
mechanisms. The internalization of liposomes and their cargo delivery are inhibited by
MBCD and nystatin, where both affect cholesterol in plasma membranes, and EIPA, a
macropinocytosis inhibitor that impairs Na+/H+ exchanges and lowers the cell cytoplasm
pH. Chlorpromazine has also demonstrated an effect on liposome internalization, indicating
that the clathrin-mediated (dynamin-dependent) is involved in nano-liposomes endocy-
tosis. However, this endocytic mechanism seems not to involve the G-protein-coupled
receptors in plasma cell membranes, which should prevent the assembly of clathrin-coated
pits and impair their movement through the cell membrane, a mechanism deduced be-
cause another clathrin-mediated endocytosis inhibitor, concanavalin A, has not displayed
a significant effect on liposome internalization. Macropinocytosis-dynamin-independent
and cell-membrane-cholesterol-dependent clathrin- and caveolae-independent processes
are shown to play a role in liposome internalization (Figure 5) [147].
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Adhesion comprises an interaction mechanism between liposomes and the cell sur-
face, without internalization that can occur in two ways, namely by specific adhesion,
where specific proteins in the liposomal membrane bind to the corresponding receptors
on the cell surface, and nonspecific adhesion, which occurs when attractive forces exceed
repulsive forces. Adhered liposomes can lead to high local liposomal content near the cell
surface, destabilizing liposomes and promoting the leak of liposomal loads into target cells
(Figure 5) [148,149].

An additional mechanism consists in the fusion between the plasma membrane and
the liposome membrane, where liposomal lipids rapidly fuse with the plasma membrane
by lateral diffusion, and the lipids and liposome contents are delivered directly into the cell
(Figure 5) [150,151].

Lipid exchange can be involved in exchanging similar lipid molecules between li-
posomes and target cell membranes without participating in the liposomal cargo [148].
Indeed, this long-term interaction between cell membrane phospholipids is recognized by
lipid transfer proteins that facilitate lipid exchanges [152]. The exchange process results
in low liposome stability and the liposome load entering the target cell. During the lipid
transfer process, lipids in the liposome are preferentially introduced into the outer leaflet of
the plasma membrane [153]. Plasma membrane cholesterol can reduce lipid exchange, as
it improves the mechanical stability of the bilayer by reducing fluidity and permeability
(Figure 5) [151].

3.3. Liposomal Formulations in Antitumorigenic Drugs and Vaccines: Marketed or Phase III
Clinical Trial Products

Liposomes successfully entered the market in 1995 with the development of the
PEGylated Doxil® liposomal formulation, as mentioned previously. Since then, no setbacks
to these delivery systems have been noted, which have been explored concerning several
physiopathological conditions, from cancer treatments to vaccine formulations.

Doxil®, the formulation containing DOX hydrochloride as the active agent, is the first
FDA-approved nano-drug delivery system regarding PEGylated liposome technology [154].
Doxil® liposomes are formed by high-temperature phase transition (Tm) components,
including hydrogenated soy phosphatidylcholine (HSPC), cholesterol and N-(carbonyl-
methoxy-polyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium
salt (MPEG-DSPE) at a molar ratio of 56:38:5 [155]. Better drug retention has been obtained
by employing optimal cholesterol: HSPC ratio, which forms a non-flexible bilayer at
37 ◦C and below. DSPE is incorporated into the liposome bilayer to provide a reactive
functional group for the hydrophilic chains of PEG 2000, covalently bound to the DSPE
head that elongates into the inner and outer water phases. The overall lipid content of
Doxil®, in the hydrophilic core of liposomes, is approximately 16 mg/mL, and DOX at
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2 mg/mL is in the hydrophilic core of liposomes complexed to sulfate salt [156]. Over
90% of DOX is encapsulated in tiny, unilamellar, 80–100 nm liposomes [154]. A high and
stable drug/lipid ratio is obtained due to the ammonium sulfate transmembrane gradient
between [(NH4)2SO4] liposome >> [(NH4)2SO4] medium, the driving force for the efficient
and stable loading of amphipathic agents into liposomes [157]. The accumulation of 15,000
DOX molecules within the hydrophilic core of each liposome adds to >90% of DOX at
a crystalline precipitate, protected from physicochemical constraints, contributing to the
stability of drug trapping [158,159]. Doxil® formulations display significant drug retention
and low drug efflux into the circulation, allowing acceptable drug delivery rates to target
tissues [160].

Another liposomal doxorubicin nanoencapsulation was formulated to confer free dox-
orubicin more tolerable and improved effectiveness, giving rise to MM-302 and ThermoDox®.
The MM-302 formulation is a HER2-targeted liposomal doxorubicin-antibody conjugate
composed of DSPE and PEG that targets specific cells that overexpress HER2 and increase
doxorubicin delivery to tumor cells, limiting exposure of healthy cells such as cardiomy-
ocytes. The MM-302 formulation plus trastuzumab at 30 mg/m2 and 14 mg/kg IV Q3W
were evaluated in a phase II clinical trial in patients with localized advanced and/or
metastatic HER2-positive breast cancer [161]. ThermoDox® is the first heat-activated
liposomal drug carrier formulation to be used to treat solid tumors under clinical tri-
als [162]. This unique formulation was designed for long-circulating time, and its smooth
thermo-sensibility has been applied in a clinical study in combination with radiofrequency
ablation to remove the tumor core. This therapy was indicated for primary liver cancer,
hepatocellular carcinoma and recurrent chest wall breast cancer. These liposomes are
composed of DPPC, myristoyl-stearoyl-phosphatidylcholine and 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-[amino(polyethyleneglycol)-2000] (DSPE-PEG-2000), and the
three lipids are combined to achieve a sharp thermal transition and rapid membrane perme-
ability onset [163]. This specific combination led to a patented heat-activated DOX liposome
named thermoDox® [164,165]. DPPC displays a transition temperature of 41.5 ◦C and un-
dergoes a phase shift at 42 ◦C, reached by local hyperthermia during clinical treatment.
Adding myristoyl-stearoyl-phosphatidylcholine to the composition accelerates the drug
release due to a slight reduction in DPPC transition temperature, while DSPE-PEG-2000
increases liposome circulation times, as expected. The presence of PEG-lipid also helps
achieve faster lysolipid-induced permeability. Due to initially promising results, the phase
III clinical trial began in 2009, termed the “HEAT” trial (NCToo617981). Clinical trials were
employed to determine whether the use of ThermoDox as an adjunct to radiofrequency
ablation would lead to additional benefits compared to radiofrequency ablation alone.
HEAT, however, did not meet its goal of progression-free survival. However, analyses
concerning patient subgroups revealed a therapeutic benefit for ThermoDox in patients
who received prolonged radiofrequency ablation treatments (with a minimum dwell time
of 45 min). Based on these promising findings, a new phase III clinical trial (the OPTIMA
trial) began in 2014. OPTIMA differed from the HEAT trial in presenting a standardized
warming protocol, which included a minimal radiofrequency ablation dwell time of 45 min
(NCT02112656). However, OPTIMA demonstrated that the addition of ThermoDox to ra-
diofrequency ablation does not provide a measurable survival benefit over radiofrequency
ablation alone [166].

DaunoXome® is a liposomal daunorubicin formulation developed in 1996 for treating
HIV-associated Kaposi’s sarcoma. Due to the small size of nano-liposomes, between 45
and 80 nm, the uptake of DaunoXome by the reticule-endothelial system is diminished,
leading to extensive drug circulation. DaunoXome has a half-life between 4 and 5.6 h,
much longer than free daunorubicin, at about 0.77 h [167]. Each single-dose vial con-
tains approximately 50 mg of daunorubicin (DNR) in liposomes composed of 168 mg of
cholesterol and 704 mg of distearoyl-phosphatidylcholine [168]. Onivyde™, a rinotecan
liposome injection coupled to leucovorin and fluorouracil, is indicated for treating patients
affected by metastatic pancreatic adenocarcinoma who experience disease progression
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following gemcitabine therapy. Onivyde™ is formulated in a liposomal dispersion with a
water-soluble semi-synthetic irinotecan hydrochloride trihydrate, a topoisomerase inhibitor
drug. Onivyde™ liposomes are unilamellar 100 nm lipid layer vesicles encapsulating
irinotecan in a gelled or precipitated state, such as the sucrose octasulfate-salt, using an
aqueous space titration/ion exchange method through intra-liposomal drug stabilization
technology [169]. Highly charged polymeric or non-polymeric anions and intra-liposomal
capture agents, such as polyphosphate or sucrose octasulfate-salt, have been combined to
a poly-alkylamine gradient. Irinotecan is encapsulated in a nano-liposome composed of
distearoyl-phosphatidylcholine, cholesterol and methoxy-terminated polyethylene glycol
distearoyl-phosphatidylethanolamine (MPEG-2000-DSPE) at a 3:2:0.015 ratio. The drug
encapsulation efficiency achieved 90%, reaching a ratio of 800 g irinotecan per mole of
phospholipid within liposomes. The half-life of the drug delivered by this system was
56.8 h following administration [170].

In addition to drug delivery, cationic liposomes can be used as transfection vectors
for gene therapy [138]. The cationic liposome coat can protect loaded nucleic acids (DNA
or RNA) against nuclease degradation during storage and in the bloodstream [120]. An
example of nucleic acid encapsulation in lipid nanoparticles is the Tozinameran vaccine
(trade name: Comirnaty®), developed by Pfizer/BioNTech that received Emergency Use
Authorization by the United States Food and Drug Administration (FDA) in December 2020,
aiming at the prevention of coronavirus disease 2019, COVID-19. In its pre-fusion stabilized
form, the mRNA encoding the SARS-CoV-2 spike protein was used to induce neutralizing
antibodies [171]. mRNA coated by lipid nanoparticles is successful when administered
intramuscularly in humans at 30 µg in a series of two doses (10 µg/0.1 mL) three weeks
apart [172]. Elasomeran (trade name, Spikevax), developed by Moderna, received the US
emergency authorization use at the same time as Tozinameran in 2020 [173]. The two lipid
nanoparticle vaccines share several similarities in their formulation and behave similarly
in vivo to that expected for nanoparticles. It is important to note that the lipid nanoparticles
in both formulations are composed of ionizable lipids, phospholipids, cholesterol and
PEG-lipids. The two ionizable lipids, ALC-0315 and SM-102, contain a tertiary amine group
with pKa between 6.0 and 6.7 that alter their charges from neutral to cationic according to
bloodstream or endosome pH. The two PEG-lipids, ALC-0159 and PEG200-DMG, contain
14-carbon-long di-alkyl chains, which aid in their rapid dissociation from the surface of
lipid nanoparticles once inside the human body [174–176]. Since ideal drug carriers are
quickly eliminated from the body once their purpose is fulfilled, several lipid nanopar-
ticles have incorporated biodegradable designs into ionizable lipids to facilitate their
elimination [177–179]. Intramuscular injections of mRNA-lipid nanoparticles composed of
SM-102 result in faster clearance alongside better injection site tolerability [176]. The two
ester bonds in ALC-0315 are also hydrolyzed in vivo [180].

Comparing the lipid compositions of Tozinameran and Elasomeran, the former con-
tains 3.23 mg of ionizable lipids, ALC-0315, 0.7 mg of phospholipids, 1.4 mg of cholesterol
and 0.4 mg of PEG-lipid (ALC-0159). Elasomeran comprises 1.075 mg of ionizable lipids,
the SM-102, 0.275 mg of phospholipids, 0.47 mg of cholesterol and 0.115 mg of PEG-lipid,
the PEG200-DMG. Although the main difference between the two formulations is vaccine
storage conditions, as Elasomeran requires freezing temperatures between −50 ◦C and
−15 ◦C, and Tozinameran requires deep freezing temperatures between −90 ◦C and
−60 ◦C, it is believed that mRNAs, not lipid nanoparticles, are the main factors for the
short stability of these vaccines, so ultra-freezing temperatures are required to delay the
degradation of the mRNA load [181].

3.4. Limitations concerning the Application of Nano-Liposomes in Drug Delivery

Although liposome-based delivery systems were discovered in 1965, the first FDA-
approved drug product dates from 1995, comprising the liposomal doxorubicin (Doxil),
and even today, with a vast amount of accumulated data and knowledge concerning nano-
liposomal delivery systems, the number of approved drugs does not increase in the same
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proportion. Some of the limitations that impair the success of new nano-liposomal formula-
tions during clinical trials comprise stability issues, high production costs, activation of
deleterious immune responses and biodistribution problems [182,183].

Incorporating PEG onto liposome surfaces has proved to be an efficient physical bar-
rier to prevent degradation, liposome aggregation, clearance and drug leakage and size
maintenance by impairing enzymes and antibody access. Consequently, liposome half-lives
in the bloodstream are improved. On the other hand, PEG limitations include immuno-
genicity hypersensitivity and non-degradability. Complete evasion from macrophages and
other immune cell recognition are not achieved, leading to anti-PEG antibody releases that
affect the long-term circulation of PEG-coated liposomes through clearance acceleration.
Moreover, repeated administration of pegylated liposomes can lead to in vivo accumula-
tion due to its systemic non-degradability. Non-degradable and degradable alternatives
have been extensively studied, including alginate, hyaluronic acid, Poly(vinyl pyrrolidone),
Polyglycerol and others [73].

Poor encapsulation of hydrophilic drugs and storage instability associated with drug
leakage is another obstacle, which can be overcome by the use of other lipid-based nanopar-
ticles such as niosomes, transferesomes, solid-lipid nanoparticles and nanostructured lipid
carriers [184].

Besides using non-eco-friendly solvents, the methodologies generally employed for
nano-liposome production require specialized personnel and strict control of the multi-
ple process steps to guarantee reproducibility and the production of correct liposomal
features. More lean and robust processes such as preparations based on microfluidics
have demonstrated successful and promising performance, although other limitations are
noted [185].

The behavior and functionality of nano-liposomes across animal and human species
can differ, which is translated into clinical trial failures, which can also be influenced by
patient heterogeneity. Therefore, understanding the relationship between nano-liposomes
and human physiology and pathologies is crucial to achieve optimized and successful
performance. Currently, the engineering of precision nano-delivery systems through func-
tionalization by combining target-specific molecules and bio-responsive moieties represents
the best choice to improve efficacy and patient outcomes [186].

4. Conclusions

Nano-devices, in particular, nano-liposomes, have been increasingly considered great
allies in immunotherapy and regenerative medicine. The uptake of liposome-carrying
pharmaceuticals by cells occurs mainly by two mechanisms, endocytosis and membrane
fusion. If liposome uptake takes place through a membrane fusion process, liposomes can
release their loads into the cytoplasm of target cells, whereas endocytosis must be followed
by liposome escape from the endosomal multivesicular pathway in order to release their
loads into the cytosol of target cells, which will eventually be re-directed into a sub-cellular
structure. Alternatively, liposomes can release their loads through a membrane fusion
process. Nano-liposomes are loaded with drugs or biomolecules, which, when delivered
may regulate cell functions or trigger immune responses. Liposomes are non-toxic, as their
structures are formed by physiological and degradable lipids, phospholipids and choles-
terol, commonly found in human cell membranes, but can be PEGylated to extend liposome
half-lives in the bloodstream. Liposome surfaces should be tailored to decrease their im-
munogenicity, but the possibility of reaching specific tissues or cells can be achieved if their
surfaces carry recognizers for the epitopes present in target cells, particularly tumorigenic
ones. Nano-liposomes can deliver drugs and/or active compounds irrespective of com-
pound chemical structure or solubility, and even in high concentrations without side effects
to healthy cells, which can be reduced or minimized by the coated protection of the double
lipid bilayer. Currently, most marketed nano-liposomes used in cancer therapeutics are
loaded with conventional anti-neoplastic drugs. Although anti-neoplastic nano-liposomes
can reduce side effects in healthy cells, the absence of toxicity may be achieved if conven-
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tional pharmaceuticals are altered by novel antitumoral compounds, natural and less toxic
but more effective than conventional antitumoral or immuno-stimulator compounds. The
development of the newest generation of liposomes loaded with bio-molecules such as
protein and peptides may be the next generation of anticancer and immune modulator
pharmaceuticals, devoid of toxicity but highly effective.
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