Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Hydrodistillation
3.4. Bacterial Strain and Culture Media
3.5. Antimicrobial Assay
3.6. GC-MS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crops Prod. 2015, 7, 197–204. [Google Scholar] [CrossRef]
- Afshari, M.; Rahimmalek, M. Variation in essential oil composition, bioactive compounds, anatomical and antioxidant activity of Achillea aucheri, an endemic species of Iran, at different phenological stages. Chem. Biodivers. 2018, 15, e1800319. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Boer, E.; Ella, A.B. Plant Resources of Southeast Asia, No. 18: Plants Producing Exudates; Backhuys Publishers: Leiden, The Netherlands, 2000; pp. 55–60. [Google Scholar]
- Engay-Gutierrez, K.G.; Espaldon, M.V.O.; Tiburan, C.L., Jr.; Villanueva-Peyraube, J.D.; Macandog, D.M.; Sobremisana, M.J. Predicting species occurrence of Litsea leytensis Merr. in the provinces of Laguna and Quezon, Philippines. J. Environ. Sci. Manag. 2023, 26, 27–44. [Google Scholar] [CrossRef]
- Langenberger, G. Forest Vegetation Studies on the Foothills of Mt. Pangasugan, Leyte/The Philippines; Deutsche Gesellschaft für, Technische Zusammenarbeit: Eschborn, Germany, 2000; p. 54. [Google Scholar]
- Gardner, R. Piper (Piperaceae) in the Philippine islands: The climbing species. Blumea 2006, 51, 569–586. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, C.; Chen, I. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochem. 2007, 68, 2101–2111. [Google Scholar] [CrossRef] [PubMed]
- Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019, 26, 5501–5541. [Google Scholar] [CrossRef]
- William, E.W. Retention Indices by NIST Mass Spectrometry Data Center, WebBook Chemie. NIST Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 5 January 2021).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Danham, S.S.; Tabana, Y.M.; Iqbai, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Fidyt, K.; Fiedorowicz, A.; Strzadala, L.; Szumny, A. β-Caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef]
- Machado, K.D.; Islam, M.T.; Ali, E.S.; Rouf, R.; Uddin, S.J.; Dev, S.; Shilpi, J.A.; Shill, M.C.; Reza, H.M.; Das, A.K.; et al. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother. Res. 2018, 32, 2376–2388. [Google Scholar] [CrossRef] [PubMed]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine 2009, 17, 149–151. [Google Scholar] [CrossRef]
- Turkez, H.; Togar, B.; Tatar, A. Tricyclic sesquiterpene alpha-copaene prevents H2O2-induced neurotoxicity. J. Intercult. Ethnopharmacol. 2014, 3, 21–28. [Google Scholar] [CrossRef]
- Shelly, T.E. Exposure to α-copaene and α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae) (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2001, 9, 497–502. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Deyrup, M.A.; Wakarchuk, D. Improved lure for redbay ambrosia beetle developed by enrichment of alpha-copaene content. J. Pest Sci. 2016, 89, 427–438. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Ben Halima, N.; Abdelkafi, S.; Hamdi, N. Essential oil from Artemisia phaeolepis: Chemical composition and antimicrobial activities. J. Oleo Sci. 2013, 62, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Zheng, H.; Yang, S.P.; Qi, Y.G.; Li, W.; Kang, S.N.; Hu, H.; Hua, Q.; Wu, Y.K.; Liu, Z.J. Antimicrobial activity and mechanism of α-copaene against foodborne pathogenic bacteria and its application in beef soup. LWT—Food Sci. Technol. 2024, 195, 115848. [Google Scholar] [CrossRef]
- Nor Azah, M.A.; Susiarti, S. Litsea cubeba (Lour.) Persoon. In Plant Resources of Southeast Asia, No. 19: Essential-Oil Plants; Oyen, L.P.A., Dung, N.X., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1999; pp. 123–126. [Google Scholar]
- Azhar, M.A.M.; Salleh, W.M.N.H.W. Chemical composition and biological activities of essential oils of the genus Litsea (Lauraceae)—A review. Agric. Conspec. Sci. 2020, 85, 97–103. [Google Scholar]
- Chang, H.S.; Chen, I.S. Chemical constituents and bioactivity of Formosan lauraceous plants. J. Food Drug Anal. 2016, 24, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Bighelli, A.; Muselli, A.; Casanova, J.; Tam, N.T.; Van Anh, V.; Bessière, J.M. Chemical variability of Litsea cubeba leaf oil from Vietnam. J. Essent. Oil Res. 2005, 17, 86–88. [Google Scholar] [CrossRef]
- Qiu, Y.F.; Wang, Y.; Li, Y. Solvent-free microwave extraction of essential oils from Litsea cubeba (Lour.) Pers. at different harvesting times and their skin-whitening cosmetic potential. Antioxidants 2022, 11, 2389. [Google Scholar] [CrossRef] [PubMed]
- Dosoky, N.S.; Satyal, P.; Barata, L.M.; da Silva, J.K.R.; Setzer, W.N. Volatiles of black pepper fruits (Piper nigrum L.). Molecules 2019, 24, 4244. [Google Scholar] [CrossRef] [PubMed]
- Pino, O.; Sánchez, Y.; Rodríguez, H.; Correa, T.M.; Demedio, J.; Sanabria, J.L. Chemical characterization and acaricidal activity of the essential oil from Piper aduncum subsp. ossanum against Varroa destructor. Rev. Prot. Veg. 2011, 26, 52–61. [Google Scholar]
- da Silva, A.; Matias, E.; Rocha, J.; Araújo, A.; de Freitas, T.; Campina, F.; Costa, M.; Silva, L.; Amaral, W.; Maia, B.; et al. Gas chromatography coupled to mass spectrometry (GC-MS) characterization and evaluation of antibacterial bioactivities of the essential oils from Piper arboreum Aubl., Piper aduncum L. e Piper gaudichaudianum Kunth. Z. Naturforsch. C. 2021, 76, 35–42. [Google Scholar] [CrossRef]
- Parthasarathy, V.A.; Chempakam, B.; Zachariah, J.T. Chemistry of Spices; CAB International: London, UK, 2008. [Google Scholar] [CrossRef]
- Lapczynski, A.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on nerolidol (isomer unspecified). Food Chem. Toxicol. 2008, 46, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.F.; Júnior, J.G.d.A.; Honorato, R.d.L.; dos Santos, A.T.L.; da Silva, J.C.P.; Silva, D.V.D.; Leal, A.L.A.B.; de Freitas, T.S.; Vieira, T.A.T.; Rocha, J.E.; et al. Antifungal properties of nerolidol-containing liposomes in association with fluconazole. Membranes 2020, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Saito, A.Y.; Marin, R.A.A.; Menchaca, V.D.S.; Sussmann, R.A.C.; Kimura, E.A.; Katzin, A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents 2016, 48, 641–646. [Google Scholar] [CrossRef]
- Silva, M.P.; de Oliveira, R.N.; Mengarda, A.C.; Roquini, D.B.; Allegretti, M.S.; Salvadori, M.C.; Teixeira, F.S.; de Sousa, D.P.; Pinto, P.L.S.; da Silva Filho, A.A.; et al. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis. Int. J. Antimicrob. Agents 2017, 50, 467–472. [Google Scholar] [CrossRef]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, R.; Jayasinghe, S.; Ratnayake, B.M.; Andersen, R.J.; Karunaratne, V. Complete 2D NMR assignment and antifungal activity of ishwarane isolated from Hortonia, a genus endemic to Sri Lanka. J. Natl. Sci. Found. Sri Lanka 2008, 36, 109–112. [Google Scholar] [CrossRef]
- Vila, R.; Milo, B.; Tomi, F.; Casanova, J.; Ferro, E.A.; Canigueral, S. Chemical composition of the essential oil from the leaves of Piper fulvescens, a plant traditionally used in Paraguay. J. Ethnopharmacol. 2001, 76, 105–107. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.C.; Sá, I.S.C.; Mesquita, R.S.; Brenner, L.; Pereira, B.L.; Leandro, A.; Pocrifka, L.A.; de Souza, T.P.; Amado, J.R.R.; Azevedo, S.G.; et al. Nanoemulsion loaded with volatile oil from Piper alatipetiolatum as an alternative agent in the control of Aedes aegypti. Rev. Bras. Farmacogn. 2020, 30, 667–677. [Google Scholar] [CrossRef]
- Oyedeji, O.A.; Adeniyi, B.A.; Ajayi, O.; Konig, W.A. Essential oil composition of Piper guineense and its antimicrobial activity. Another chemotype from Nigeria. Phytother. Res. 2005, 19, 362–364. [Google Scholar] [CrossRef] [PubMed]
- Lago, J.H.G.; Oliveira, A.; Guimarães, E.F.; Kato, M. 3-Ishwarone and 3-ishwarol, rare sesquiterpenes oil from leaves of Peperomia oreophila Hensch. J. Braz. Chem. Soc. 2007, 18, 638–642. [Google Scholar] [CrossRef]
- Dos, S.; Junior, F.M.; Velozo, L.S.M.; De Carvalho, E.M.; Marques, A.M.; Borges, R.M.; Trindade, A.P.F.; Dos Santos, M.I.S.; De Albuquerque, A.C.F.; Costa, F.L.P.; et al. 3-Ishwarone, a rare ishwarane sesquiterpene from Peperomia scandens Ruiz & Pavon: Structural elucidation through a joint experimental and theoretical study. Molecules 2013, 18, 13520–13529. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Zhang, C.; Pan, S.Y.; Chen, L.; Liu, M.; Yang, K.L.; Zeng, X.B.; Tian, J. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT—Food Sci. Technol. 2020, 117, 108644. [Google Scholar] [CrossRef]
- Vihanova, K.; Urbanova, K.; Nguon, S.; Kokoska, L. Chemical composition of essential oils and supercritical carbon dioxide extracts from Amomum kravanh, Citrus hystrix and Piper nigrum ‘Kampot’. Molecules 2023, 28, 7748. [Google Scholar] [CrossRef]
- Vernin, G.A.; Parkanyi, C.; Cozzolino, F.; Fellous, R. GC/MS analysis of the volatile constituents of Corymbia citriodora Hook. from Reunion Island. J. Essent. Oil Res. 2004, 16, 560–565. [Google Scholar] [CrossRef]
- Council of Europe (EDQM). European Pharmacopoeia, 7th ed.; EDQM: Strasbourg, France, 2013. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 25th Informational Supplement M100-S25; CLSI: Wayne, PA, USA, 2015; pp. 158–163. [Google Scholar]
- Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia 2017, 118, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Frankova, A.; Vištejnova, L.; Merinas-Amo, T.; Leheckova, Z.; Doskocil, I.; Wong Soon, J.; Kudera, T.; Laupua, F.; Alonso-Moraga, A.; Kokoska, L. In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2021, 264, 113220. [Google Scholar] [CrossRef]
a RI | Compounds | b Cl. | c Content [%] | d,e Identification | ||
---|---|---|---|---|---|---|
Obs. | Lit. | HP-5MS | DB-WAX | HP-5MS | ||
929 | 939 | α-Pinene | MH | 0.234 ± 0.002 | 0.183 ± 0.035 | RI, MS, Std. |
944 | 943 | Camphene | MH | 0.022 ± 0.002 | - | RI, MS, Std |
972 | 980 | β-Pinene | MH | 0.090 ± 0.001 | 0.074 ± 0.011 | RI, MS, Std |
990 | 989 | 2-Amylfuran | O | 0.037 ± 0.000 | 0.022 ± 0.002 | RI, MS |
1022 | 1026 | β-Cymene | MH | 0.090 ± 0.003 | 0.077 ± 0.024 | RI, MS |
1026 | 1031 | D-Limonene | MH | 0.057 ± 0.001 | 0.043 ± 0.006 | RI, MS |
1028 | 1033 | Eucalyptol | OM | 0.247 ± 0.001 | 0.195 ± 0.014 | RI, MS |
1099 | 1098 | Linalool | OM | 0.120 ± 0.006 | 0.059 ± 0.036 | RI, MS, Std |
1103 | 1102 | Nonanal | A | 0.042 ± 0.003 | - | RI, MS |
1166 | 1166 | δ-Terpineol | OM | 0.024 ± 0.002 | - | RI, MS |
1176 | 1177 | Terpinen-4-ol | OM | 0.099 ± 0.002 | - | RI, MS |
1190 | 1189 | α-Terpineol | OM | 0.824 ± 0.027 | 0.738 ± 0.162 | RI, MS |
1228 | 1215 | Linalool formate | OM | 0.017 ± 0.001 | 0.017 ± 0.003 | RI, MS |
1308 | 1305 | Undecanal | A | 0.073 ± 0.007 | - | RI, MS |
1340 | 1341 | δ-EIemene | SH | 0.028 ± 0.001 | - | RI, MS |
1352 | 1351 | α-Cubebene | SH | 0.478 ± 0.000 | 0.349 ± 0.191 | RI, MS |
1368 | 1368 | Cyclosativene | SH | 0.220 ± 0.035 | - | RI, MS |
1381 | 1376 | α-Copaene | SH | 9.039 ± 0.137 | 9.221 ± 0.258 | RI, MS |
1386 | 1388 | Cedrene | SH | 0.039 ± 0.008 | - | RI, MS |
1394 | 1391 | β-Elemene | SH | 0.459 ± 0.001 | - | RI, MS |
1409 | 1398 | β-Longipinene | SH | 0.576 ± 0.012 | 0.283 ± 0.084 | RI, MS |
1412 | 1409 | α-Gurjunene | SH | 0.630 ± 0.020 | 0.102 ± 0.006 | RI, MS |
1426 | 1418 | β-Caryophyllene | SH | 11.130 ± 0.065 | 11.430 ± 0.334 | RI, MS, Std. |
1430 | 1429 | α-Ionone | OS | 0.179 ± 0.006 | 0.108 ± 0.012 | RI, MS |
1432 | 1432 | β-Gurjunene | SH | 0.218 ± 0.003 | 0.104 ± 0.004 | RI, MS |
1439 | 1442 | α-Maaliene | SH | 0.064 ± 0.001 | - | RI, MS |
1443 | 1439 | Aromandendrene | SH | 1.058 ± 0.035 | 0.686 ± 0.096 | RI, MS |
1447 | 1447 | Selina-5,11-diene | SH | 0.059 ± 0.023 | - | RI, MS |
1455 | 1455 | Geranyl acetone | OS | 2.144 ± 0.018 | 2.393 ± 0.101 | RI, MS |
1460 | 1455 | α-Caryophyllene | SH | 4.906 ± 0.084 | 4.299 ± 0.217 | RI, MS, Std. |
1466 | 1465 | Alloaromadendrene | SH | 1.453 ± 0.063 | 1.056 ± 0.038 | RI, MS |
1476 | 1477 | γ-Himachalene | SH | 0.143 ± 0.031 | - | RI, MS |
1480 | 1477 | γ-Muurolene | SH | 1.219 ± 0.033 | 1.028 ± 0.025 | RI, MS |
1488 | 1485 | β-Ionone | OS | 0.146 ± 0.032 | - | RI, MS |
1491 | 1485 | β-Eudesmene | SH | 0.935 ± 0.077 | 0.904 ± 0.031 | RI, MS |
1499 | 1489 | Ledene | SH | 1.361 ± 0.107 | - | RI, MS |
1503 | 1499 | α-Muurolene | SH | 0.743 ± 0.063 | 0.709 ± 0.046 | RI, MS |
1519 | 1513 | γ-Cadinene | SH | 0.871 ± 0.014 | - | RI, MS |
1522 | 1527 | Selina-3,7(11)-diene | SH | 0.121 ± 0.010 | - | RI, MS |
1529 | 1521 | (Z)-Calamenene | SH | 4.194 ± 0.072 | 3.298 ± 0.136 | RI, MS |
1544 | 1541 | α-Cadinene | SH | 0.345 ± 0.092 | - | RI, MS |
1556 | 1562 | Cadala-1(10),3,8-triene | SH | 0.441 ± 0.054 | - | RI, MS |
1568 | 1564 | Epiglobulol | OS | 0.963 ± 0.053 | 1.143 ± 0.639 | RI, MS |
1574 | 1574 | Palustrol | OS | 0.304 ± 0.076 | - | RI, MS |
1577 | 1574 | Ylangenol | OS | 0.770 ± 0.293 | - | RI, MS |
1590 | 1576 | Spathulenol | OS | 4.244 ± 0.151 | 3.267 ± 0.112 | RI, MS |
1595 | 1581 | Caryophyllene oxide | OS | 15.751 ± 0.064 | 16.018 ± 0.913 | RI, MS |
1597 | 1604 | 2a,3,4a,7a-Tetramethyl-2,2a,4a,5,6,7,7a,7b-octahydro-1H-cyclopenta[cd]inden-7-ol | OS | 1.753 ± 0.037 | - | RI, MS |
1601 | 1590 | Viridiflorol | OS | 1.314 ± 0.081 | - | RI, MS |
1613 | 1611 | Tetradecanal | A | 1.784 ± 0.053 | 1.610 ± 0.249 | RI, MS |
1620 | 1606 | Humulene epoxide 2 | OS | 4.240 ± 0.010 | 5.144 ± 0.347 | RI, MS |
1628 | 1616 | 10-epi-β-Eudesmol | OS | 0.139 ± 0.006 | 0.113 ± 0.061 | RI, MS |
1636 | 1627 | Epicubenol | OS | 0.826 ± 0.005 | 0.916 ± 0.350 | RI, MS |
1639 | NA | Longifolenaldehyde | OS | 2.432 ± 0.223 | 0.924 ± 0.143 | RI, MS |
1642 | 1631 | Caryophylla-4(12),8(13)-dien-5α-ol | OS | 2.458 ± 0.071 | - | RI, MS |
1650 | 1640 | α-epi-Cadinol | OS | 1.191 ± 0.052 | 0.329 ± 0.124 | RI, MS |
1653 | 1645 | δ-Cadinol | OS | 0.279 ± 0.018 | 0.173 ± 0.050 | RI, MS |
1676 | 1653 | 10-Hydroxycalamenene | OS | 0.376 ± 0.045 | 0.160 ± 0.047 | RI, MS |
1683 | 1674 | Cadalene | SH | 0.456 ± 0.044 | 0.212 ± 0.003 | RI, MS |
1687 | 1676 | Mustakone | OS | 0.441 ± 0.076 | - | RI, MS |
1727 | 1729 | Murolan-3,9(11)-diene-10-peroxy | SH | 1.305 ± 0.109 | 2.079 ± 0.448 | RI, MS |
1777 | 1772 | Pentadecan-1-ol | O | 0.617 ± 0.014 | - | RI, MS |
1817 | 1817 | Hexadecanal | A | 1.763 ± 0.033 | 2.249 ± 0.121 | RI, MS |
1844 | 1845 | Hexahydrofarnesyl acetone | OS | 0.373 ± 0.003 | - | RI, MS |
1892 | 1903 | Homosalate | E | 0.088 ± 0.012 | - | RI, MS |
1901 | 1906 | Heptadecan-2-one | K | 0.227 ± 0.016 | - | RI, MS |
1923 | 1922 | Farnesyl acetone | OS | 4.316 ± 0.072 | 4.879 ± 0.097 | RI, MS |
2112 | 2111 | Phytol | OS | 0.189 ± 0.006 | 0.337 ± 0.002 | RI, MS |
- | 1390 | 6-Ethyl-2-methyldecane | O | - | 0.022 ± 0.001 | - |
1532 | Cyperene | SH | - | 0.305 ± 0.022 | - | |
- | 1589 | Isocaryophyllene | SH | - | 0.136 ± 0.004 | - |
- | 1629 | Rotundene | SH | - | 0.091 ± 0.021 | - |
- | 1698 | Viridiflorene | SH | - | 0.514 ± 0.029 | - |
- | 1725 | α-Selinene | SH | - | 0.487 ± 0.029 | - |
- | 1718 | Heptadec-8-ene | SH | - | 0.095 ± 0.007 | - |
- | 1742 | δ-Cadinene | SH | - | 2.154 ± 0.089 | - |
- | 1814 | Tridecan-2-one | K | - | 0.017 ± 0.002 | - |
- | 1915 | γ-Dehydro-ar-himachalene | SH | - | 0.140 ± 0.003 | - |
- | 1921 | α-Calacorene | SH | - | 0.168 ± 0.051 | - |
- | NA | 5,5-Dimethyl-4-[(1E)-3-methyl-1,3-butadienyl]-1-oxaspiro[2.5]octane | O | - | 0.197 ± 0.052 | - |
- | 2043 | Ledol | OS | - | 0.142 ± 0.013 | - |
- | 2063 | Cubenol | OS | - | 0.917 ± 0.201 | - |
- | 2175 | τ-Cadinol | OS | - | 0.219 ± 0.010 | - |
- | NA | 3β,9β-Dihydroxy-3,5α,8-trimethyl tricyclo[6.3.1.0(1,5)] dodecane | O | - | 2.080 ± 0.102 | - |
- | NA | Diepicedrene-1-oxide | OS | - | 1.164 ± 0.029 | - |
- | NA | Undec-10-ynoic acid, tetradecyl ester | E | - | 0.841 ± 0.008 | - |
- | NA | 11,11-Dimethyl-4,8-dimethylenebicyclo[7.2.0]undecan-3-ol | OS | - | 1.499 ± 0.054 | - |
- | NA | Germacra-4(15),5,10(14)-trien-1β-ol | OS | - | 1.890 ± 0.061 | - |
- | NA | Retinal | D | - | 0.119 ± 0.021 | - |
Total identified [%] | 93.775 | 90.128 |
a RI | Compounds | b Cl. | c Content [%] | d,e Identification | ||
---|---|---|---|---|---|---|
Obs. | Lit. | HP-5MS | DB-WAX | HP-5MS | ||
929 | 939 | α-Pinene | MH | 0.068 ± 0.003 | 0.044 ± 0.002 | RI, MS, Std |
944 | 953 | Camphene | MH | 0.352 ± 0.013 | 0.256 ± 0.029 | RI, MS, Std |
1026 | 1031 | Limonene | MH | 0.048 ± 0.003 | 0.047 ± 0.005 | RI, MS |
1028 | 1033 | Eucalyptol | OM | 0.085 ± 0.014 | 0.057 ± 0.003 | RI, MS |
1099 | 1098 | Linalool | OM | 0.467 ± 0.026 | 0.518 ± 0.018 | RI, MS, Std |
1197 | 1195 | Estragole | OM | 1.232 ± 0.075 | 0.973 ± 0.009 | RI, MS |
1340 | 1339 | δ-EIemene | SH | 0.053 ± 0.005 | - | RI, MS |
1352 | 1351 | α-Cubebene | SH | 0.214 ± 0.009 | 0.131 ± 0.006 | RI, MS |
1374 | 1373 | Eugenol | OM | 4.662 ± 0.061 | 8.462 ± 0.117 | RI, MS |
1378 | 1376 | α-Copaene | SH | 1.979 ± 0.298 | 0.945 ± 0.028 | RI, MS |
1387 | 1384 | β-Bourbonene | SH | 0.273 ± 0.041 | 0.189 ± 0.024 | RI, MS |
1393 | 1391 | β-Elemene | SH | 1.079 ± 0.049 | - | RI, MS |
1405 | 1401 | Methyleugenol | OM | 0.331 ± 0.027 | 0.449 ± 0.032 | RI, MS |
1417 | 1415 | (Z)-α-Bergamotene | SH | 0.039 ± 0.007 | - | RI, MS |
1423 | 1418 | β-Caryophyllene | SH | 3.486 ± 0.185 | 4.367 ± 0.300 | RI, MS, Std |
1432 | 1432 | β-Copaene | SH | 0.364 ± 0.004 | 0.196 ± 0.018 | RI, MS |
1441 | 1440 | Aromadendrene | SH | 0.280 ± 0.008 | - | RI, MS |
1447 | 1447 | Selina-5,11-diene | SH | 0.609 ± 0.001 | 0.490 ± 0.047 | RI, MS |
1459 | 1454 | Humulene | SH | 1.649 ± 0.093 | 1.527 ± 0.034 | RI, MS |
1471 | 1467 | Ishwarane | SH | 25.937 ± 0.801 | 25.280 ± 0.450 | RI, MS |
1481 | 1477 | γ-Muurolene | SH | 4.591 ± 0.198 | 4.807 ± 0.079 | RI, MS |
1485 | 1480 | Germacrene D | SH | 0.564 ± 0.188 | 0.249 ± 0.224 | RI, MS |
1489 | 1487 | Aristolochene | SH | 1.604 ± 0.193 | 1.137 ± 0.011 | RI, MS |
1491 | 1485 | β-Eudesmene | SH | 1.400 ± 0.190 | 1.965 ± 0.033 | RI, MS |
1498 | 1491 | Valencene | SH | 3.363 ± 0.748 | - | RI, MS |
1499 | 1494 | α-Selinene | SH | 1.964 ± 0.084 | 3.414 ± 0.076 | RI, MS |
1503 | 1499 | α-Muurolene | SH | 0.452 ± 0.065 | 0.071 ± 0.015 | RI, MS |
1510 | 1503 | β-Bisabolene | SH | 0.094 ± 0.010 | - | RI, MS |
1518 | 1513 | γ-Cadinene | SH | 0.732 ± 0.018 | - | RI, MS |
1523 | 1522 | α-Maaliene | SH | 0.479 ± 0.017 | - | RI, MS |
1527 | 1524 | δ-Cadinene | SH | 2.614 ± 0.117 | 2.659 ± 0.171 | RI, MS |
1537 | 1535 | Cubenene | SH | 0.136 ± 0.014 | 0.107 ± 0.003 | RI, MS |
1542 | 1538 | α-Cadinene | SH | 0.134 ± 0.006 | - | RI, MS |
1548 | 1546 | α-Calacorene | SH | 0.226 ± 0.014 | 0.142 ± 0.022 | RI, MS |
1568 | 1565 | Nerolidol | OS | 9.372 ± 0.680 | 10.519 ± 0.195 | RI, MS |
1584 | 1576 | Spathulenol | OS | 0.461 ± 0.030 | 0.473 ± 0.008 | RI, MS |
1590 | 1581 | Caryophyllene oxide | OS | 0.956 ± 0.044 | 0.722 ± 0.074 | RI, MS |
1617 | 1606 | Humulene epoxide 2 | OS | 0.365 ± 0.014 | 0.296 ± 0.026 | RI, MS |
1621 | 1630 | α-Acorenol | OS | 0.146 ± 0.006 | - | RI, MS |
1635 | 1642 | Cubenol | OS | 0.462 ± 0.009 | 0.238 ± 0.081 | RI, MS |
1644 | 1644 | 10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5-ol | OS | 0.114 ± 0.012 | - | RI, MS |
1649 | 1640 | α-epi-Muurolol | OS | 0.325 ± 0.055 | - | RI, MS |
1653 | 1645 | δ-Cadinol | OS | 0.259 ± 0.050 | 0.110 ± 0.021 | RI, MS |
1663 | 1662 | Neointermedeol | OS | 0.815 ± 0.084 | - | RI, MS |
1668 | 1669 | Intermedeol | OS | 0.565 ± 0.058 | 0.646 ± 0.019 | RI, MS |
1682 | 1685 | Eudesma-4(15),7-dien-1β -ol | OS | 1.141 ± 0.092 | 1.516 ± 0.082 | RI, MS |
1690 | 1680 | Germacra-4(15),5,10(14)-trien-1α-ol | OS | 0.518 ± 0.009 | 0.318 ± 0.054 | RI, MS |
1691 | 1680 | 3-Ishwarone | OS | 6.916 ± 0.142 | 2.588 ± 0.141 | RI, MS |
1769 | 1763 | Aristolone | OS | 0.127 ± 0.009 | - | RI, MS |
1776 | 1778 | β-Cosol | OS | 2.677 ± 0.060 | 2.945 ± 0.104 | RI, MS |
1804 | 1805 | τ-Cadinol acetate | E/OS | 0.128 ± 0.011 | 0.119 ± 0.003 | RI, MS |
1814 | 1831 | Valerenyl acetate | E/OS | 0.720 ± 0.043 | 0.433 ± 0.004 | RI, MS |
2112 | 2111 | Phytol | OD | 0.731 ± 0.069 | 1.067 ± 0.015 | RI, MS |
2217 | 2218 | Phytol, acetate | E/OD | 0.164 ± 0.010 | - | RI, MS |
- | 1488 | Ylangene | SH | - | 0.197 ± 0.001 | - |
- | 1603 | α-Guaiene | SH | - | 0.163 ± 0.034 | - |
- | 1832 | Cadina-1,3,5-triene | SH | - | 0.549 ± 0.037 | - |
- | 1895 | Epicubebol | OS | - | 0.106 ± 0.004 | - |
- | 1924 | Tetradecanal | A | - | 0.072 ± 0.005 | - |
- | NA | β-Cyperone | OS | - | 3.352 ± 0.057 | - |
- | 2104 | Globulol | OS | - | 0.635 ± 0.057 | - |
- | 2299 | Aromadendrenepoxide | OS | - | 0.112 ± 0.015 | - |
- | 2910 | Hexadecanoic acid | FA | - | 3.391 ± 0.063 | - |
Total identified [%] | 88.524 | 89.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albarico, G.; Urbanova, K.; Houdkova, M.; Bande, M.; Tulin, E.; Kokoskova, T.; Kokoska, L. Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum. Plants 2024, 13, 3555. https://doi.org/10.3390/plants13243555
Albarico G, Urbanova K, Houdkova M, Bande M, Tulin E, Kokoskova T, Kokoska L. Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum. Plants. 2024; 13(24):3555. https://doi.org/10.3390/plants13243555
Chicago/Turabian StyleAlbarico, Genesis, Klara Urbanova, Marketa Houdkova, Marlito Bande, Edgardo Tulin, Tersia Kokoskova, and Ladislav Kokoska. 2024. "Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum" Plants 13, no. 24: 3555. https://doi.org/10.3390/plants13243555
APA StyleAlbarico, G., Urbanova, K., Houdkova, M., Bande, M., Tulin, E., Kokoskova, T., & Kokoska, L. (2024). Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum. Plants, 13(24), 3555. https://doi.org/10.3390/plants13243555