SIRT1 Activation by Lignans Identified via UPLC-qTOF-MS/MS-Based Metabolomic Profiling of Piper longum L. Fruit (Long Pepper)
Abstract
1. Introduction
2. Results and Discussion
2.1. Integration of UPLC-qTOF-MS/MS Profiling and Molecular Networking for Dereplication of Piper longum Fruit Extract
2.2. Structure Elucidation of the Previously Undescribed Compounds 1 and 2
2.3. SIRT1-Stimulatory Effects of Neolignans Isolated from Piper longum Fruit
2.4. Molecular Docking Simulation of Compound 6
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.3.1. 7-Hydroxyisocalmendiol (1)
3.3.2. Δ8′-l′,2′-Dihydro-3,4,3′,4′-bis-methylenedioxy-2′-oxo-8R,1S′-neolignan (2)
3.3.3. Isocymosalignan B (3)
3.4. ECD Calculations
3.5. SIRT 1 Deacetylation Assay with a Luciferase Reporter Cell-Based Assay
3.6. Western Blot Analysis
3.7. Molecular Docking Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miyakado, M.; Nakayama, I.; Yoshioka, H.; Nakatani, N. The Piperaceae amides I: Structure of pipercide, a new insecticidal amide from Piper nigrum L. Agric. Biol. Chem. 1979, 43, 1609–1611. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lee, S.G.; Lee, H.K.; Kim, M.K.; Lee, S.H.; Lee, H.S. A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J. Agric. Food Chem. 2002, 50, 3765–3767. [Google Scholar] [CrossRef]
- Orjala, J.; Wright, A.D.; Rali, T.; Sticher, O. Aduncamide, a cytotoxic and antibacterial beta-phenylethylamine-derived amide from Piper aduncum. Nat. Prod. Lett. 1993, 2, 231–236. [Google Scholar] [CrossRef]
- Evans, P.H.; Bowers, W.S.; Funk, E.J. Identification of fungicidal and nematocidal components in the leaves of Piper betle (Piperaceae). J. Agric. Food Chem. 1984, 32, 1254–1256. [Google Scholar] [CrossRef]
- Stöhr, J.R.; Xiao, P.-G.; Bauer, R. Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro. J. Ethnopharmacol. 2001, 75, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Matsuda, H.; Yamaguchi, I.; Pongpiriyadacha, Y.; Yoshikawa, M. New amides and gastroprotective constituents from the fruit of Piper chaba. Planta Medica 2004, 70, 152–159. [Google Scholar] [CrossRef]
- Lee, S.E.; Hwang, H.J.; Ha, J.-S.; Jeong, H.-S.; Kim, J.H. Screening of medicinal plant extracts for antioxidant activity. Life Sci. 2003, 73, 167–179. [Google Scholar] [CrossRef]
- Zhou, N.; Lin, X.; Dong, W.; Huang, W.; Jiang, W.; Lin, L.; Qiu, Q.; Zhang, X.; Shen, J.; Song, Z. SIRT1 alleviates senescence of degenerative human intervertebral disc cartilage endo-plate cells via the p53/p21 pathway. Sci. Rep. 2016, 6, 22628. [Google Scholar] [CrossRef]
- Csiszar, A.; Labinskyy, N.; Pinto, J.T.; Ballabh, P.; Zhang, H.; Losonczy, G.; Pearson, K.; de Cabo, R.; Pacher, P.; Zhang, C. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H13–H20. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Qu, D.H.; Wang, K. Therapeutic approaches to Alzheimer’s disease through stimulating of non-amyloidogenic processing of amyloid precursor protein. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2389–2403. [Google Scholar]
- Zhang, Y.; Anoopkumar-Dukie, S.; Arora, D.; Davey, A.K. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modulators on neurodegenerative diseases. Eur. J. Pharmacol. 2020, 867, 172847. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.-l.; Yang, X.-n.; Liu, X.-j. Resveratrol attenuates cigarette smoke extract induced cellular senescence in human airway epithelial cells by regulating the miR-34a/SIRT1/NF-κB pathway. Medicine 2022, 101, e31944. [Google Scholar] [CrossRef] [PubMed]
- Monceaux, K.; Gressette, M.; Karoui, A.; Pires Da Silva, J.; Piquereau, J.; Ventura-Clapier, R.; Garnier, A.; Mericskay, M.; Lemaire, C. Ferulic acid, pterostilbene, and tyrosol protect the heart from ER-stress-induced injury by activating SIRT1-dependent deacetylation of eIF2α. Int. J. Mol. Sci. 2022, 23, 6628. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sang, S. Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018, 44, 16–25. [Google Scholar] [CrossRef]
- Hu, T.; Lu, X.Y.; Shi, J.J.; Liu, X.Q.; Chen, Q.B.; Wang, Q.; Chen, Y.B.; Zhang, S.J. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J. Cell. Mol. Med. 2020, 24, 3449–3459. [Google Scholar] [CrossRef]
- Hajnajafi, K.; Iqbal, M.A. Mass-spectrometry based metabolomics: An overview of workflows, strategies, data analysis and applications. Proteome Sci. 2025, 23, 5. [Google Scholar] [CrossRef]
- Jin, Z.; Borjihan, G.; Zhao, R.; Sun, Z.; Hammond, G.B.; Uryu, T. Antihyperlipidemic compounds from the fruit of Piper longum L. Phytother. Res. 2009, 23, 1194–1196. [Google Scholar]
- Iwashita, M.; Oka, N.; Ohkubo, S.; Saito, M.; Nakahata, N. Piperlongumine, a constituent of Piper longum L., inhibits rabbit platelet aggregation as a thromboxane A2 receptor antagonist. Eur. J. Pharmacol. 2007, 570, 38–42. [Google Scholar] [CrossRef]
- Williams, J.R.; Callahan, J.F. Stereocontrolled synthesis of (+)-isocalamendiol via photocycloaddition. J. Org. Chem. 1980, 45, 4479–4483. [Google Scholar]
- Rakotondraibe, L.H.; Graupner, P.R.; Xiong, Q.; Olson, M.; Wiley, J.D.; Krai, P.; Brodie, P.J.; Callmander, M.W.; Rakotobe, E.; Ratovoson, F. Neolignans and other metabolites from Ocotea cymosa from the Madagascar rain forest and their biological activities. J. Nat. Prod. 2015, 78, 431–440. [Google Scholar] [CrossRef]
- Tang, G.-H.; Chen, Z.-W.; Lin, T.-T.; Tan, M.; Gao, X.-Y.; Bao, J.-M.; Cheng, Z.-B.; Sun, Z.-H.; Huang, G.; Yin, S. Neolignans from Aristolochia fordiana prevent oxidative stress-induced neuronal death through maintaining the Nrf2/HO-1 pathway in HT22 cells. J. Nat. Prod. 2015, 78, 1894–1903. [Google Scholar] [CrossRef]
- Xiao, C.-Y.; Sun, Z.-L.; Huang, J.; Li, R.-S.; He, J.-M.; Gibbons, S.; Ju, D.-W.; Mu, Q. Neolignans from Piper betle have synergistic activity against antibiotic-resistant Staphylococcus aureus. J. Org. Chem. 2021, 86, 11072–11085. [Google Scholar] [CrossRef]
- Yang, J.L.; Ha, T.K.Q.; Dhodary, B.; Kim, K.H.; Park, J.; Lee, C.H.; Kim, Y.C.; Oh, W.K. Dammarane triterpenes as potential SIRT1 activators from the leaves of Panax ginseng. J. Nat. Prod. 2014, 77, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Nikolaev, A.Y.; Imai, S.-i.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 2001, 107, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-Y.; Cho, M.; Seo, D.B.; Lee, S.J.; Suh, Y. Identification of a small molecule activator of SIRT1 gene expression. Aging 2013, 5, 174. [Google Scholar] [CrossRef]
- Biswas, P.; Ghorai, M.; Mishra, T.; Gopalakrishnan, A.V.; Roy, D.; Mane, A.B.; Mundhra, A.; Das, N.; Mohture, V.M.; Patil, M.T. Piper longum L.: A comprehensive review on traditional uses, phytochemistry, pharmacology, and health promoting activities. Phytother. Res. 2022, 36, 4425–4476. [Google Scholar] [CrossRef]
- Lai, H.; Wang, L.; Qian, R.; Huang, J.; Zhou, P.; Ye, G.; Wu, F.; Wu, F.; Zeng, X.; Liu, W. Interformer: An interaction-aware model for protein-ligand docking and affinity prediction. Nat. Commun. 2024, 15, 10223. [Google Scholar] [CrossRef]
- Agu, P.C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E.M.; Ofoke, I.H.; Ogbu, C.O.; Ugwuja, E.I.; Aja, P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023, 13, 13398. [Google Scholar] [CrossRef]
- Pescitelli, G.; Bruhn, T. Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 2016, 28, 466–474. [Google Scholar] [CrossRef]
1 | 2 | 5 | ||||||
---|---|---|---|---|---|---|---|---|
Position | δC, Type | δH (J in Hz) | Position | δC, Type | δH (J in Hz) | Position | δC, Type | δH (J in Hz) |
1 | 23.9, CH2 | 1.91, m 1.60, m | 1 | 135.9, C | - | 1 | 135.0, C | - |
2 | 35.9, CH2 | 2.40, dt (12.7, 4.1) 2.02, m | 2 | 110.3, CH | 6.66, d (1.4) | 2 | 114.1, CH | 6.65, d (1.9) |
3 | 146.6, C | - | 3 | 147.3, C | - | 3 | 148.9, C | - |
4 | 47.5, CH2 | 2.58, dd (13.5, 1.4) 2.00, dd (13.2, 0.7) | 4 | 149.1, C | - | 4 | 150.4, C | - |
5 | 79.0, C | - | 5 | 108.9, CH | 6.71, d (7.9) | 5 | 113.1, CH | 6.80, d (8.1) |
6 | 53.2, CH | 1.31, dd (4.3, 1.9) | 6 | 123.1, CH | 6.61, dd (7.9, 1.4) | 6 | 122.6, CH | 6.60, dd (8.1, 1.8) |
7 | 70.0, CH | 4.37, ddd (2.9, 2.2) | 7 | 37.8, CH2 | 2.97, d (10.3) 2.10, m | 7 | 37.6, CH2 | 2.46, m 2.04, dd (13.1, 11.1) |
8 | 50.8, CH2 | 2.11, dd (13.8, 3.5) 1.70, dd (13.8, 2.5) | 8 | 46.6, CH | 2.11, m | 8 | 46.4, CH | 2.31, m |
9 | 72.7, C | - | 9 | 14.5, CH3 | 0.62, d (6.1) | 9 | 14.6, CH3 | 0.86, d (6.9) |
10 | 56.1, CH | 1.54, dd (12.5, 2.4) | 10 | 102.1, CH2 | 5.89, s | 3-OMe | 56.6, CH3 | 3.79, s |
11 | 27.2, CH | 2.24, m | - | - | - | 4-OMe | 56.5, CH3 | 3.78, s |
12 | 24.3, CH3 | 1.06, d (6.8) | 1′ | 58.6, C | - | 1′ | 58.7, C | - |
13 | 20.5, CH3 | 1.21, d (7.0) | 2′ | 206.0, C | - | 2′ | 206.0, C | - |
14 | 26.4, CH3 | 1.30, s | 3′ | 100.6, CH | 5.59, s | 3′ | 100.6, CH | 5.65, s |
15 | 110.7, CH2 | 4.75, d (1.9) 4.66, d (1.6) | 4′ | 166.9, C | - | 4′ | 166.9, C | - |
5′ | 146.8, C | - | 5′ | 146.8, C | - | |||
6′ | 107.7, CH | 5.64, s | 6′ | 107.8, CH | 5.69, s | |||
7′ | 44.3, CH2 | 2.64, dd (13.0, 7.4) 2.57, dd (13.1, 7.1) | 7′ | 44.4, CH2 | 2.48, m | |||
8′ | 134.3, CH | 5.55, m | 8′ | 134.3, CH | 5.52, m | |||
9′ | 118.4, CH2 | 5.02, dd (17.0, 1.6) 4.94, dt (10.1, 0.9) | 9′ | 118.4, CH | 4.98, dd (17.0, 2.1) 4.93, dd (10.1, 2.1) | |||
10′ | 103.7, CH2 | 5.91, s | 10′ | 103.6, CH2 | 5.92, s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, V.-H.; Yang, J.-L.; Ha, T.-K.-Q.; Ponce-Zea, J.-E.; Le, M.T.T.; Lee, B.-W.; An, J.-P.; Oh, W.K. SIRT1 Activation by Lignans Identified via UPLC-qTOF-MS/MS-Based Metabolomic Profiling of Piper longum L. Fruit (Long Pepper). Plants 2025, 14, 3186. https://doi.org/10.3390/plants14203186
Mai V-H, Yang J-L, Ha T-K-Q, Ponce-Zea J-E, Le MTT, Lee B-W, An J-P, Oh WK. SIRT1 Activation by Lignans Identified via UPLC-qTOF-MS/MS-Based Metabolomic Profiling of Piper longum L. Fruit (Long Pepper). Plants. 2025; 14(20):3186. https://doi.org/10.3390/plants14203186
Chicago/Turabian StyleMai, Van-Hieu, Jun-Li Yang, Thi-Kim-Quy Ha, Jorge-Eduardo Ponce-Zea, Minh Thi Tuyet Le, Ba-Wool Lee, Jin-Pyo An, and Won Keun Oh. 2025. "SIRT1 Activation by Lignans Identified via UPLC-qTOF-MS/MS-Based Metabolomic Profiling of Piper longum L. Fruit (Long Pepper)" Plants 14, no. 20: 3186. https://doi.org/10.3390/plants14203186
APA StyleMai, V.-H., Yang, J.-L., Ha, T.-K.-Q., Ponce-Zea, J.-E., Le, M. T. T., Lee, B.-W., An, J.-P., & Oh, W. K. (2025). SIRT1 Activation by Lignans Identified via UPLC-qTOF-MS/MS-Based Metabolomic Profiling of Piper longum L. Fruit (Long Pepper). Plants, 14(20), 3186. https://doi.org/10.3390/plants14203186