error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = piperaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2839 KB  
Article
Organ-Specific Distribution of Antimycobacterial Neolignans in Piper rivinoides and UHPLC-HRMS/MS Analysis of Its Extracts
by Jéssica Sales Felisberto, Thayssa Ferreira Fagundes, Lorraynne Oliveira-Souza, Bruno Henrique Gomes de Souza, Daniel Machado de Brito, Jeferson Adriano Assunção, Samik Lourenço Massau, Marlon H. de Araújo, Michelle Frazão Muzitano, Sanderson Dias Calixto, Thatiana Lopes Biá Ventura Simão, Andre Mesquita Marques, Ygor Jessé Ramos and Davyson de Lima Moreira
Molecules 2025, 30(24), 4682; https://doi.org/10.3390/molecules30244682 - 6 Dec 2025
Viewed by 322
Abstract
This multidisciplinary study investigates Piper rivinoides, a Brazilian medicinal species, focusing on its chemical composition and antimycobacterial potential. UHPLC-HRMS/MS of leaves, stems, branches, and roots revealed 58 compounds, including neolignans, lignanamides, triterpenes, flavonoids, and carotenoids. Fourteen metabolites, notably benzofuran neolignans and pentacyclic [...] Read more.
This multidisciplinary study investigates Piper rivinoides, a Brazilian medicinal species, focusing on its chemical composition and antimycobacterial potential. UHPLC-HRMS/MS of leaves, stems, branches, and roots revealed 58 compounds, including neolignans, lignanamides, triterpenes, flavonoids, and carotenoids. Fourteen metabolites, notably benzofuran neolignans and pentacyclic triterpenes are annotated here for the first time. Quantitative analyses by HPLC-DAD-UV showed that eupomatenoid-5, eupomatenoid-6, and conocarpan were most abundant in leaves, reaching amounts approximately twice those found in branches and stems and about ten times higher than in roots, supporting the optimal defense theory and organ-specific accumulation of bioactive metabolites. Biological assays against Mycobacterium tuberculosis strains H37Rv and M299 revealed strong inhibitory activity for the leaf extract and isolated neolignans. Eupomatenoid-5 and eupomatenoid-6 achieved inhibition comparable to rifampicin, with low MIC50 values, while conocarpan exhibited moderate activity. Antimycobacterial effects were more pronounced against the H37Rv strain, although relevant inhibition was also observed for the hypervirulent M299 strain. These findings highlight P. rivinoides as a rich source of benzofuran neolignans and promising antimycobacterial properties. The integration of advanced mass spectrometric analyses with bioassays demonstrates the value of combining chemical and biological approaches to uncover novel natural products. The putative identification of new neolignans and triterpenes, along with the confirmation of potent antimycobacterial activity, provides a robust foundation for further studies on biosynthesis, structure–activity relationships, and potential biotechnological applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

24 pages, 2722 KB  
Article
First Evidence of Anti-Plasmodium vivax (Plasmodiidae): Activity of the Essential Oil and 6-Ishwarone Isolated from Piper alatipetiolatum Yunck. (Piperaceae)
by Glenda Quaresma Ramos, Renata Galvão de Azevedo, André Correa de Oliveira, Maria Luiza Lima da Costa, Felipe Moura Araujo da Silva, Ingrity Suelen Costa Sá, Gisely Cardoso de Melo, Stefanie Costa Pinto Lopes, Gemilson Soares Pontes, Sergio Massayoshi Nunomura, Rita de Cássia Saraiva Nunomura and Rosemary Aparecida Roque
Biomedicines 2025, 13(11), 2785; https://doi.org/10.3390/biomedicines13112785 - 14 Nov 2025
Viewed by 588
Abstract
Background/Objectives: In the Brazilian Amazon, which accounts for over 99% of national malaria cases, 34,260 cases were reported as of August 2025, predominantly caused by Plasmodium vivax, responsible for 86.69% of the infections. The increasing resistance of the parasite to conventional [...] Read more.
Background/Objectives: In the Brazilian Amazon, which accounts for over 99% of national malaria cases, 34,260 cases were reported as of August 2025, predominantly caused by Plasmodium vivax, responsible for 86.69% of the infections. The increasing resistance of the parasite to conventional therapies highlights the urgent need for novel control strategies, with essential oils and plant-derived substances emerging as promising alternatives. Methods: In this context, we evaluated the anti-Plasmodium potential of Piper alatipetiolatum essential oil and its major constituent 6-ishwarone against P. vivax, including cytotoxicity in Vero and PBMCs, molecular docking on dihydrofolate reductase (DHFR) and lactate dehydrogenase (LDH), and in silico pharmacokinetic profiling. Results: Both the oil and 6-ishwarone inhibited P. vivax dose-dependently (2.1 ± 1 to 100%), with IC50 values of 9.25 µg/mL and 3.93 µg/mL, respectively. Importantly, no cytotoxic effects were observed at 24 h, with cell viability ranging from 94.7% to 98.3%, highlighting the selectivity of these compounds towards the parasite over mammalian cells. Docking studies indicated selective binding of 6-ishwarone to DHFR (−7.7 kcal/mol; Ki = 2.27 µM) with key interactions (Trp816, Lys820, Tyr819, Asn823, Thr865), whereas binding to LDH was weaker (−6.2 kcal/mol; Ki = 28.10 µM), suggesting DHFR as the primary molecular target. In silico ADMET predictions and experimental data indicated favorable drug-like properties: TPSA = 20.23 Å2, moderate lipophilicity (LogP = 3.37), soluble (ESOL Log S = −3.58; Ali Log S = −3.89; Silicos-IT Log S = −2.84), high gastrointestinal absorption, BBB permeability (0.985), not a P-glycoprotein substrate (0.11), and low likelihood of CYP inhibition. Toxicity predictions showed non-mutagenic and non-hepatotoxic effects, low cardiotoxicity (hERG inhibition risk 0.08–0.32), low reproductive toxicity (0.03), moderate neurotoxicity (0.28), low acute toxicity (oral LD50 = 2.061 mol/kg), and low chronic toxicity (LOAEL = 1.995 log mg/kg/day). Conclusions: Together, these findings demonstrate that essential oil and 6-ishwarone of P. alatipetiolatum are selective, bioavailable, and promising natural leads for antimalarial drug development. Full article
Show Figures

Graphical abstract

14 pages, 1409 KB  
Article
SIRT1 Activation by Lignans Identified via UPLC-qTOF-MS/MS-Based Metabolomic Profiling of Piper longum L. Fruit (Long Pepper)
by Van-Hieu Mai, Jun-Li Yang, Thi-Kim-Quy Ha, Jorge-Eduardo Ponce-Zea, Minh Thi Tuyet Le, Ba-Wool Lee, Jin-Pyo An and Won Keun Oh
Plants 2025, 14(20), 3186; https://doi.org/10.3390/plants14203186 - 16 Oct 2025
Viewed by 686
Abstract
The fruits of Piper longum L. (long pepper), a spice and medicinal plant of the family Piperaceae, are widely used in South and Southeast Asian cuisine and traditional medicine, valued for their pungent flavor and aroma. The metabolomic profiling of P. longum [...] Read more.
The fruits of Piper longum L. (long pepper), a spice and medicinal plant of the family Piperaceae, are widely used in South and Southeast Asian cuisine and traditional medicine, valued for their pungent flavor and aroma. The metabolomic profiling of P. longum using UPLC-qTOF-MS/MS provided a comprehensive chemical characterization of this traditional medicinal plant, revealing that lignans and amide alkaloids are the major classes of secondary metabolites. To further investigate its pharmacological potential, the bioactive ethyl acetate fraction was subjected to a SIRT1-targeted chemical investigation. This led to the isolation and structural elucidation of three previously undescribed compounds, a cadinene-type sesquiterpene (1) and two oxo-neolignan (2 and 5), along with four known compounds 3, 4, 6, and 7. Compounds (17) were evaluated for their ability to modulate p53-dependent transcriptional activity via SIRT1 activation using a luciferase reporter cell-based assay. SIRT1, a NAD+-dependent deacetylase, is a crucial regulator of longevity, metabolism, and cellular stress resistance, making it a key target for the treatment of age-related diseases. Compounds 27 exhibited significant SIRT1 activation, with compound 6 displaying particularly high efficacy, comparable to resveratrol, the most well-known natural SIRT1 activator. This study demonstrates that the discovery of novel chemical scaffolds through bioactivity-guided screening highlights the value of combining advanced metabolomics with pharmacological evaluation. The results support the traditional medicinal use of long pepper and its potential for development into functional foods or pharmaceuticals for healthy aging. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Graphical abstract

10 pages, 2474 KB  
Article
A New Species of Enicospilus Stephens, 1835 (Ichneumonidae, Ophioninae), from Southern Mexico, Parasitic on Zanola verago Cramer, 1777 (Lepidoptera, Apatelodidae), Feeding on Piper neesianum C. DC. (Piperaceae)
by Diego Fernando Campos-Moreno, Edgard Palacio, Luis Alberto Lara-Pérez, James B. Whitfield, Carmen Pozo and Lee A. Dyer
Diversity 2025, 17(7), 466; https://doi.org/10.3390/d17070466 - 3 Jul 2025
Viewed by 1817
Abstract
Plant–herbivore–parasitoid systems are poorly studied in the tropics. Enicospilus carmenae Campos and Palacio sp. nov. are described, originating from southern Mexico in the Yucatan Peninsula and establishing a new tri-trophic interaction. This species is a koinobiont larval endoparasitoid of the American silkworm moth [...] Read more.
Plant–herbivore–parasitoid systems are poorly studied in the tropics. Enicospilus carmenae Campos and Palacio sp. nov. are described, originating from southern Mexico in the Yucatan Peninsula and establishing a new tri-trophic interaction. This species is a koinobiont larval endoparasitoid of the American silkworm moth caterpillar Zanola verago (Cramer) (Lepidoptera: Apatelodidae) feeding on the shrub Piper neesianum C.DC. (Piperaceae) in a semi-evergreen forest. The host plant P. neesianum had no herbivore records to date, and a single collection event yielded the rearing of a new species of Enicospilus (Ichneumonidae, Ophioninae). Morphological, molecular (COI), biological, ecological, and geographical data are integrated to delineate the new species. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

11 pages, 1107 KB  
Article
Piplartine, a Bioactive Amide from Piper truncatum, Displays Potent Anthelmintic Activity Against the Zoonotic Nematode Angiostrongylus cantonensis
by Lucas Fukui-Silva, Sophia C. Spoladore, Bruna L. Lemes, Camila S. Amorim, Marina M. Gonçalves, João Henrique G. Lago and Josué de Moraes
Chemistry 2025, 7(4), 105; https://doi.org/10.3390/chemistry7040105 - 23 Jun 2025
Cited by 1 | Viewed by 1147
Abstract
Parasitic nematodes, such as the zoonotic rat lungworm Angiostrongylus cantonensis, pose a significant global health burden, with current anthelmintics like albendazole showing limited efficacy. Here, we report the isolation of piplartine from Piper truncatum Vell. (Piperaceae) and its potent in vitro activity [...] Read more.
Parasitic nematodes, such as the zoonotic rat lungworm Angiostrongylus cantonensis, pose a significant global health burden, with current anthelmintics like albendazole showing limited efficacy. Here, we report the isolation of piplartine from Piper truncatum Vell. (Piperaceae) and its potent in vitro activity against A. cantonensis larvae. Piplartine demonstrated superior efficacy to albendazole, with EC50 values of 8.3 µM for first-stage larvae (L1) and 10.4 µM for infective third-stage larvae (L3), compared to 14.2 µM (L1) and 15.6 µM (L3) for albendazole. Notably, piplartine exhibited no toxicity in the Caenorhabditis elegans model at therapeutic concentrations, underscoring its selective antiparasitic action. In silico profiling further revealed favorable drug-likeness and pharmacokinetic properties, including high gastrointestinal absorption and blood–brain barrier permeability, which are critical for targeting neurotropic infections. As the first study to characterize the activity of piplartine against A. cantonensis, our work highlights its potential as a structurally novel anthelmintic lead. Based on the obtained results, piplartine may be considered a promising and accessible candidate for combating angiostrongyliasis and related helminthic infections. Full article
(This article belongs to the Section Biological and Natural Products)
Show Figures

Figure 1

15 pages, 3325 KB  
Article
1H-NMR Guided Isolation of Bioactive Compounds from Species of the Genus Piper
by Celso R. Oliveira, Megan J. Burroughs, Lora A. Richards, Lee A. Dyer, Federico Urbano-Muñoz, Camryn Lee, Megan Warner, Craig D. Dodson, Ian S. Wallace and Christopher S. Jeffrey
Molecules 2025, 30(9), 2020; https://doi.org/10.3390/molecules30092020 - 30 Apr 2025
Cited by 1 | Viewed by 2911
Abstract
The discovery of bioactive natural products is often challenged by the complexity of isolating and characterizing active compounds within diverse mixtures. Previously, we introduced a 1H NMR-based weighted gene correlation network analysis (WGCNA) approach to identify spectral features linked to growth inhibitory [...] Read more.
The discovery of bioactive natural products is often challenged by the complexity of isolating and characterizing active compounds within diverse mixtures. Previously, we introduced a 1H NMR-based weighted gene correlation network analysis (WGCNA) approach to identify spectral features linked to growth inhibitory activity of Piper (Piperaceae) leaf extracts against model plant, fungal, and bacterial organisms. This method enabled us to prioritize specific spectral features linked to bioactivity, offering a targeted approach to natural product discovery. In this study, we validate the predictive capacity of the WGCNA by isolating the compounds responsible for the bioactivity-associated resonances and confirming their antifungal efficacy. Using growth inhibition assays, we verified that the isolated compounds, including three novel antifungal agents, exhibited significant bioactivity. Notably, one of these compounds contains a rare imidazolium heterocyclic motif, marking a new structural class in Piper. These findings substantiate the 1H NMR-based WGCNA as a reliable tool for identifying structural types associated with biological activity, streamlining the process of discovering bioactive natural products in complex extracts. Full article
Show Figures

Graphical abstract

11 pages, 932 KB  
Article
Piper aduncum Essential Oil: Toxicity to Sitophilus zeamais and Effects on the Quality of Corn Grains
by Weverton Peroni Santos, Lucas Martins Lopes, Gutierres Nelson Silva, Marcela Silva Carvalho and Adalberto Hipólito de Sousa
Processes 2025, 13(5), 1363; https://doi.org/10.3390/pr13051363 - 29 Apr 2025
Cited by 2 | Viewed by 744
Abstract
Stored product pests are controlled primarily through applying pyrethroid and organophosphate insecticides or through fumigation with phosphine (PH3). However, several populations of weevils are resistant to these insecticides. Essential oils appear to be safe alternatives for both humans and the environment. [...] Read more.
Stored product pests are controlled primarily through applying pyrethroid and organophosphate insecticides or through fumigation with phosphine (PH3). However, several populations of weevils are resistant to these insecticides. Essential oils appear to be safe alternatives for both humans and the environment. The objective was to investigate the toxicity of Piper aduncum essential oil (PAEO) to Sitophilus zeamais and evaluate its effects on corn grain quality during the four-month storage period. This study was conducted in two stages. In the first stage, the toxicity of PAEO at concentrations lethal to 50 and 95% of insects (LC50 and LC95) was estimated. The second step evaluated the degree of infestation, water content, apparent specific mass, loss of mass, electrical conductivity, and percentage of germination of grains at 0, 30, 60, 90, and 120 days after exposure to PAEO, deltamethrin (pyrethroid), and the control treatment. PAEO presents toxicity to S. zeamais. The LC50 and LC95 values are 298.50 µL kg−1 and 585.20 µL kg−1, respectively. The increases in infestation degree, water content, electric conductivity, and mass loss, as well as reductions in apparent specific mass and germination, show the loss of corn quality during the 120-day storage period, being more significant when no product is applied. PAEO delays the loss of quality of the grains, presenting a greater capacity to preserve the grains for a longer period. Full article
Show Figures

Figure 1

23 pages, 2527 KB  
Article
Bioassay-Guided Isolation of Piplartine from Piper purusanum Yunck (Piperaceae) and Evaluation of Its Toxicity Against Aedes aegypti Linnaeus, 1762, Anopheles darlingi Root, 1926 (Culicidae), and Non-Target Animals
by André Correa de Oliveira, Felipe Moura Araujo da Silva, Ingrity Suelen de Sá, Brenda Reis Coelho Leocadio, Suelen Costa Lima, Maria Luiza Lima da Costa, Rosemary Aparecida Roque and Rita de Cássia Saraiva Nunomura
Plants 2025, 14(5), 774; https://doi.org/10.3390/plants14050774 - 3 Mar 2025
Cited by 4 | Viewed by 1916
Abstract
Aedes aegypti and Anopheles darlingi are the primary vectors of dengue and malaria in Brazil. Natural products are currently regarded as promising alternatives for their control, offering environmentally friendly solutions for larval management due to their low toxicity to non-target organisms. Thus, Piplartine, [...] Read more.
Aedes aegypti and Anopheles darlingi are the primary vectors of dengue and malaria in Brazil. Natural products are currently regarded as promising alternatives for their control, offering environmentally friendly solutions for larval management due to their low toxicity to non-target organisms. Thus, Piplartine, isolated for the first time from Piper purusanum, exhibited larvicidal activity against Ae. aegypti and An. darlingi (LC50 of 14.56 and 26.44 μg/mL), occasioned by the overproduction of reactive oxygen and nitrogen species (66.67 ± 7% and 86.33 ± 6%). Furthermore, piplartine enhanced the activity of key detoxifying enzymes, including catalase (87.00 ± 9 and 94.67 ± 9 μmol of H2O2 consumed per minute per mg of protein), glutathione S-transferase (76.00 ± 1 and 134.00 ± 1 μmol/min/mg), mixed-function oxidase (26.67 ± 5 and 55.00 ± 1 nmol cti mg⁻¹ protein), α-esterase, and β-esterase (27.67 ± 7 to 46.33 ± 1 nmol cti mg⁻¹ protein). In contrast, piplartine inhibited acetylcholinesterase activity (43.33 ± 7 and 48.00 ± 2 μmol/min/mg) compared to the negative control DMSO (87.33 ± 1 and 146.30 ± 3 μmol/min/mg). It is important to highlight that piplartine showed no lethal effects on non-target aquatic insects, with 100% survival observed at a concentration of 264.4 μg/mL. In contrast, α-cypermethrin demonstrated acute and rapid toxicity to non-target organisms, with only 9.1% survival. These findings highlight piplartine as a promising larvicide with selective toxicity and low environmental impact, suitable for integrated larval management strategies. Full article
Show Figures

Figure 1

18 pages, 5939 KB  
Article
Peperomia campylotropa A.W. Hill: Ethnobotanical, Phytochemical, and Metabolomic Profile Related to Its Gastroprotective Activity
by Yazmín K. Márquez-Flores, Jesús Ayala-Velasco, José Correa-Basurto, Alan Estrada-Pérez and M. Estela Meléndez-Camargo
Molecules 2025, 30(4), 772; https://doi.org/10.3390/molecules30040772 - 7 Feb 2025
Cited by 1 | Viewed by 1237
Abstract
Peperomia campylotropa (Piperaceae) is a species with a traditional Mexican gastroprotective use that has never-before been studied using metabolomics. This study explores the ethnobotanical use of the species, aiming to define the gastroprotective effect of the aqueous extract and characterize its secondary metabolites [...] Read more.
Peperomia campylotropa (Piperaceae) is a species with a traditional Mexican gastroprotective use that has never-before been studied using metabolomics. This study explores the ethnobotanical use of the species, aiming to define the gastroprotective effect of the aqueous extract and characterize its secondary metabolites by UHPLC–MS analysis. To validate its use, we botanically identified the species re-collected in the Municipality of Buenavista de Cuéllar, Guerrero, Mexico. We conducted interviews to provide evidence of the traditional details of its consumption and knowledge. Subsequently, qualitative phytochemical tests were performed to elucidate the possible secondary metabolites, which were also characterized under UHPLC–MS analysis and analyzed according to their primary type and retention times. Indomethacin (IND)- and ethanol (EtOH)-induced gastric damage models in Wistar rats were used for pharmacological evaluation, considering the ulceration index and gastroprotection percentage. Along with the participation in the mechanism of action of nitric oxide (NO), sulfhydryl (-SH) groups and prostaglandins (PG) were elucidated by Wistar rats pretreated with N(ω)-nitro-L-arginine methyl ester (L-NAME), N-Ethylmaleimide (NEM), and IND, respectively. Acute intragastric toxicity was also estimated in NIH female mice. Ninety people were interviewed, revealing the traditional knowledge of P. campylotropa as food and medicine for stomach diseases, including irritation and indigestion. The presence of phenolic compounds (48%), N-containing compounds (22%), glycosides (21%), terpenoids (7%), and lactones (4%) were verified by preliminary phytochemical analysis and by UHPLC–MS in which 162 secondary metabolites were characterized. Besides that, the aqueous extract at 62.5, 125, and 250 mg/kg of body weight (b.w.) decreased the ulcerative index, showing gastroprotection percentages between 60 and 80%, similar to that of omeprazole. Furthermore, -SH group participation in its activity was established. All this evidence supports the gastroprotective activity of P. campylotropa for the first time and contributes to understanding its secondary metabolite content. Full article
Show Figures

Graphical abstract

31 pages, 5616 KB  
Review
Guineensine: Isolation, Synthesis, and Biological Activity
by Dimitris Matiadis, Eleni Kakouri, Eleftheria H. Kaparakou and Petros A. Tarantilis
Appl. Sci. 2025, 15(3), 1444; https://doi.org/10.3390/app15031444 - 30 Jan 2025
Cited by 1 | Viewed by 3807
Abstract
The genus Piper is the largest among plants of the Piperaceae family. Phytochemical studies on various piper species indicate the presence of bioactive compounds, with alkamides being among the most prominent. Piperine is well studied, and is usually found in abundance in most [...] Read more.
The genus Piper is the largest among plants of the Piperaceae family. Phytochemical studies on various piper species indicate the presence of bioactive compounds, with alkamides being among the most prominent. Piperine is well studied, and is usually found in abundance in most species. Guineensine is an alkamide that merits particular interest and, until now, has received less scientific attention. Therefore, in the present review, we discuss guineensine’s isolation, synthesis, and pharmacological activity. Data were collected from 1974 to 2024. Databases including PubMed, Google Scholar, and Science Direct were used to retrieved information using the following keywords: guineensine, isolation, synthesis, biological activity, alkamides, Piper spp., pepper, and SAR. Guineensine is obtained using various isolation methods. However, it yields low amounts; therefore, its synthesis is important. In addition, guineensine exerts many biological activities. Its potential is connected to its terminal benzodioxolyl and isobutyamide groups and to the length of its unsaturated carbon chain of twelve atoms. Findings of the studies presented in this review provide substantiation regarding the scientific interest in guineensine. Isolation procedures present advantages and disadvantages, and the methods of its synthesis are efficient. Its biological activity seems promising and further studies may lead to the development of new therapeutic agents. Full article
(This article belongs to the Special Issue Advances in Organic Synthetic Chemistry)
Show Figures

Graphical abstract

22 pages, 2293 KB  
Article
Novel Perspectives for Sensory Analysis Applied to Piperaceae and Aromatic Herbs: A Pilot Study
by Isabella Taglieri, Alessandro Tonacci, Guido Flamini, Pierina Díaz-Guerrero, Roberta Ascrizzi, Lorenzo Bachi, Giorgia Procissi, Lucia Billeci and Francesca Venturi
Foods 2025, 14(1), 110; https://doi.org/10.3390/foods14010110 - 3 Jan 2025
Cited by 5 | Viewed by 2676
Abstract
Spices and aromatic herbs are important components of everyday nutrition in several countries and cultures, thanks to their capability to enhance the flavor of many dishes and convey significant emotional contributions by themselves. Indeed, spices as well as aromatic herbs are to be [...] Read more.
Spices and aromatic herbs are important components of everyday nutrition in several countries and cultures, thanks to their capability to enhance the flavor of many dishes and convey significant emotional contributions by themselves. Indeed, spices as well as aromatic herbs are to be considered not only for their important values of antimicrobial agents or flavor enhancers everybody knows, but also, thanks to their olfactory and gustatory spectrum, as drivers to stimulate the consumers’ memories and, in a stronger way, emotions. Considering these unique characteristics, spices and aromatic herbs have caught the attention of consumer scientists and experts in sensory analysis for their evaluation using semi-quantitative approaches, with interesting evidence. In this pilot study as a first step, each studied botanical, belonging to Piperaceae or aromatic herbs, has been subjected to headspace solid phase micro-extraction (HS-SPME) coupled with gas-chromatography mass spectrometry (GC-MS) analysis to assess their spontaneous volatile emission, representing the complex chemical pattern, which encounters the consumers’ olfactory perception. Furthermore, the present investigation, performed on 12 individuals, outlines the administration of a pilot study, merging the typical sensory analysis with emotional data collection and the innovative contribution related to the study around the Autonomic and Central Nervous System activation in consumers, performed using wearable technologies and related signal processing. The results obtained by our study, beyond demonstrating the feasibility of the approach, confirmed, both in terms of emotional responses and biomedical signals, the significant emotional potential of spices and aromatic herbs, most of which featuring an overall positive valence, yet with inter-subjects’ variations. Future investigations should aim to increase the number of volunteers evaluated with such an approach to draw more stable conclusions and attempting a customization of product preferences based on both implicit and explicit sensory responses. Full article
(This article belongs to the Special Issue Feature Review on Food Nutrition)
Show Figures

Figure 1

11 pages, 265 KB  
Article
Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum
by Genesis Albarico, Klara Urbanova, Marketa Houdkova, Marlito Bande, Edgardo Tulin, Tersia Kokoskova and Ladislav Kokoska
Plants 2024, 13(24), 3555; https://doi.org/10.3390/plants13243555 - 20 Dec 2024
Cited by 1 | Viewed by 1983
Abstract
Many indigenous plants of the Philippines, including essential oil-bearing species, remain phytochemically and pharmacologically unexplored. In this study, the chemical composition of leaf essential oils (EOs) hydrodistilled from Litsea leytensis (Lauraceae) and Piper philippinum (Piperaceae) was determined using dual-column (HP-5MS/DB-WAX)/dual-detector gas chromatography and [...] Read more.
Many indigenous plants of the Philippines, including essential oil-bearing species, remain phytochemically and pharmacologically unexplored. In this study, the chemical composition of leaf essential oils (EOs) hydrodistilled from Litsea leytensis (Lauraceae) and Piper philippinum (Piperaceae) was determined using dual-column (HP-5MS/DB-WAX)/dual-detector gas chromatography and mass spectrometry analysis. Caryophyllene oxide (15.751/16.018%) was identified as the main compound in L. leytensis EO, followed by β-caryophyllene (11.130/11.430%) and α-copaene (9.039/9.221%). Ishwarane (25.937/25.280%), nerolidol (9.372/10.519%) and 3-ishwarone (6.916/2.588%) were the most abundant constituents of P. philippinum EO. Additionally, the in vitro growth-inhibitory activity of the EOs in the liquid and vapour phases against Staphylococcus aureus was evaluated using the broth microdilution volatilisation assay. Although the results showed no anti-staphylococcal effect, the presence of various bioactive compounds in both EOs suggests their potential future use in industrial applications. Full article
(This article belongs to the Special Issue Chemistry of Plant Natural Products)
12 pages, 280 KB  
Article
Insecticidal and Repellent Activity of Piper crassinervium Essential Oil and Its Pure Compounds Against Imported Fire Ants (Hymenoptera: Formicidae)
by Farhan Mahmood Shah, Mei Wang, Jianping Zhao, Joseph Lee, Paulo Vitor Farago, Jane Manfron, Ikhlas A. Khan and Abbas Ali
Molecules 2024, 29(22), 5430; https://doi.org/10.3390/molecules29225430 - 18 Nov 2024
Cited by 2 | Viewed by 2020
Abstract
Piper crassinervium Kunth (Piperaceae) essential oil (EO) was evaluated for its toxicity and repellency against red imported fire ants (RIFA), Solenopsis invicta Buren, and a hybrid (HIFA) of red (S. invicta) and black (S. richteri Forel) imported fire ants. Through bioactivity-guided [...] Read more.
Piper crassinervium Kunth (Piperaceae) essential oil (EO) was evaluated for its toxicity and repellency against red imported fire ants (RIFA), Solenopsis invicta Buren, and a hybrid (HIFA) of red (S. invicta) and black (S. richteri Forel) imported fire ants. Through bioactivity-guided fractionation, two major components, elemicin and myristicin, were isolated from the EO. Removal of treated sand in a digging bioassay was used as the criterion for repellency. The EO showed significantly higher repellency at concentrations of 7.8 µg/g against RIFA and HIFA workers, as compared to the DEET (N,N-diethyl-meta-toluamide) or ethanol control. Elemicin exhibited repellency at 3.9 and 7.8 µg/g against RIFA and HIFA workers, respectively, whereas myristicin was active at 7.8 µg/g against both species. DEET failed at 31.25 µg/g against RIFA and 15.6 µg/g against HIFA. The EO showed LC50 values of 97.9 and 73.7 µg/g against RIFA and HIFA workers, respectively. Myristicin was more toxic against RIFA and HIFA with LC50 values of 54.3 and 35.3 µg/g, respectively. Elemicin showed 20–40% mortality at the highest screening dose of 125 µg/g. Fipronil exhibited the highest toxicity against RIFA and HIFA, with LC50 of 0.43 and 0.51 µg/g, respectively. Different formulations of these natural products should be evaluated to explore their use potential under natural field conditions. Full article
13 pages, 4605 KB  
Article
Toxicity of Piper hispidinervum Essential Oil to Callosobruchus maculatus and Cowpea Bean Quality
by Maria Suely Siqueira Ferraz, Lêda Rita D’Antonino Faroni, Adalberto Hipólito de Sousa, Fernanda Fernandes Heleno, Marcus Vinicius de Assis Silva and Ernandes Rodrigues de Alencar
Plants 2024, 13(22), 3148; https://doi.org/10.3390/plants13223148 - 9 Nov 2024
Cited by 2 | Viewed by 1484
Abstract
Essential oils and their major compounds have been studied to protect stored grains, especially for the control of insects. In this context, this research aimed to investigate the fumigation and contact toxicities of the essential oil of Piper hispidinervum C. DC. (Piperaceae [...] Read more.
Essential oils and their major compounds have been studied to protect stored grains, especially for the control of insects. In this context, this research aimed to investigate the fumigation and contact toxicities of the essential oil of Piper hispidinervum C. DC. (Piperaceae) (sin. Piper hispidum Sw.) to Callosobruchus maculatus adult individuals and the effect on insect progeny. We also assessed the essential oil’s effect on stored-cowpea quality. The fumigation bioassay used essential oil at 14.3, 57.1, 100.0, 142.9, and 185.7 µL/L of air, whereas the contact bioassay tested concentrations of 60, 80, 100, 120, and 140 µL/kg. Insect mortality was appraised after four days (fumigation) or one day (contact). In turn, oviposition and emergence rates were evaluated after seven (fumigation) or fifty (contact) days of storage. Grain quality was also analyzed after 50 days of storage. Safrole was confirmed as the primary compound of the essential oil. P. hispidinervum essential oil proved its fumigant and contact toxicities to C. maculatus adult individuals. The concentrations lethal to 50 and 95% of the population were, respectively, 91.23 and 242.59 µL/L of air (fumigation) and 101.51 and 208.52 µL/kg of cowpeas (contact). In both application forms, C. maculatus oviposition and progeny rates declined with the increase in the essential oil concentration. Furthermore, cowpea bean quality was preserved even at sublethal doses. Full article
(This article belongs to the Special Issue Green Insect Control: The Potential Impact of Plant Essential Oils)
Show Figures

Figure 1

13 pages, 4507 KB  
Article
Chemotaxonomy of Southeast Asian Peperomia (Piperaceae) Using High-Performance Thin-Layer Chromatography Colour Scale Fingerprint Imaging and Gas Chromatography–Mass Spectrometry
by Yutthana Banchong, Theerachart Leepasert, Pakawat Jarupund, Trevor R. Hodkinson, Fabio Boylan and Chalermpol Suwanphakdee
Plants 2024, 13(19), 2751; https://doi.org/10.3390/plants13192751 - 30 Sep 2024
Cited by 2 | Viewed by 2129
Abstract
The morphological characters of Southeast Asia’s indigenous Peperomia species are very similar, especially in their flower structures. The flowers are simple, hermaphrodite and lack a perianth. Therefore, many species are hard to distinguish using morphological characters alone. Here, we apply chemometric data for [...] Read more.
The morphological characters of Southeast Asia’s indigenous Peperomia species are very similar, especially in their flower structures. The flowers are simple, hermaphrodite and lack a perianth. Therefore, many species are hard to distinguish using morphological characters alone. Here, we apply chemometric data for species identification and classification, gathered using multiwavelength detection combined with the colour scale High-Performance Thin-Layer Chromatography (HPTLC) fingerprinting procedure and chemical compounds determined by Gas Chromatography–Mass Spectrometry (GC-MS). Fourteen taxa were investigated using hexane, ethyl acetate and ethanol solvent extractions. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used with the colour scale fingerprints to classify the Peperomia species. The PCA and HCA using the chromatogram profile from hexane divided the taxa into six groups compared to the profile from ethyl acetate and ethanol, which each detected seven groups. The chromatogram from the combined dataset of all three solvents can differentiate all the species. The GC-MS data detected a total of 40 compounds from the hexane extract, and these differed among Peperomia species. This approach based on HPTLC fingerprinting and GC-MS analysis can therefore be used as a tool for authentication and identification studies of Peperomia species. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop