Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = placental epigenetic alterations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2774 KiB  
Article
Chronic Morphine Treatment Leads to a Global DNA Hypomethylation via Active and Passive Demethylation Mechanisms in mESCs
by Manu Araolaza, Iraia Muñoa-Hoyos, Itziar Urizar-Arenaza, Irune Calzado and Nerea Subirán
Int. J. Mol. Sci. 2025, 26(15), 7056; https://doi.org/10.3390/ijms26157056 - 22 Jul 2025
Viewed by 302
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in embryonic development by controlling gene expression patterns. The disruption of this regulation by environmental factors can have long-lasting consequences. Opioid drugs, such as morphine, are known to cross the placental barrier and affect [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in embryonic development by controlling gene expression patterns. The disruption of this regulation by environmental factors can have long-lasting consequences. Opioid drugs, such as morphine, are known to cross the placental barrier and affect the developing central nervous system, yet their precise epigenetic effects during early development remain unclear. This study aimed to elucidate the impact of chronic morphine exposure on the DNA methylation landscape and gene expression in mouse embryonic stem cells (mESCs). mESCs were chronically exposed to morphine (10 μM for 24 h). Genome-wide bisulfite sequencing was performed to identify DNA methylation changes, while RNA sequencing (RNA-Seq) assessed corresponding gene expression alterations. Global levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were quantified using mass spectrometry. Morphine exposure induced global DNA hypomethylation and identified 16,808 differentially methylated genes (DMGs) related to development, cell signalling, metabolism, and transcriptional regulation. Integrative transcriptomic analysis with RNA-Seq data revealed 651 overlapping genes, including alterations in key epigenetic regulators involved on DNA methylation machinery. Specifically, Tet1 was upregulated with promoter hypomethylation, while Dnmt1 was downregulated, without changes in promoter methylation after morphine exposiure. Mass spectrometry results confirmed a global decrease in 5mC levels alongside increased 5hmC, indicating the involvement of both passive and active demethylation pathways. These findings demonstrate for the first time that morphine disrupts the epigenetic homeostasis of mESCs by promoting global and gene-specific DNA demethylation, which might be key to the phenotypic changes that occur in adulthood. This work provides novel mechanistic insights into how opioid exposure during early development may lead to persistent epigenetic alterations, with potential long-term implications for neurodevelopment and disease susceptibility. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

45 pages, 1614 KiB  
Review
Epigenetic Consequences of In Utero PFAS Exposure: Implications for Development and Long-Term Health
by Abubakar Abdulkadir, Shila Kandel, Niya Lewis, Oswald D’Auvergne, Raphyel Rosby and Ekhtear Hossain
Int. J. Environ. Res. Public Health 2025, 22(6), 917; https://doi.org/10.3390/ijerph22060917 - 10 Jun 2025
Cited by 1 | Viewed by 1414
Abstract
In utero exposure to per- and polyfluoroalkyl substances (PFAS) presents significant health concerns, primarily through their role in inducing epigenetic modifications that have lasting consequences. This review aims to elucidate the impact of prenatal PFAS exposure on epigenetic mechanisms, including DNA methylation, histone [...] Read more.
In utero exposure to per- and polyfluoroalkyl substances (PFAS) presents significant health concerns, primarily through their role in inducing epigenetic modifications that have lasting consequences. This review aims to elucidate the impact of prenatal PFAS exposure on epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA regulation, focusing on developmental and long-term health outcomes. The review synthesizes findings from various studies that link PFAS exposure to alterations in DNA methylation in fetal tissues, such as changes in the methylation of genes like IGF2 and MEST, which are linked to disruptions in growth, neurodevelopment, immune function, and metabolic regulation, potentially increasing the risk of diseases such as diabetes and obesity. We also highlight the compound-specific effects of different PFAS, such as PFOS and PFOA, each showing unique impacts on epigenetic profiles, suggesting varied health risks. Special attention is given to hormonal disruption, oxidative stress, and changes in histone-modifying enzymes such as histone acetyltransferases (HATs) and deacetylases (HDACs), which are pathways through which PFAS influence fetal development. Additionally, we discuss PFAS-induced epigenetic changes in placental tissues, which can alter fetal nutrient supply and hormone regulation. Despite accumulating evidence, significant knowledge gaps remain, particularly regarding the persistence of these changes across the lifespan and potential sex-specific susceptibilities. We explore how advancements in epigenome-wide association studies could bridge these gaps, providing a robust framework for linking prenatal environmental exposures to lifetime health outcomes. Future research directions and regulatory strategies are also discussed, emphasizing the need for intervention to protect vulnerable populations from these environmental pollutants. Full article
(This article belongs to the Special Issue Environmental Exposures and Epigenomics in Health and Disease)
Show Figures

Figure 1

19 pages, 1772 KiB  
Systematic Review
Circulating MicroRNAs Associated with Changes in the Placenta and Their Possible Role in the Fetus During Gestational Diabetes Mellitus: A Review
by Ninna Leslie Trejo-Gonzalez, Martin Palomar-Morales, Luis Arturo Baiza-Gutman, Guadalupe Diaz-Rosas, Clara Ortega-Camarillo and Alejandra Contreras-Ramos
Metabolites 2025, 15(6), 367; https://doi.org/10.3390/metabo15060367 - 3 Jun 2025
Viewed by 678
Abstract
MicroRNAs (miRs) are epigenetic regulators of several metabolic diseases, including gestational diabetes mellitus (GDM). Objectives: Following a systematic review, we propose a pattern of key circulating miRs associated with placental changes and their potential role in the fetus. Methods: A systematic investigation of [...] Read more.
MicroRNAs (miRs) are epigenetic regulators of several metabolic diseases, including gestational diabetes mellitus (GDM). Objectives: Following a systematic review, we propose a pattern of key circulating miRs associated with placental changes and their potential role in the fetus. Methods: A systematic investigation of studies published between January 2011 and July 2024 was conducted in the PubMed, ScienceDirect, Trip Database, and Wiley databases. A total of 90 articles were analyzed. Results: Two hundred twenty-six circulating microRNAs were identified in women with GDM, and fifty miRs were validated by PCR, with miRs-16-5p, -29a-5p, and -195-5p being the most frequently reported. Interestingly, miR-16-5p was also expressed in the placenta but not in umbilical cord blood or amniotic fluid. Conversely, miR-126-3p was expressed in circulation, the placenta, umbilical cord blood, and amniotic fluid. Several reports describe high expression levels of miR-518d in maternal circulation, umbilical cord blood, and placenta. Controversial results regarding the expression of miR-29a-3p, -137, and -148a-3p were identified when comparing umbilical cord blood and the placenta. Conclusions: In silico analyses suggest that the miR-29 family, as well as miRs-16-5p, -126-3p, -195-5p, and -518b, may be involved in alterations in the heart, brain, and kidneys in the embryo when exposed to a hyperglycemic environment. Full article
(This article belongs to the Special Issue Adipose Tissue, Reproduction and Metabolic Health in Women)
Show Figures

Figure 1

23 pages, 433 KiB  
Systematic Review
Endocrine-Disrupting Chemicals and the Effects of Distorted Epigenetics on Preeclampsia: A Systematic Review
by Balu Usha Rani, Ramasamy Vasantharekha, Winkins Santosh, Thangavelu Swarnalingam and Seetharaman Barathi
Cells 2025, 14(7), 493; https://doi.org/10.3390/cells14070493 - 26 Mar 2025
Cited by 1 | Viewed by 1245
Abstract
Background: Preeclampsia (PE) is a critical complication of pregnancy that affects 3% to 5% of all pregnancies and has been linked to aberrant placentation, causing severe maternal and fetal illness and death. Objectives: This systematic review aims to elucidate the association of in-utero [...] Read more.
Background: Preeclampsia (PE) is a critical complication of pregnancy that affects 3% to 5% of all pregnancies and has been linked to aberrant placentation, causing severe maternal and fetal illness and death. Objectives: This systematic review aims to elucidate the association of in-utero endocrine-disrupting chemical (EDC) exposure and microRNAs and their imprinted genes from prenatal and maternal circulation of PE patients. Methods: Databases such as PubMed, PubMed Central, ScienceDirect, the Comparative Toxicogenomics Database (CTD), ProQuest, EBSCOhost, and Google Scholar were utilized to search for articles that investigate the relationships between selected EDCs and epigenetic events such as DNA methylation and microRNAs that are associated with PE. Results: A total of 29 studies were included in the database search. Altered expression of microRNAs (miR-15a-5p, miR-142-3p, and miR-185) in the placenta of PE patients was positively associated with the urinary concentration of phthalates and phenols in the development of the disease in the first trimester. EDCs such as phenols, phthalates, perfluoroalkyl substances (PFOAs), polybrominated diphenyl ethers (PBDEs), and organochlorine phosphates (OCPs) have been reported to be associated with hypertensive disorders in pregnancy. miRNA-31, miRNA-144, miRNA-145, miRNA-210, placental specific clusters (C14MC, and C19MC) may be used as possible targets for PE because of their potential roles in the onset and progression of PE. Conclusions: Prenatal EDC exposure, including exposure to BPA, showed association with signaling pathways including estrogen, sFlt-1/PlGF, ErbB, MAPK/ERK, and cholesterol mechanisms with placental hemodynamics. Even low EDC exposures leave altered epigenetic marks throughout gestation, which might cause PE complications. Full article
(This article belongs to the Special Issue Molecular Advances in Prenatal Exposure to Environmental Toxicants)
Show Figures

Figure 1

19 pages, 4834 KiB  
Article
Dysregulation of Circadian Markers, HAT1 and Associated Epigenetic Proteins, and the Anti-Aging Protein KLOTHO in Placenta of Pregnant Women with Chronic Venous Disease
by Oscar Fraile-Martinez, Cielo García-Montero, Tatiana Pekarek, Julia Bujan, Silvestra Barrena-Blázquez, Eva Manuela Pena-Burgos, Laura López-González, Leonel Pekarek, Raul Díaz-Pedrero, Juan A. De León-Luis, Coral Bravo, Melchor Álvarez-Mon, Miguel A. Saez, Natalio García-Honduvilla and Miguel A. Ortega
J. Pers. Med. 2025, 15(3), 107; https://doi.org/10.3390/jpm15030107 - 9 Mar 2025
Cited by 1 | Viewed by 1213
Abstract
Background: Chronic venous disease (CVD) is a vascular disorder common among pregnant women, due to the impairment in the venous function associated with the mechanical, hemodynamical, and hormonal changes that occur during pregnancy. CVD is linked to venous hypertension, inflammation, oxidative stress, and [...] Read more.
Background: Chronic venous disease (CVD) is a vascular disorder common among pregnant women, due to the impairment in the venous function associated with the mechanical, hemodynamical, and hormonal changes that occur during pregnancy. CVD is linked to venous hypertension, inflammation, oxidative stress, and hypoxia, which alter placental structure and function, as demonstrated in previous works. The placenta fulfills several roles in fetal development and maternal well-being by mediating nutrient exchange; acting as a mechanical, chemical, and immunological shield; and producing essential hormones, making it crucial to investigate the effects of CVD in this organ. Patients and methods: This work specifically analyzes the gene expression of circadian markers (CLOCK, BMAL1, PER1, and PER2), epigenetic regulators (HAT1 and associated molecules like histones H3, H4, RBBP7, and ASF1), and the anti-aging protein KLOTHO in placental tissue of pregnant women with CVD (CVD-PW, N = 98) compared to healthy pregnant controls (HC-PW, N = 82), using RT-qPCR and immunohistochemistry (IHC) to determine protein expression. Results: Our study demonstrates that the placentas of CVD-PW exhibit the reduced gene and protein levels of circadian regulators (clock, bmal1, per1, and per2), increased expression of hat1 and related proteins (h3, h4, rbbp7, and asf1), and decreased klotho expression, indicative of accelerated aging. Conclusions: These findings highlight profound molecular disturbances in the placentas of women with CVD, offering insights into the disease’s pathophysiology and potential implications for maternofetal well-being. While this study deepens our understanding of the relationship between CVD and placental dysfunction, further research is required to fully elucidate these mechanisms and their long-term effects. Full article
(This article belongs to the Section Mechanisms of Diseases)
Show Figures

Figure 1

15 pages, 1269 KiB  
Review
The Fetal Environment and the Development of Hypertension—The Epigenetic Modification by Glucocorticoids
by Fumiko-Kawakami Mori and Tatsuo Shimosawa
Int. J. Mol. Sci. 2025, 26(1), 420; https://doi.org/10.3390/ijms26010420 - 6 Jan 2025
Cited by 2 | Viewed by 2062
Abstract
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure [...] Read more.
Intrauterine growth restriction (IUGR) is a risk factor for postnatal cardiovascular, metabolic, and psychiatric disorders. In most IUGR models, placental dysfunction that causes reduced 11β-hydroxysteroid dehydrogenase 2 (11βHSD2) activity, which degrades glucocorticoids (GCs) in the placenta, resulting in fetal GC overexposure. This overexposure to GCs continues to affect not only intrauterine fetal development itself, but also the metabolic status and neural activity in adulthood through epigenetic changes such as microRNA change, histone modification, and DNA methylation. We have shown that the IUGR model induced DNA hypomethylation in the paraventricular nucleus (PVN) in the brain, which in turn activates sympathetic activities, the renin–angiotensin system (RAS), contributing to the development of salt-sensitive hypertension. Even in adulthood, strong stress and/or exogenous steroids have been shown to induce epigenetic changes in the brain. Furthermore, DNA hypomethylation in the PVN is also observed in other hypertensive rat models, which suggests that it contributes significantly to the origins of elevated blood pressure. These findings suggest that if we can alter epigenetic changes in the brain, we can treat or prevent hypertension. Full article
Show Figures

Figure 1

25 pages, 4545 KiB  
Review
Cellular and Molecular Pathophysiology of Gestational Diabetes
by Johnatan Torres-Torres, Irma Eloisa Monroy-Muñoz, Javier Perez-Duran, Juan Mario Solis-Paredes, Zaira Alexi Camacho-Martinez, Deyanira Baca, Salvador Espino-y-Sosa, Raigam Martinez-Portilla, Lourdes Rojas-Zepeda, Hector Borboa-Olivares and Enrique Reyes-Muñoz
Int. J. Mol. Sci. 2024, 25(21), 11641; https://doi.org/10.3390/ijms252111641 - 30 Oct 2024
Cited by 10 | Viewed by 8127
Abstract
Gestational diabetes (GD) is a metabolic disorder characterized by glucose intolerance during pregnancy, significantly impacting maternal and fetal health. Its global prevalence is approximately 14%, with risk factors including obesity, family history of diabetes, advanced maternal age, and ethnicity, which are linked to [...] Read more.
Gestational diabetes (GD) is a metabolic disorder characterized by glucose intolerance during pregnancy, significantly impacting maternal and fetal health. Its global prevalence is approximately 14%, with risk factors including obesity, family history of diabetes, advanced maternal age, and ethnicity, which are linked to cellular and molecular disruptions in glucose regulation and insulin resistance. GD is associated with short- and long-term complications for both the mother and the newborn. For mothers, GD increases the risk of developing type 2 diabetes, cardiovascular diseases, and metabolic syndrome. In the offspring, exposure to GD in utero predisposes them to obesity, glucose intolerance, and metabolic disorders later in life. This review aims to elucidate the complex cellular and molecular mechanisms underlying GD to inform the development of effective therapeutic strategies. A systematic review was conducted using medical subject headings (MeSH) terms related to GD’s cellular and molecular pathophysiology. Inclusion criteria encompassed original studies, systematic reviews, and meta-analyses focusing on GD’s impact on maternal and fetal health, adhering to PRISMA guidelines. Data extraction captured study characteristics, maternal and fetal outcomes, key findings, and conclusions. GD disrupts insulin signaling pathways, leading to impaired glucose uptake and insulin resistance. Mitochondrial dysfunction reduces ATP production and increases reactive oxygen species, exacerbating oxidative stress. Hormonal influences, chronic inflammation, and dysregulation of the mammalian target of rapamycin (mTOR) pathway further impair insulin signaling. Gut microbiota alterations, gene expression, and epigenetic modifications play significant roles in GD. Ferroptosis and placental dysfunction primarily contribute to intrauterine growth restriction. Conversely, fetal macrosomia arises from maternal hyperglycemia and subsequent fetal hyperinsulinemia, resulting in excessive fetal growth. The chronic inflammatory state and oxidative stress associated with GD exacerbate these complications, creating a hostile intrauterine environment. GD’s complex pathophysiology involves multiple disruptions in insulin signaling, mitochondrial function, inflammation, and oxidative stress. Effective management requires early detection, preventive strategies, and international collaboration to standardize care and improve outcomes for mothers and babies. Full article
(This article belongs to the Special Issue Molecular Advances in Gestational Diabetes Mellitus)
Show Figures

Figure 1

18 pages, 1314 KiB  
Review
Molecular Basis of Hydatidiform Moles—A Systematic Review
by Shadha Nasser Mohammed Bahutair, Rajani Dube, Manjunatha Goud Bellary Kuruba, Rasha Aziz Attia Salama, Mohamed Anas Mohamed Faruk Patni, Subhranshu Sekhar Kar and Rakhee Kar
Int. J. Mol. Sci. 2024, 25(16), 8739; https://doi.org/10.3390/ijms25168739 - 10 Aug 2024
Cited by 1 | Viewed by 3954
Abstract
Gestational trophoblastic diseases (GTDs) encompass a spectrum of conditions characterized by abnormal trophoblastic cell growth, ranging from benign molar pregnancies to malignant trophoblastic neoplasms. This systematic review explores the molecular underpinnings of GTDs, focusing on genetic and epigenetic factors that influence disease progression [...] Read more.
Gestational trophoblastic diseases (GTDs) encompass a spectrum of conditions characterized by abnormal trophoblastic cell growth, ranging from benign molar pregnancies to malignant trophoblastic neoplasms. This systematic review explores the molecular underpinnings of GTDs, focusing on genetic and epigenetic factors that influence disease progression and clinical outcomes. Based on 71 studies identified through systematic search and selection criteria, key findings include dysregulations in tumor suppressor genes such as p53, aberrant apoptotic pathways involving BCL-2 (B-cell lymphoma), and altered expression of growth factor receptors and microRNAs (micro-ribose nucleic acid). These molecular alterations not only differentiate molar pregnancies from normal placental development but also contribute to their clinical behavior, from benign moles to potentially malignant forms. The review synthesizes insights from immunohistochemical studies and molecular analyses to provide a comprehensive understanding of GTD pathogenesis and implications for personalized care strategies. Full article
(This article belongs to the Special Issue Recent Research on Cell and Molecular Biology)
Show Figures

Figure 1

24 pages, 1162 KiB  
Review
A Narrative Review on the Pathophysiology of Preeclampsia
by Johnatan Torres-Torres, Salvador Espino-y-Sosa, Raigam Martinez-Portilla, Hector Borboa-Olivares, Guadalupe Estrada-Gutierrez, Sandra Acevedo-Gallegos, Erika Ruiz-Ramirez, Martha Velasco-Espin, Pablo Cerda-Flores, Andrea Ramirez-Gonzalez and Lourdes Rojas-Zepeda
Int. J. Mol. Sci. 2024, 25(14), 7569; https://doi.org/10.3390/ijms25147569 - 10 Jul 2024
Cited by 33 | Viewed by 15857
Abstract
Preeclampsia (PE) is a multifactorial pregnancy disorder characterized by hypertension and proteinuria, posing significant risks to both maternal and fetal health. Despite extensive research, its complex pathophysiology remains incompletely understood. This narrative review aims to elucidate the intricate mechanisms contributing to PE, focusing [...] Read more.
Preeclampsia (PE) is a multifactorial pregnancy disorder characterized by hypertension and proteinuria, posing significant risks to both maternal and fetal health. Despite extensive research, its complex pathophysiology remains incompletely understood. This narrative review aims to elucidate the intricate mechanisms contributing to PE, focusing on abnormal placentation, maternal systemic response, oxidative stress, inflammation, and genetic and epigenetic factors. This review synthesizes findings from recent studies, clinical trials, and meta-analyses, highlighting key molecular and cellular pathways involved in PE. The review integrates data on oxidative stress biomarkers, angiogenic factors, immune interactions, and mitochondrial dysfunction. PE is initiated by poor placentation due to inadequate trophoblast invasion and improper spiral artery remodeling, leading to placental hypoxia. This triggers the release of anti-angiogenic factors such as soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng), causing widespread endothelial dysfunction and systemic inflammation. Oxidative stress, mitochondrial abnormalities, and immune dysregulation further exacerbate the condition. Genetic and epigenetic modifications, including polymorphisms in the Fms-like tyrosine kinase 1 (FLT1) gene and altered microRNA (miRNA) expression, play critical roles. Emerging therapeutic strategies targeting oxidative stress, inflammation, angiogenesis, and specific molecular pathways like the heme oxygenase-1/carbon monoxide (HO-1/CO) and cystathionine gamma-lyase/hydrogen sulfide (CSE/H2S) pathways show promise in mitigating preeclampsia’s effects. PE is a complex disorder with multifactorial origins involving abnormal placentation, endothelial dysfunction, systemic inflammation, and oxidative stress. Despite advances in understanding its pathophysiology, effective prevention and treatment strategies remain limited. Continued research is essential to develop targeted therapies that can improve outcomes for both mothers and their babies. Full article
Show Figures

Figure 1

34 pages, 2074 KiB  
Review
Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota
by Sanjay Basak, Rahul Mallick, Boga Navya Sree and Asim K. Duttaroy
Nutrients 2024, 16(12), 1860; https://doi.org/10.3390/nu16121860 - 13 Jun 2024
Cited by 8 | Viewed by 6670
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease [...] Read more.
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life. Full article
Show Figures

Figure 1

14 pages, 505 KiB  
Review
The “Bad Father”: Paternal Role in Biology of Pregnancy and in Birth Outcome
by Stefano Raffaele Giannubilo, Daniela Marzioni, Giovanni Tossetta, Ramona Montironi, Maria Liberata Meccariello and Andrea Ciavattini
Biology 2024, 13(3), 165; https://doi.org/10.3390/biology13030165 - 3 Mar 2024
Cited by 15 | Viewed by 11727
Abstract
Pregnancy is generally studied as a biological interaction between a mother and a fetus; however, the father, with his characteristics, lifestyle, genetics, and living environment, is by no means unrelated to the outcome of pregnancy. The half of the fetal genetic heritage of [...] Read more.
Pregnancy is generally studied as a biological interaction between a mother and a fetus; however, the father, with his characteristics, lifestyle, genetics, and living environment, is by no means unrelated to the outcome of pregnancy. The half of the fetal genetic heritage of paternal derivation can be decisive in cases of inherited chromosomal disorders, and can be the result of de novo genetic alterations. In addition to the strictly pathological aspects, paternal genetics may transmit thrombophilic traits that affect the implantation and vascular construction of the feto-placental unit, lead to placenta-mediated diseases such as pre-eclampsia and fetal growth retardation, and contribute to the multifactorial genesis of preterm delivery. Biological aspects of immunological tolerance to paternal antigens also appear to be crucial for these pathologies. Finally, this review describes the biological findings by which the environment, exposure to pathogens, lifestyle, and nutritional style of the father affect fetal pathophysiological and epigenetic definition. Full article
Show Figures

Figure 1

17 pages, 3809 KiB  
Communication
The Effects of Combined Exposure to Bisphenols and Perfluoroalkyls on Human Perinatal Stem Cells and the Potential Implications for Health Outcomes
by Andrea Di Credico, Giulia Gaggi, Ines Bucci, Barbara Ghinassi and Angela Di Baldassarre
Int. J. Mol. Sci. 2023, 24(19), 15018; https://doi.org/10.3390/ijms241915018 - 9 Oct 2023
Cited by 9 | Viewed by 2223
Abstract
The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While [...] Read more.
The present study investigates the impact of two endocrine disruptors, namely Bisphenols (BPs) and Perfluoroalkyls (PFs), on human stem cells. These chemicals leach from plastic, and when ingested through contaminated food and water, they interfere with endogenous hormone signaling, causing various diseases. While the ability of BPs and PFs to cross the placental barrier and accumulate in fetal serum has been documented, the exact consequences for human development require further elucidation. The present research work explored the effects of combined exposure to BPs (BPA or BPS) and PFs (PFOS and PFOA) on human placenta (fetal membrane mesenchymal stromal cells, hFM-MSCs) and amniotic fluid (hAFSCs)-derived stem cells. The effects of the xenobiotics were assessed by analyzing cell proliferation, mitochondrial functionality, and the expression of genes involved in pluripotency and epigenetic regulation, which are crucial for early human development. Our findings demonstrate that antenatal exposure to BPs and/or PFs may alter the biological characteristics of perinatal stem cells and fetal epigenome, with potential implications for health outcomes at birth and in adulthood. Further research is necessary to comprehend the full extent of these effects and their long-term consequences. Full article
(This article belongs to the Special Issue Endocrine Disruptors Exposure and Human Health)
Show Figures

Figure 1

17 pages, 990 KiB  
Review
Exploring the Diet-Gut Microbiota-Epigenetics Crosstalk Relevant to Neonatal Diabetes
by Naser A. Alsharairi
Genes 2023, 14(5), 1017; https://doi.org/10.3390/genes14051017 - 29 Apr 2023
Cited by 9 | Viewed by 3898
Abstract
Neonatal diabetes (NDM) is a rare monogenic disorder that presents as hyperglycemia during the first six months of life. The link between early-life gut microbiota dysbiosis and susceptibility to NDM remains uncertain. Experimental studies have demonstrated that gestational diabetes mellitus (GDM) could develop [...] Read more.
Neonatal diabetes (NDM) is a rare monogenic disorder that presents as hyperglycemia during the first six months of life. The link between early-life gut microbiota dysbiosis and susceptibility to NDM remains uncertain. Experimental studies have demonstrated that gestational diabetes mellitus (GDM) could develop into meconium/gut microbiota dysbiosis in newborns, and thus, it is thought to be a mediator in the pathogenesis of NDM. Epigenetic modifications have been considered as potential mechanisms by which the gut microbiota and susceptibility genes interact with the neonatal immune system. Several epigenome-wide association studies have revealed that GDM is associated with neonatal cord blood and/or placental DNA methylation alterations. However, the mechanisms linking diet in GDM with gut microbiota alterations, which may in turn induce the expression of genes linked to NDM, are yet to be unraveled. Therefore, the focus of this review is to highlight the impacts of diet, gut microbiota, and epigenetic crosstalk on altered gene expression in NDM. Full article
Show Figures

Figure 1

12 pages, 6063 KiB  
Article
Altered Epigenetic Profiles in the Placenta of Preeclamptic and Intrauterine Growth Restriction Patients
by Carter Norton, Derek Clarke, Joshua Holmstrom, Isaac Stirland, Paul R. Reynolds, Tim G. Jenkins and Juan A. Arroyo
Cells 2023, 12(8), 1130; https://doi.org/10.3390/cells12081130 - 11 Apr 2023
Cited by 9 | Viewed by 3024
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are placental pathologies known to complicate pregnancy and cause neonatal disorders. To date, there is a limited number of studies on the genetic similarity of these conditions. DNA methylation is a heritable epigenetic process that can [...] Read more.
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are placental pathologies known to complicate pregnancy and cause neonatal disorders. To date, there is a limited number of studies on the genetic similarity of these conditions. DNA methylation is a heritable epigenetic process that can regulate placental development. Our objective was to identify methylation patterns in placental DNA from normal, PE and IUGR-affected pregnancies. DNA was extracted, and bisulfite was converted, prior to being hybridized for the methylation array. Methylation data were SWAN normalized and differently methylated regions were identified using applications within the USEQ program. UCSC’s Genome browser and Stanford’s GREAT analysis were used to identify gene promoters. The commonality among affected genes was confirmed by Western blot. We observed nine significantly hypomethylated regions, two being significantly hypomethylated for both PE and IGUR. Western blot confirmed differential protein expression of commonly regulated genes. We conclude that despite the uniqueness of methylation profiles for PE and IUGR, the similarity of some methylation alterations in pathologies could explain the clinical similarities observed with these obstetric complications. These results also provide insight into the genetic similarity between PE and IUGR and suggest possible gene candidates plausibly involved in the onset of both conditions. Full article
(This article belongs to the Topic Cell Signaling Pathways)
Show Figures

Figure 1

19 pages, 1564 KiB  
Article
Characterization of Maternal Circulating MicroRNAs in Obese Pregnancies and Gestational Diabetes Mellitus
by Anaïs Serati, Chiara Novielli, Gaia Maria Anelli, Maria Mandalari, Francesca Parisi, Irene Cetin, Renata Paleari and Chiara Mandò
Antioxidants 2023, 12(2), 515; https://doi.org/10.3390/antiox12020515 - 17 Feb 2023
Cited by 7 | Viewed by 3761
Abstract
Maternal obesity (MO) is expanding worldwide, contributing to the onset of Gestational Diabetes Mellitus (GDM). MO and GDM are associated with adverse maternal and foetal outcomes, with short- and long-term complications. Growing evidence suggests that MO and GDM are characterized by epigenetic alterations [...] Read more.
Maternal obesity (MO) is expanding worldwide, contributing to the onset of Gestational Diabetes Mellitus (GDM). MO and GDM are associated with adverse maternal and foetal outcomes, with short- and long-term complications. Growing evidence suggests that MO and GDM are characterized by epigenetic alterations contributing to the pathogenesis of metabolic diseases. In this pilot study, plasma microRNAs (miRNAs) of obese pregnant women with/without GDM were profiled at delivery. Nineteen women with spontaneous singleton pregnancies delivering by elective Caesarean section were enrolled: seven normal-weight (NW), six obese without comorbidities (OB/GDM(−)), and six obese with GDM (OB/GDM(+)). miRNA profiling with miRCURY LNA PCR Panel allowed the analysis of the 179 most expressed circulating miRNAs in humans. Data acquisition and statistics (GeneGlobe and SPSS software) and Pathway Enrichment Analysis (PEA) were performed. Data analysis highlighted patterns of significantly differentially expressed miRNAs between groups: OB/GDM(−) vs. NW: n = 4 miRNAs, OB/GDM(+) vs. NW: n = 1, and OB/GDM(+) vs. OB/GDM(−): n = 14. For each comparison, PEA revealed pathways associated with oxidative stress and inflammation, as well as with nutrients and hormones metabolism. Indeed, miRNAs analysis may help to shed light on the complex epigenetic network regulating metabolic pathways in both the mother and the foeto-placental unit. Future investigations are needed to deepen the pregnancy epigenetic landscape in MO and GDM. Full article
Show Figures

Graphical abstract

Back to TopTop