Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = plant-incorporated protectant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4059 KiB  
Article
Vulnerability Assessment of Six Endemic Tibetan-Himalayan Plants Under Climate Change and Human Activities
by Jin-Dong Wei and Wen-Ting Wang
Plants 2025, 14(15), 2424; https://doi.org/10.3390/plants14152424 - 5 Aug 2025
Abstract
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed [...] Read more.
The Tibetan-Himalayan region, recognized as a global biodiversity hotspot, is increasingly threatened by the dual pressures of climate change and human activities. Understanding the vulnerability of plant species to these forces is crucial for effective ecological conservation in this region. This study employed an improved Climate Niche Factor Analysis (CNFA) framework to assess the vulnerability of six representative alpine endemic herbaceous plants in this ecologically sensitive region under future climate changes. Our results show distinct spatial vulnerability patterns for the six species, with higher vulnerability in the western regions of the Tibetan-Himalayan region and lower vulnerability in the eastern areas. Particularly under high-emission scenarios (SSP5-8.5), climate change is projected to substantially intensify threats to these plant species, reinforcing the imperative for targeted conservation strategies. Additionally, we found that the current coverage of protected areas (PAs) within the species’ habitats was severely insufficient, with less than 25% coverage overall, and it was even lower (<7%) in highly vulnerable regions. Human activity hotspots, such as the regions around Lhasa and Chengdu, further exacerbate species vulnerability. Notably, some species currently classified as least concern (e.g., Stipa purpurea (S. purpurea)) according to the IUCN Red List exhibit higher vulnerability than species listed as near threatened (e.g., Cyananthus microphyllus (C. microphylla)) under future climate change. These findings suggest that existing biodiversity assessments, such as the IUCN Red List, may not adequately account for future climate risks, highlighting the importance of incorporating climate change projections into conservation planning. Our study calls for expanding and optimizing PAs, improving management, and enhancing climate resilience to mitigate biodiversity loss in the face of climate change and human pressures. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 - 1 Aug 2025
Viewed by 295
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 295
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

15 pages, 3040 KiB  
Article
Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete
by Weihao Zhang, Xiaoyan Zhou, Menglu Liu, Peng Yuan, Zhao Liu, Chen Shen, Mingwang Hao, Fengchen Zhang and Hongqiang Chu
Materials 2025, 18(14), 3209; https://doi.org/10.3390/ma18143209 - 8 Jul 2025
Viewed by 312
Abstract
Planting concrete exhibits notable advantages, including effective reduction of waterborne pollutants, significant ecological restoration capacity, and alignment with principles of green and sustainable development. As a result, it has been increasingly utilized in slope protection and infrastructure construction. In this study, phosphogypsum-based planting [...] Read more.
Planting concrete exhibits notable advantages, including effective reduction of waterborne pollutants, significant ecological restoration capacity, and alignment with principles of green and sustainable development. As a result, it has been increasingly utilized in slope protection and infrastructure construction. In this study, phosphogypsum-based planting concrete was modified using basalt fibers to enhance its mechanical and permeability-related properties. A series of laboratory tests was conducted to evaluate compressive strength, porosity, and sand permeability. The results indicated that the incorporation of basalt fibers effectively improved the compressive strength of the phosphogypsum planting concrete, with longer fibers (18 mm) contributing to a more pronounced enhancement than shorter fibers (6 mm). Moreover, an increase in fiber content led to a gradual decrease in porosity. The addition of basalt fibers also reduced both sand permeability and the water permeability coefficient. Meanwhile, specimens containing 6 mm fibers exhibited a greater reduction in permeability than those with 18 mm fibers. Furthermore, higher fiber content was found to significantly enhance the water retention capacity of the concrete. These findings provide a theoretical basis for the design and optimization of fiber-reinforced planting concrete for ecological engineering applications. Full article
Show Figures

Figure 1

24 pages, 4729 KiB  
Article
Formulation and Stability of Quercetin-Loaded Pickering Emulsions Using Chitosan/Gum Arabic Nanoparticles for Topical Skincare Applications
by Mathukorn Sainakham, Paemika Arunlakvilart, Napatwan Samran, Pattavet Vivattanaseth and Weeraya Preedalikit
Polymers 2025, 17(13), 1871; https://doi.org/10.3390/polym17131871 - 4 Jul 2025
Viewed by 557
Abstract
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of [...] Read more.
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of quercetin (QE), a plant-derived flavonoid known for its potent radical-scavenging activity but limited by oxidative degradation. A systematic formulation strategy was employed to evaluate the effects of CH/GA concentration (0.5–2.0% w/v), oil type (olive, soybean, sunflower, and coconut), and oil volume fraction (ϕ = 0.5–0.7) on emulsion stability. The formulation containing 1.5% CH/GA and olive oil at ϕ = 0.6 exhibited optimal physical and interfacial stability. Quercetin (0.1% w/w) was incorporated into the optimized emulsions and characterized for long-term stability, particle size, droplet morphology, rheology, antioxidant activity (DPPH), cytocompatibility, and intracellular reactive oxygen species (ROS) protection using HaCaT keratinocytes. The olive oil-based formulation (D1-QE) exhibited greater viscosity retention and antioxidant stability than its soybean-based counterpart (E2-QE) under both room temperature (RT) and accelerated heating–cooling (H/C) storage conditions. Confocal microscopy confirmed the accumulation of CH/GA nanoparticles at the oil–water interface, forming a dense interfacial barrier and enhancing emulsion stability. HPLC analysis showed that D1-QE retained 92.8 ± 0.5% of QE at RT and 82.8 ± 1.5% under H/C conditions after 30 days. Antioxidant activity was largely preserved, with only 4.7 ± 1.7% and 14.9 ± 4.8% loss of DPPH radical scavenging activity at RT and H/C, respectively. Cytotoxicity testing in HaCaT keratinocytes confirmed that the emulsions were non-toxic at 1 mg/mL QE and effectively reduced H2O2-induced oxidative stress, decreasing intracellular ROS levels by 75.16%. These results highlight the potential of CH/GA-stabilized Pickering emulsions as a polymer-based delivery system for maintaining the stability and functional antioxidant activity of QE in bioactive formulations. Full article
Show Figures

Figure 1

15 pages, 2580 KiB  
Article
Dual-Particle Synergy in Bio-Based Linseed Oil Pickering Emulsions: Optimising ZnO–Silica Networks for Greener Mineral Sunscreens
by Marina Barquero, Luis A. Trujillo-Cayado and Jenifer Santos
Materials 2025, 18(13), 3030; https://doi.org/10.3390/ma18133030 - 26 Jun 2025
Viewed by 398
Abstract
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect [...] Read more.
The development of mineral, biodegradable sunscreens that can offer both high photoprotection and long-term colloidal stability, while limiting synthetic additives, presents a significant challenge. A linseed oil nanoemulsion co-stabilised by ZnO nanoparticles and the eco-friendly surfactant Appyclean 6552 was formulated, and the effect of incorporating fumed silica/alumina (Aerosil COK 84) was evaluated. A central composite response surface design was used to ascertain the oil/ZnO ratio that maximised the in vitro sun protection factor at sub-300 nm droplet size. The incorporation of Aerosil at concentrations ranging from 0 to 2 wt.% resulted in a transformation of the dispersion from a nearly Newtonian state to a weak-gel behaviour. This alteration was accompanied by a reduction in the Turbiscan Stability Index. Microscopic analysis has revealed a hierarchical particle architecture, in which ZnO forms Pickering shells around each droplet, while Aerosil aggregates bridge neighboring interfaces, creating a percolated silica scaffold that immobilises droplets and amplifies multiple UV scattering. The findings demonstrate that coupling interfacial Pickering armour with a continuous silica network yields a greener, physically robust mineral sunscreen and offers a transferable strategy for stabilising plant-oil emulsions containing inorganic actives. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

20 pages, 3005 KiB  
Article
Pathways to 30 × 30: Evidence-Based Lessons from Global Case Studies in Biodiversity Conservation
by Susmita Dasgupta, David Wheeler and Brian Blankespoor
Diversity 2025, 17(6), 401; https://doi.org/10.3390/d17060401 - 6 Jun 2025
Viewed by 504
Abstract
The global 30 × 30 initiative, endorsed by 188 countries, aims to expand terrestrial and marine protected areas to cover 30% of the planet by 2030. This study utilizes newly available species-occurrence maps from the Global Biodiversity Information Facility (GBIF) to identify conservation [...] Read more.
The global 30 × 30 initiative, endorsed by 188 countries, aims to expand terrestrial and marine protected areas to cover 30% of the planet by 2030. This study utilizes newly available species-occurrence maps from the Global Biodiversity Information Facility (GBIF) to identify conservation priorities in 10 countries across Latin America (Brazil, Costa Rica, and Ecuador), Africa (Cameroon, South Africa, and Madagascar), and the Asia–Pacific region (Papua New Guinea, Philippines, India, and China). By incorporating diverse taxa—including vertebrates, invertebrates, and plants—the analysis ensures equitable species representation in conservation planning. A spatial prioritization algorithm is employed to pinpoint areas where new protected regions can address biodiversity gaps, with a particular focus on endemic and unprotected species. The results highlight significant variation in initial conservation conditions, including existing protection levels and spatial distribution of unprotected species. Countries with high spatial clustering of unprotected species achieve substantial protection gains with modest protected-area expansions, while others may require exceeding the 30% target to ensure comprehensive biodiversity coverage. The study underscores the importance of localized conservation strategies within the broader global framework, demonstrating how targeted spatial planning can enhance biodiversity outcomes and support the equitable implementation of the 30 × 30 commitment. Full article
(This article belongs to the Special Issue Restoring and Conserving Biodiversity: A Global Perspective)
Show Figures

Graphical abstract

30 pages, 3063 KiB  
Article
Operation Strategy of Multi-Virtual Power Plants Participating in Joint Electricity–Carbon Market Based on Carbon Emission Theory
by Jiahao Zhou, Dongmei Huang, Xingchi Ma and Wei Hu
Energies 2025, 18(11), 2820; https://doi.org/10.3390/en18112820 - 28 May 2025
Viewed by 593
Abstract
The global energy transition is accelerating, bringing new challenges to power systems. A high penetration of renewable energy increases grid volatility. Virtual power plants (VPPs) address this by dynamically responding to market signals. They integrate renewables, energy storage, and flexible loads. Additionally, they [...] Read more.
The global energy transition is accelerating, bringing new challenges to power systems. A high penetration of renewable energy increases grid volatility. Virtual power plants (VPPs) address this by dynamically responding to market signals. They integrate renewables, energy storage, and flexible loads. Additionally, they participate in multi-tier markets, including energy, ancillary services, and capacity trading. This study proposes a load factor-based VPP pre-dispatch model for optimal resource allocation. It incorporates the coupling effects of electricity–carbon markets. A Nash negotiation strategy is developed for multi-VPP cooperation. The model uses an accelerated adaptive alternating-direction multiplier method (AA-ADMM) for efficient demand response. The approach balances computational efficiency with privacy protection. Revenue is allocated fairly based on individual contributions. The study uses data from a VPP dispatch center in Shanxi Province. Shanxi has abundant wind and solar resources, necessitating advanced scheduling methods. Cooperative operation boosts profits for three VPPs by CNY 1101, 260, and 823, respectively. The alliance’s total profit rises by CNY 2184. Carbon emissions drop by 31.3% to 8.113 tons, with a CNY 926 gain over independent operation. Post-cooperation, VPP1 and VPP2 see slight emission increases, while VPP3 achieves major reductions. This leads to significant low-carbon benefits. This method proves effective in cutting costs and emissions. It also balances economic and environmental gains while ensuring fair profit distribution. Full article
Show Figures

Figure 1

20 pages, 1958 KiB  
Article
Formulation and Characterization of a Theobroma cacao—Based Bar with the Addition of Foeniculum vulgare Essential Oil
by Jakeline Salazar Cerón, Nelson Paz Ruiz, Juan Camilo Ramos Velasco, Efrén Venancio Ramos Cabrera and Zuly Yuliana Delgado Espinosa
Processes 2025, 13(6), 1648; https://doi.org/10.3390/pr13061648 - 24 May 2025
Viewed by 688
Abstract
Cacao (Theobroma cacao) is considered a functional food due to its composition, which is rich in bioactive compounds such as flavonoids, theobromine, dietary fiber, and essential minerals. Several studies have shown that flavonoids have antioxidant and anti-inflammatory properties, helping to reduce [...] Read more.
Cacao (Theobroma cacao) is considered a functional food due to its composition, which is rich in bioactive compounds such as flavonoids, theobromine, dietary fiber, and essential minerals. Several studies have shown that flavonoids have antioxidant and anti-inflammatory properties, helping to reduce oxidative stress and protecting against cardiovascular diseases. In addition, their ability to stimulate nitric oxide production improves blood circulation and lowers blood pressure. These benefits, coupled with its ability to improve mood and cognitive function, position cocoa as a key ingredient in the development of functional foods aimed at improving quality of life and preventing chronic diseases. This research aims to create a product that incorporates cocoa and essential oils extracted from aromatic plants native to the department of Cauca. This represents a significant step toward the sustainable use of these ingredients in the region, promoting consumer welfare and health while strengthening sustainable practices, fostering innovation, and boosting economic and social development in the department. The research is developed in five phases: determination of the study area, characterization of the cocoa production chain in the department of Cauca, selection of essential oils, application of an experimental mixture design and physicochemical and microbiological analyses of the final product. From the experimental design of the mixture, it was determined that the most appropriate formulation of the bar is 60% dark chocolate (70% cocoa), 29% sweet chocolate, 10% pure strawberry and 1% fennel essential oil (Foeniculum vulgare), reaching an average sensory acceptability of 3.23 on a five-point hedonic scale. The qualitative properties (organoleptic, chemical and microbial) of the selected formulations are acceptable for human consumption and provide a high energy content of 506.25 kcal/100 g for chocolate bars filled with strawberry puree and fennel essential oil. Full article
(This article belongs to the Special Issue Advances in the Design, Analysis and Evaluation of Functional Foods)
Show Figures

Figure 1

24 pages, 1096 KiB  
Review
Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh/Fresh-Cut Fruits: A Review
by Farid Moradinezhad, Atman Adiba, Azam Ranjbar and Maryam Dorostkar
Horticulturae 2025, 11(6), 577; https://doi.org/10.3390/horticulturae11060577 - 23 May 2025
Viewed by 2549
Abstract
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of [...] Read more.
Despite the growth of fruit production, the challenge of postharvest fruit loss particularly in tropical and subtropical fruits due to spoilage, decay, and natural deterioration remains a critical issue, impacting the global food supply chain by reducing both the quantity and quality of fruits postharvest. Edible coatings have emerged as a sustainable solution to extending the shelf life of fruits and decreasing postharvest losses. The precise composition and application of these coatings are crucial in determining their effectiveness in preventing microbial growth and preserving the sensory attributes of fruits. Furthermore, the integration of nanotechnology into edible coatings has the potential to enhance their functionalities, including improved barrier properties, the controlled release of active substances, and increased antimicrobial capabilities. Recent advancements highlighting the impact of edible coatings are underscored in this review, showcasing how they help in prolonging shelf life, preserving quality, and minimizing postharvest losses of subtropical fresh fruits worldwide. The utilization of edible coatings presents challenges in terms of production, storage, and large-scale application, all while ensuring consumer acceptance, food safety, nutritional value, and extended shelf life. Edible coatings based on polysaccharides and proteins encounter difficulties due to inadequate water and gas barrier properties, necessitating the incorporation of plasticizers, emulsifiers, and other additives to enhance their mechanical and thermal durability. Moreover, high levels of biopolymers and active components like essential oils and plant extracts could potentially impact the taste of the produce, directly influencing consumer satisfaction. Therefore, ongoing research and innovation in this field show great potential for reducing postharvest losses and strengthening food security. This paper presents a comprehensive overview of the latest advancements in the application of edible coatings and their influence on extending the postharvest longevity of main subtropical fruits, emphasizing the importance of maintaining the quality of fresh and fresh-cut subtropical fruits, prolonging their shelf life, and protecting them from deterioration through innovative techniques. Full article
Show Figures

Figure 1

21 pages, 4519 KiB  
Article
Parsimonious Model of Groundwater Recharge Potential as Seen Related with Two Topographic Indices and the Leaf Area Index
by Rodríguez-Moreno Victor Manuel and Kretzschmar Thomas Gunter
Hydrology 2025, 12(6), 127; https://doi.org/10.3390/hydrology12060127 - 22 May 2025
Viewed by 650
Abstract
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential [...] Read more.
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential aquifer recharge centroids. The LAI index served as a geographic mask, linking centroid locations to soil vegetation cover. Analyzing a paired subsample of 500 centroids for each strata (true and false), we observed that maximum values of true centroids, indicating potential groundwater recharge, correlated with the presence of abundant vegetation (0.074 < LAI < 0.639). Conversely, lower LAI values were associated with sparse vegetation in false centroids (0.01 < LAI < 0.590). The study’s findings hold promising implications for aquifer management, biodiversity conservation, hydric planning, and land use protection, making a substantial contribution to the field. The recharge hypothesis is theoretically sound and empirically supported to propose that areas of high topographic convergence and closed depressions are potential water recharge zones, and these locations may exhibit permanent or denser vegetation, reflected as higher LAI values. This happens because water accumulates or lingers in these zones, soil moisture is maintained more consistently, and plant roots access water for longer periods, even during dry seasons. Vegetation becomes more resilient and persistent (possibly even forming phreatophytes—plants accessing groundwater). Additionally, there is potential for expanding the research by incorporating field observations, including tracking the routes of surface and subsurface runoff and determining arrival times to the aquifer. Such studies are increasingly vital for addressing contemporary environmental and water resource challenges. Full article
Show Figures

Figure 1

15 pages, 1752 KiB  
Review
Sodium Alginate: A Green Biopolymer Resource-Based Antimicrobial Edible Coating to Enhance Fruit Shelf-Life: A Review
by Anshika Sharma and Arun K. Singh
Colloids Interfaces 2025, 9(3), 32; https://doi.org/10.3390/colloids9030032 - 19 May 2025
Viewed by 1463
Abstract
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to [...] Read more.
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to enhance the shelf life of perishable fruits by forming a protective barrier against adverse environmental conditions and microbial infections. Sodium alginate is recognized as an excellent polysaccharide (derived from algae, seaweed, etc.) in the food industry for edible fruit coatings because of its non-allergic, biodegradable, non-toxic (safe for human health), inexpensive, and efficient gel/film-forming properties. However, the hydrophilicity of the polysaccharides is a significant concern to prevent the growth of mold and yeast. In recent years, various plant extracts (containing multiple bioactive compounds, including polyphenolic acids) and nanoparticles have been applied in sodium alginate-based edible films and fruit coatings to enhance antimicrobial activity. This review study summarized recent advancements in fabricating plant extracts incorporating sodium alginate-based films and coatings to enhance fruit shelf life. In addition, approaches to preparing edible films and the basic mechanism behind the role of coating materials in enhancing fruit shelf life are discussed. Moreover, the limitations associated with sodium alginate-based fruit coatings and films have been highlighted. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

29 pages, 1701 KiB  
Review
Microbially Enhanced Biofertilizers: Technologies, Mechanisms of Action, and Agricultural Applications
by Sylwia Figiel, Piotr Rusek, Urszula Ryszko and Marzena Sylwia Brodowska
Agronomy 2025, 15(5), 1191; https://doi.org/10.3390/agronomy15051191 - 15 May 2025
Viewed by 1486
Abstract
Intensive research has been conducted for many years to develop environmentally friendly techniques for plant cultivation that optimize the fertilization process. One of the most promising areas within the fertilizer industry is using microbiologically enriched fertilizers, which incorporate beneficial bacteria or fungi. Biofertilizers [...] Read more.
Intensive research has been conducted for many years to develop environmentally friendly techniques for plant cultivation that optimize the fertilization process. One of the most promising areas within the fertilizer industry is using microbiologically enriched fertilizers, which incorporate beneficial bacteria or fungi. Biofertilizers are the focus of studies on both their production technologies and their effects on crop growth and yield, presenting a potential alternative to conventional mineral fertilizers. The prolonged and improper use of mineral fertilizers, along with inadequate plant protection, a lack of organic fertilization, and poor crop rotation practices, negatively impact soil health, disrupting microbial populations and ultimately diminishing yield quality and quantity. Microorganisms, particularly specific groups known as plant growth -promoting rhizobacteria (PGPR) and beneficial fungi, are estimated to make up 85% of the total soil biomass and play a crucial role in soil fertility by mineralizing organic matter, suppressing pests and pathogens, forming humus, and maintaining proper soil structure. They also provide optimal conditions for plant growth. Soil microorganisms can be categorized as either autochthonous, naturally present in the soil, or zymogenic, which develop when easily assimilable organic matter is added. Key microorganisms such as Micrococcus, Bacillus, Azotobacter, and nitrogen-fixing bacteria like Rhizobium and Bradyrhizobium significantly contribute to soil health and plant growth. Microbially enhanced fertilizers not only supply essential macro- and micronutrients but also improve soil quality, enhance nutrient use efficiency, protect plants against pathogens, and restore natural soil fertility, fostering a balanced biological environment for sustainable agriculture. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

15 pages, 3098 KiB  
Article
Effectiveness of Natural Products—Artemisia dubia and Manure Digestate—On Winter Wheat Cultivation
by Ausra Baksinskaite, Modupe Olufemi Doyeni, Jurate Ramanauskienė, Dalia Feizienė and Vita Tilvikiene
Plants 2025, 14(10), 1411; https://doi.org/10.3390/plants14101411 - 8 May 2025
Viewed by 525
Abstract
To effectively contribute to climate change mitigation, agronomists are increasingly focused on minimizing the application of synthetic fertilizers and pesticides while ensuring that crop yield and quality are not compromised. Plant biomass and organic fertilizers are known to improve soil quality, boost plant [...] Read more.
To effectively contribute to climate change mitigation, agronomists are increasingly focused on minimizing the application of synthetic fertilizers and pesticides while ensuring that crop yield and quality are not compromised. Plant biomass and organic fertilizers are known to improve soil quality, boost plant growth, and suppress diseases. However, their overall effectiveness remains limited, hence the need for further research to enhance their agricultural performance. This study aims to explore the potential application of two natural sources (manure digestate and crop Artemisia dubia) for crop fertilization and protection. During the growing season, winter wheat was fertilized twice (21–25 BBCH and 30–35 BBCH) with synthetic, organic (pig manure digestate), and combined synthetic–organic fertilizers. Artemisia dubia biomass was incorporated before sowing and planted in strips. The soil chemical composition, crop overwintering, weediness, and diseases were assessed after two years of the respective treatments. The results showed that the organic carbon content increased by 1–5% after fertilizing winter wheat with pig manure digestate and combining fertilizers (organic and synthetic). Additionally, fertilizer or pesticide use had a significant effect on the soil pH process. Combining synthetic and organic fertilizers increased the amount of mobile phosphorus in the soil by 38%. In conclusion, combining synthetic fertilizers with organic fertilizers is the most effective approach to maintain healthy soil conditions and prevent damage to sprouts in the soil. Overall, our findings offer more opportunities for organic and sustainable agricultural processes by integrating pig manure digestate and Artemisia dubia biomass as a natural approach to minimizing synthetic fertilizer and pesticide use. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

23 pages, 5424 KiB  
Review
Recent Developments and Future Prospects in the Integration of Machine Learning in Mechanised Systems for Autonomous Spraying: A Brief Review
by Francesco Toscano, Costanza Fiorentino, Lucas Santos Santana, Ricardo Rodrigues Magalhães, Daniel Albiero, Řezník Tomáš, Martina Klocová and Paola D’Antonio
AgriEngineering 2025, 7(5), 142; https://doi.org/10.3390/agriengineering7050142 - 6 May 2025
Viewed by 1210
Abstract
The integration of machine learning (ML) into self-governing spraying systems is one of the major developments in digital precision agriculture that is significantly improving resource efficiency, sustainability, and production. This study looks at current advances in machine learning applications for automated spraying in [...] Read more.
The integration of machine learning (ML) into self-governing spraying systems is one of the major developments in digital precision agriculture that is significantly improving resource efficiency, sustainability, and production. This study looks at current advances in machine learning applications for automated spraying in agricultural mechanisation, emphasising the new innovations, difficulties, and prospects. This study provides an in-depth analysis of the three main categories of autonomous sprayers—drones, ground-based robots, and tractor-mounted systems—that incorporate machine learning techniques. A comprehensive review of research published between 2014 and 2024 was conducted using Web of Science and Scopus, selecting relevant studies on agricultural robotics, sensor integration, and ML-based spraying automation. The results indicate that supervised, unsupervised, and deep learning models increasingly contribute to improved real-time decision making, performance in pest and disease detection, as well as accurate application of agricultural plant protection. By utilising cutting-edge technology like multispectral sensors, LiDAR, and sophisticated neural networks, these systems significantly increase spraying operations’ efficiency while cutting waste and significantly minimising their negative effects on the environment. Notwithstanding significant advances, issues still exist, such as the requirement for high-quality datasets, system calibration, and flexibility in a range of field circumstances. This study highlights important gaps in the literature and suggests future areas of inquiry to develop ML-driven autonomous spraying even more, assisting in the shift to more intelligent and environmentally friendly farming methods. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

Back to TopTop