Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = plantation wood lumber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 8559 KiB  
Article
MultiProduct Optimization of Cedrelinga cateniformis (Ducke) Ducke in Different Plantation Systems in the Peruvian Amazon
by Juan Rodrigo Baselly-Villanueva, Andrés Fernández-Sandoval, Evelin Judith Salazar-Hinostroza, Gloria Patricia Cárdenas-Rengifo, Ronald Puerta, Tony Steven Chuquizuta Trigoso, Yennifer Lisbeth Rufasto-Peralta, Geomar Vallejos-Torres, Gianmarco Goycochea Casas, Carlos Alberto Araújo Junior, Gerónimo Quiñónez-Barraza, Pedro Álvarez-Álvarez and Helio Garcia Leite
Forests 2025, 16(1), 164; https://doi.org/10.3390/f16010164 - 16 Jan 2025
Cited by 1 | Viewed by 2004
Abstract
This study addressed multi-product optimization in Cedrelinga cateniformis plantations in the Peruvian Amazon, aiming to maximize volumetric yields of logs and sawn lumber. Data from seven plantations of different ages and types, established on degraded land, were analyzed by using ten stem profile [...] Read more.
This study addressed multi-product optimization in Cedrelinga cateniformis plantations in the Peruvian Amazon, aiming to maximize volumetric yields of logs and sawn lumber. Data from seven plantations of different ages and types, established on degraded land, were analyzed by using ten stem profile models to predict taper and optimize wood use. In addition, the structure of each plantation was evaluated using diameter distributions and height–diameter ratios; log and sawn timber production was optimized using SigmaE 2.0 software. The Garay model proved most effective, providing high predictive accuracy (adjusted R2 values up to 0.963) and biological realism. Marked differences in volumetric yield were observed between plantations: older and more widely spaced plantations produced higher timber volumes. Logs of optimal length (1.83–3.05 m) and larger dimension wood (e.g., 25.40 × 5.08 cm) were identified as key contributors to maximizing volumetric yields. The highest yields were observed in mature plantations, in which the total log volume reached 508.1 m3ha−1 and the sawn lumber volume 333.6 m3ha−1. The findings demonstrate the power of data-driven decision-making in the timber industry. By combining precise modeling and optimization techniques, we developed a framework that enables sawmill operators to maximize log and lumber yields. The insights gained from this research can be used to improve operational efficiency and reduce waste, ultimately leading to increased profitability. These practices promote support for smallholders and the forestry industry while contributing to the long-term development of the Peruvian Amazon. Full article
(This article belongs to the Special Issue Advances in Technology and Solutions for Wood Processing)
Show Figures

Figure 1

11 pages, 3082 KiB  
Article
The Effect of Different Densification Levels on the Mechanical Properties of Southern Yellow Pine
by Suman Pradhan, Aadarsha Lamichhane, Dalila Belaidi and Mostafa Mohammadabadi
Sustainability 2024, 16(15), 6662; https://doi.org/10.3390/su16156662 - 4 Aug 2024
Cited by 1 | Viewed by 1542
Abstract
Plantations, typically involving the cultivation of fast-growing trees like southern yellow pine, offer avenues to enhance sustainability and manage limited resources more effectively. However, fast-growing trees suffer from low mechanical properties due to less dense wood. Densification and the development of engineered wood [...] Read more.
Plantations, typically involving the cultivation of fast-growing trees like southern yellow pine, offer avenues to enhance sustainability and manage limited resources more effectively. However, fast-growing trees suffer from low mechanical properties due to less dense wood. Densification and the development of engineered wood products represent approaches to developing high-performance products from fast-growing tree species. In this study, the correlation between the densification levels and mechanical properties of a fast-growing species, loblolly pine (Pinus taeda L.), was established to improve resource utilization. Wood specimens were densified at three compression ratios: 16.67%, 33.33%, and 50.00%. The impact of densification levels on bending strength, bending stiffness, shear strength, and hardness was studied. The findings highlighted the positive impact of densification on structural integrity, as bending stiffness consistently improved, eventually reaching a 42% enhancement at a compression ratio of 50.00%. However, bending strength showed an initial increasing trend but reached a plateau at higher densification levels. Densification levels showed minimal changes in shear strength parallel to the grain. Notably, densification significantly enhanced hardness properties, particularly on the tangential surface, where a fourfold increase was observed at a 50% compression ratio. Overall, these findings reveal the relation between the compression ratio and the mechanical properties of lumber and are beneficial for utilizing lower-quality wood species in construction and engineering applications. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

12 pages, 3999 KiB  
Article
Lightweight Solid Wood Panels Made of Paulownia Plantation Wood
by Marius Cătălin Barbu, Helmut Radauer, Alexander Petutschnigg, Eugenia Mariana Tudor and Markus Kathriner
Appl. Sci. 2023, 13(20), 11234; https://doi.org/10.3390/app132011234 - 12 Oct 2023
Cited by 4 | Viewed by 2764
Abstract
Light Paulownia seamless-edged glued solid wood panels (SWPs), single-layered and three-layered, were analyzed in this study. Both panel types were calibrated at a thickness of 19 mm, a dimension very often in demand on the SWP market, but produced with other wood species [...] Read more.
Light Paulownia seamless-edged glued solid wood panels (SWPs), single-layered and three-layered, were analyzed in this study. Both panel types were calibrated at a thickness of 19 mm, a dimension very often in demand on the SWP market, but produced with other wood species (for example, spruce, pine, larch and fir). The panels were bonded with melamine-urea formaldehyde, polyurethane and polyvinyl acetate resins. The panels were tested for their physical (density) and mechanical (modulus of rupture, modulus of elasticity, compressive shear strength and wood breakage rate) properties. For the single-layered panels, the mechanical and physical properties did not differ significantly and were similar to massive Paulownia wood. For the three-layered panels, the adhesive application of polyurethane influenced positively all SWP properties. Considering the differences in density, these composites failed to achieve the performance of one- and single-layered panels made of spruce. The results of these findings recommend Paulownia SWPs to be used as lightweight and sustainable core materials in sandwich structures for the furniture and packaging industry, sport articles or non-load-bearing constructions. Full article
Show Figures

Figure 1

14 pages, 1494 KiB  
Article
Lumber Recovery Rate of Cupressus lusitanica in Arsi Forest Enterprise, Ethiopia
by Yashwant Singh Rawat, Misganu Eba and Moti Nebiyu
Sustainability 2023, 15(2), 1046; https://doi.org/10.3390/su15021046 - 6 Jan 2023
Cited by 6 | Viewed by 3797
Abstract
In Ethiopia, sawmills have poor capacity utilization primarily due to the outdated equipment that resulted in a low recovery rate and the production of a high amount of wastage. The lumber recovery rate is the output (lumber) of a log in the sawing [...] Read more.
In Ethiopia, sawmills have poor capacity utilization primarily due to the outdated equipment that resulted in a low recovery rate and the production of a high amount of wastage. The lumber recovery rate is the output (lumber) of a log in the sawing process. In Ethiopia, Cupressus lusitanica is significantly used for lumber, for furniture production, construction, poles and posts. Sampled logs were processed according to the normal production rate and standard lumber dimension of the sawmill for the purpose of estimating the lumber recovery rate. The present study aimed to investigate the lumber recovery rate of C. lusitanica and the factors affecting it. A total of 26.93 m3 of lumber was produced by the sawmilling operation, representing 72.86% of the overall lumber recovery rate. Furthermore, the sawdust and slabs were recorded as 2.92 m3 (7.90%) of sawdust and 7.11 m3 (19.24%) of slabs, respectively. There were a number of factors that decreased the magnitude of the lumber recovery rate. It was observed that cutting using a wider saw kerf caused a reduction in the rate of lumber recovery owing to the generation of an increased quantity of sawdust. The lumbers were air-seasoned in the sawmill yard. Maximizing the volume of the lumber recovered from the logs can increase the sawmill profitability, lessen the effects of climate change, ensure the sustainable use of natural resources, enhance the energy efficiency and manage wood waste (e.g., recycling and prevention) for green economic development and industrial transformation. This species has a great demand in the wood industry of Ethiopia; hence, the plantation and yield of C. lusitanica must be expanded in order to provide sustainable forestry, protect valuable forest resources and safeguard the biodiversity in the country. Full article
Show Figures

Figure 1

22 pages, 5484 KiB  
Article
Development of a Climate-Sensitive Structural Stand Density Management Model for Red Pine
by Peter F. Newton
Forests 2022, 13(7), 1010; https://doi.org/10.3390/f13071010 - 27 Jun 2022
Cited by 4 | Viewed by 2524
Abstract
The primary objective of this study was to develop a climate-sensitive modular-based structural stand density management model (SSDMM) for red pine (Pinus resinosa Aiton) plantations situated within the western Great Lakes—St. Lawrence and south-central Boreal Forest Regions of Canada. For a given [...] Read more.
The primary objective of this study was to develop a climate-sensitive modular-based structural stand density management model (SSDMM) for red pine (Pinus resinosa Aiton) plantations situated within the western Great Lakes—St. Lawrence and south-central Boreal Forest Regions of Canada. For a given climate change scenario (e.g., representative concentration pathway (RCP)), geographic location (longitude and latitude), site quality (site index) and crop plan (e.g., initial espacement density and subsequent thinning treatments), the resultant hierarchical-based SSDMM consisting of six integrated modules, enabled the prediction of a multitude of management-relevant performance metrics over rotational lengths out to the year 2100. These metrics included productivity measures (e.g., mean annual volume, biomass and carbon increments), volumetric yield estimates (e.g., total and merchantable volumes), pole and log product distributions (e.g., number and size distribution of pulp and saw logs, and utility poles), biomass production and carbon sequestration outcomes (e.g., oven-dried masses of above-ground components and associated carbon mass equivalents), recoverable end-product volumes and associated monetary values (e.g., volumes and economic worth estimates of recovered chip and dimensional lumber products extractable via stud and randomized length mill processing protocols), and crop tree fibre attributes reflective of end-product potential (e.g., wood density, microfibril angle, and modulus of elasticity). The core modules responsible for quantifying stand dynamics and structural change were developed using 491 tree-list measurements and 146 stand-level summaries obtained from 98 remeasured permanent sample plots situated within 21 geographically separated plantation-based initial spacing and thinning experiments distributed throughout southern and north-central Ontario. Computationally, the red pine SSDMM and associated algorithmic analogue (1) produced mathematically compatible stem and end-product volume estimates, (2) accounted for density-dependent as well as density-independent mortality losses, response delay following thinning and genetic worth effects, (3) enabled end-users to specify merchantability standards (log and pole dimensions), product degrade factors and cost profiles, and (4) addressed climate change impacts on rotational yield outcomes by geo-referencing RCP-specific effects on stand dynamical processes via the deployment of a climate-driven biophysical site-based height-age model. In summary, the provision of the red pine SSDMM and its unique ability to account for locale-specific climate change effects on crop planning forecasts inclusive of utility pole production, should be of consequential utility as the complexities of silvicultural decision-making intensify during the Anthropocene. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

12 pages, 2306 KiB  
Article
The Characteristics of Moisture and Shrinkage of Eucalyptus urophylla × E. Grandis Wood during Conventional Drying
by Lin Yang, Jingting Zheng and Na Huang
Materials 2022, 15(9), 3386; https://doi.org/10.3390/ma15093386 - 9 May 2022
Cited by 19 | Viewed by 2849
Abstract
High quality lumbers produced from Eucalyptus plantations can be used to make higher value-added solid wood products. Moisture flow affects shrinkage, deformation, and quality of Eucalyptus wood during conventional drying. In this study, 50 and 100 mm long samples were dried using a [...] Read more.
High quality lumbers produced from Eucalyptus plantations can be used to make higher value-added solid wood products. Moisture flow affects shrinkage, deformation, and quality of Eucalyptus wood during conventional drying. In this study, 50 and 100 mm long samples were dried using a conventional drying method. The drying curves, drying rate, moisture content (MC) gradient and distribution, moisture flow, and shrinkage during the drying process were investigated. The results show: Drying was much faster in the first 15 h for all samples and became slow as MC decreased. The drying rate above fiber saturated point (FSP) was about 3.5 times of that below FSP for all samples. The drying rate of 50 mm samples above and below FSP is 1.40 and 1.33 times of 100 mm samples; MC gradients are greater in tangential, radial directions, and cross-sections for both samples when the MC is above FSP, especially at an average MC of 50%. MC gradient along the tangential and radial direction depends on the samples size and MC stages. The short samples have much greater MC gradients than the longer samples above FSP. Moisture distributions on the cross-sections of wood coincide with the moisture gradient in the cross-sections. At an average MC of 50%, the moisture distributions of 50 mm are highly uneven, while they are relatively even in the middle of 100 mm samples, and become much more even at the end of the sample. Moisture distributions become even as MC decreases in all of the samples. Water migration directions vary by state of water. In the short samples, most free water migrates more in the fiber direction from the wood center toward the end surfaces, but bound water diffusion becomes weak. The collapse in the 50 mm samples is significantly larger than that in the 100 mm samples, indicating that the collapse is affected by the dimension of the sample. Full article
Show Figures

Figure 1

13 pages, 1878 KiB  
Article
Characterization of Thermal Bio-Insulation Materials Based on Oil Palm Wood: The Effect of Hybridization and Particle Size
by Indra Mawardi, Sri Aprilia, Muhammad Faisal and Samsul Rizal
Polymers 2021, 13(19), 3287; https://doi.org/10.3390/polym13193287 - 26 Sep 2021
Cited by 32 | Viewed by 4859
Abstract
Oil palm wood is the primary biomass waste produced from plantations, comprising up to 70% of the volume of trunks. It has been used in non-structural materials, such as plywood, lumber, and particleboard. However, one aspect has not been disclosed, namely, its use [...] Read more.
Oil palm wood is the primary biomass waste produced from plantations, comprising up to 70% of the volume of trunks. It has been used in non-structural materials, such as plywood, lumber, and particleboard. However, one aspect has not been disclosed, namely, its use in thermal insulation materials. In this study, we investigated the thermal conductivity and the mechanical and physical properties of bio-insulation materials based on oil palm wood. The effects of hybridization and particle size on the properties of the panels were also evaluated. Oil palm wood and ramie were applied as reinforcements, and tapioca starch was applied as a bio-binder. Panels were prepared using a hot press at a temperature of 150 °C and constant pressure of 9.8 MPa. Thermal conductivity, bending strength, water absorption, dimensional stability, and thermogravimetric tests were performed to evaluate the properties of the panels. The results show that hybridization and particle size significantly affected the properties of the panels. The density and thermal conductivity of the panels were in the ranges of 0.66–0.79 g/cm3 and 0.067–0.154 W/mK, respectively. The least thermal conductivity, i.e., 0.067 W/mK, was obtained for the hybrid panels with coarse particles at density 0.66 g/cm3. The lowest water absorption (54.75%) and thickness swelling (18.18%) were found in the hybrid panels with fine particles. The observed mechanical properties were a bending strength of 11.49–18.15 MPa and a modulus of elasticity of 1864–3093 MPa. Thermogravimetric analysis showed that hybrid panels had better thermal stability than pure panels. Overall, the hybrid panels manufactured with a coarse particle size exhibited better thermal resistance and mechanical properties than did other panels. Our results show that oil palm wood wastes are a promising candidate for thermal insulation materials. Full article
(This article belongs to the Special Issue Natural Resin/Hybrid Composites and Natural Reinforcements)
Show Figures

Graphical abstract

13 pages, 8645 KiB  
Article
Characterisation of Physical and Mechanical Properties of Unthinned and Unpruned Plantation-Grown Eucalyptus nitens H.Deane & Maiden Lumber
by Mohammad Derikvand, Nathan Kotlarewski, Michael Lee, Hui Jiao and Gregory Nolan
Forests 2019, 10(2), 194; https://doi.org/10.3390/f10020194 - 21 Feb 2019
Cited by 33 | Viewed by 6341
Abstract
The use of fast-growing plantation eucalypt (i.e., pulpwood eucalypt) in the construction of high-value structural products has received special attention from the timber industry in Australia and worldwide. There is still, however, a significant lack of knowledge regarding the physical and mechanical properties [...] Read more.
The use of fast-growing plantation eucalypt (i.e., pulpwood eucalypt) in the construction of high-value structural products has received special attention from the timber industry in Australia and worldwide. There is still, however, a significant lack of knowledge regarding the physical and mechanical properties of the lumber from such plantation resources as they are mainly being managed to produce woodchips. In this study, the physical and mechanical properties of lumber from a 16-year-old pulpwood Eucalyptus nitens H.Deane & Maiden resource from the northeast of Tasmania, Australia was evaluated. The tests were conducted on 318 small wood samples obtained from different logs harvested from the study site. The tested mechanical properties included bending modulus of elasticity (10,377.7 MPa) and modulus of rupture (53 MPa), shear strength parallel (5.5 MPa) and perpendicular to the grain (8.5 MPa), compressive strength parallel (42.8 MPa) and perpendicular to the grain (4.1 MPa), tensile strength perpendicular to the grain (3.4 MPa), impact bending (23.6 J/cm2), cleavage (1.6 kN) and Janka hardness (23.2 MPa). Simple linear regression models were developed using density and moisture content to predict the mechanical properties. The variations in the moisture content after conventional kiln drying within randomly selected samples in each test treatment were not high enough to significantly influence the mechanical properties. A relatively high variation in the density values was observed that showed significant correlations with the changes in the mechanical properties. The presence of knots increased the shear strength both parallel and perpendicular to the grain and significantly decreased the tensile strength of the lumber. The results of this study created a profile of material properties for the pulpwood E. nitens lumber that can be used for numerical modelling of any potential structural product from such a plantation resource. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 2160 KiB  
Article
Effect of Rotation Age and Thinning Regime on Visual and Structural Lumber Grades of Douglas-Fir Logs
by Eini C. Lowell, Eric C. Turnblom, Jeff M. Comnick and CL Huang
Forests 2018, 9(9), 576; https://doi.org/10.3390/f9090576 - 18 Sep 2018
Cited by 5 | Viewed by 4649
Abstract
Douglas-fir, the most important timber species in the Pacific Northwest, US (PNW), has high stiffness and strength. Growing it in plantations on short rotations since the 1980s has led to concerns about the impact of juvenile/mature wood proportion on wood properties. Lumber recovered [...] Read more.
Douglas-fir, the most important timber species in the Pacific Northwest, US (PNW), has high stiffness and strength. Growing it in plantations on short rotations since the 1980s has led to concerns about the impact of juvenile/mature wood proportion on wood properties. Lumber recovered from four sites in a thinning trial in the PNW was analyzed for relationships between thinning regime and lumber grade yield. Linear mixed-effects models were developed for understanding how rotation age and thinning affect the lumber grade yield. Log small-end diameter was overall the most important for describing the presence of an appearance grade, generally exhibiting an indirect relationship with the lower quality grades. Stand Quadratic Mean Diameter (QMD) was found to be the next most uniformly important predictor, its influence (positive or negative) depending on the lumber grade. For quantity within a grade, as log small-end diameter increased, the quantity of the highest grade increased, while decreasing the quantity of the lower grades differentially. Other tree and stand attributes were of varying importance among grades, including stand density, tree height, and stand slope, but logically depicted the tradeoffs or rebalancing among the grades as the tree and stand characteristics change. Structural lumber grade presence was described best by acoustic wave flight time, log position (decreasing presence in upper logs), and an increasing presence with rotation age. A smaller set of variables proved useful for describing quantity within a structural grade. Forest managers can use these results in planning to best capture value in harvesting, allowing them to direct raw materials (logs) to appropriate manufacturing facilities given market demand. Full article
(This article belongs to the Special Issue Wood Properties and Processing)
Show Figures

Figure 1

11 pages, 1726 KiB  
Article
Comparison of Whole-Tree Wood Property Maps for 13- and 22-Year-Old Loblolly Pine
by Laurence Schimleck, Finto Antony, Christian Mora and Joseph Dahlen
Forests 2018, 9(6), 287; https://doi.org/10.3390/f9060287 - 24 May 2018
Cited by 23 | Viewed by 4151
Abstract
Maps developed using Akima’s interpolation method were used to compare patterns of within-tree variation for Pinus taeda L. (loblolly pine) wood properties in plantation-grown trees aged 13 and 22 years. Air-dry density, microfibril angle (MFA) and modulus of elasticity (MOE) maps represented the [...] Read more.
Maps developed using Akima’s interpolation method were used to compare patterns of within-tree variation for Pinus taeda L. (loblolly pine) wood properties in plantation-grown trees aged 13 and 22 years. Air-dry density, microfibril angle (MFA) and modulus of elasticity (MOE) maps represented the average of 18 sampled trees in each age class. Near infrared (NIR) spectroscopy models calibrated using SilviScan provided data for the analysis. Zones of high density, low MFA and high MOE wood increased markedly in size in maps of the older trees. The proportion of wood meeting the visually graded No. 1 (11 GPa) and No. 2 (9.7 GPa) MOE design values for southern pine lumber increased from 44 to 74% and from 58 to 83% respectively demonstrating the impact of age on end-product quality. Air-dry density increased from pith to bark at all heights but lacked a significant trend vertically, while radial and longitudinal trends were observed for MFA and MOE. Changes were consistent with the asymptotic progression of properties associated with full maturity in older trees. Full article
(This article belongs to the Special Issue Wood Property Responses to Silvicultural Treatments)
Show Figures

Figure 1

16 pages, 2748 KiB  
Article
Effect of Tree Spacing on Tree Level Volume Growth, Morphology, and Wood Properties in a 25-Year-Old Pinus banksiana Plantation in the Boreal Forest of Quebec
by François Hébert, Cornelia Krause, Pierre-Yves Plourde, Alexis Achim, Guy Prégent and Jean Ménétrier
Forests 2016, 7(11), 276; https://doi.org/10.3390/f7110276 - 12 Nov 2016
Cited by 68 | Viewed by 10500
Abstract
The number of planted trees per hectare influences individual volume growth, which in turn can affect wood properties. The objective of this study was to assess the effect of six different plantation spacings of jack pine (Pinus banksiana Lamb.) 25 years following [...] Read more.
The number of planted trees per hectare influences individual volume growth, which in turn can affect wood properties. The objective of this study was to assess the effect of six different plantation spacings of jack pine (Pinus banksiana Lamb.) 25 years following planting on tree growth, morphology, and wood properties. Stem analyses were performed to calculate annual and cumulative diameter, height, and volume growth. For morphological and wood property measurements several parameters were analyzed: diameter of the largest branch, live crown ratio, wood density, and the moduli of elasticity and rupture on small clear samples. The highest volume growth for individual trees was obtained in the 1111 trees/ha plantation, while the lowest was in the 4444 trees/ha plantation. Wood density and the moduli of elasticity and rupture did not change significantly between the six plantation spacings, but the largest branch diameter was significantly higher in the 1111 trees/ha (3.26 cm mean diameter) compared with the 4444 trees/ha spacing (2.03 cm mean diameter). Based on this study, a wide range of spacing induced little negative effect on the measured wood properties, except for the size of knots. Increasing the initial spacing of jack pine plantations appears to be a good choice if producing large, fast-growing stems is the primary goal, but lumber mechanical and visual properties could be decreased due to the larger branch diameter. Full article
Show Figures

Figure 1

Back to TopTop