Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (636)

Search Parameters:
Keywords = pipe stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5201 KiB  
Article
Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
by Yanming Yao, Junhong Zhou, Mansheng Tan, Mingjie Jia and Honggui Di
Buildings 2025, 15(15), 2762; https://doi.org/10.3390/buildings15152762 - 5 Aug 2025
Abstract
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of [...] Read more.
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of existing stations, especially in soft soil conditions where construction-induced settlement poses significant risks to structural integrity. This study systematically investigates the influence mechanisms of different construction schemes on base plate deformation when an open-top UBIT (underground bundle composite pipe integrated by transverse pre-stressing) underpasses existing stations. Through precise numerical simulation using PLAXIS 3D, the research comparatively analyzed the effects of 12 pipe jacking sequences, 3 pre-stress levels (1116 MPa, 1395 MPa, 1674 MPa), and 3 soil chamber excavation schemes, revealing the mechanisms between the deformation evolution and soil unloading effects. The continuous jacking strategy of adjacent pipes forms an efficient support structure, limiting maximum settlement to 5.2 mm. Medium pre-stress level (1395 MPa) produces a balanced deformation pattern that optimizes structural performance, while excavating side chambers before the central chamber effectively utilizes soil unloading effects, achieving controlled settlement distribution with maximum values of −7.2 mm. The optimal construction combination demonstrates effective deformation control, ensuring the operational safety of existing station structures. These findings enable safer and more efficient urban underpassing construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3995 KiB  
Article
Nonlinear Vibration and Post-Buckling Behaviors of Metal and FGM Pipes Transporting Heavy Crude Oil
by Kamran Foroutan, Farshid Torabi and Arth Pradeep Patel
Appl. Sci. 2025, 15(15), 8515; https://doi.org/10.3390/app15158515 (registering DOI) - 31 Jul 2025
Viewed by 84
Abstract
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing [...] Read more.
Functionally graded materials (FGMs) have the potential to revolutionize the oil and gas transportation sector, due to their increased strengths and efficiencies as pipelines. Conventional pipelines frequently face serious problems such as extreme weather, pressure changes, corrosion, and stress-induced pipe bursts. By analyzing the mechanical and thermal performance of FGM-based pipes under various operating conditions, this study investigates the possibility of using them as a more reliable substitute. In the current study, the post-buckling and nonlinear vibration behaviors of pipes composed of FGMs transporting heavy crude oil were examined using a Timoshenko beam framework. The material properties of the FGM pipe were observed to change gradually across the thickness, following a power-law distribution, and were influenced by temperature variations. In this regard, two types of FGM pipes are considered: one with a metal-rich inner surface and ceramic-rich outer surface, and the other with a reverse configuration featuring metal on the outside and ceramic on the inside. The nonlinear governing equations (NGEs) describing the system’s nonlinear dynamic response were formulated by considering nonlinear strain terms through the von Kármán assumptions and employing Hamilton’s principle. These equations were then discretized using Galerkin’s method to facilitate the analytical investigation. The Runge–Kutta method was employed to address the nonlinear vibration problem. It is concluded that, compared with pipelines made from conventional materials, those constructed with FGMs exhibit enhanced thermal resistance and improved mechanical strength. Full article
Show Figures

Figure 1

23 pages, 16311 KiB  
Article
Stratum Responses and Disaster Mitigation Strategies During Pressurized Pipe Bursts: Role of Geotextile Reinforcement
by Zhongjie Hao, Hui Chao, Yong Tan, Ziye Wang, Zekun Su and Xuecong Li
Buildings 2025, 15(15), 2696; https://doi.org/10.3390/buildings15152696 - 30 Jul 2025
Viewed by 169
Abstract
Urban subsurface pipeline bursts can induce catastrophic cascading effects, including ground collapse, infrastructure failure, and socioeconomic losses. However, stratum responses during the erosion cavity expansion phase and corresponding disaster mitigation strategies have rarely been researched. In this study, a numerical model validated through [...] Read more.
Urban subsurface pipeline bursts can induce catastrophic cascading effects, including ground collapse, infrastructure failure, and socioeconomic losses. However, stratum responses during the erosion cavity expansion phase and corresponding disaster mitigation strategies have rarely been researched. In this study, a numerical model validated through experimental tests was employed to investigate the effects of internal water pressures, burial depths, and different geotextile-based disaster mitigation strategies. It was revealed that a burial depth-dependent critical internal water pressure governed the erosion cavity expansion, and a predictive equation was derived based on the limit equilibrium theory. Higher internal water pressure accelerated the erosion cavity expansion and amplified the stratum stress within a range of twice the diameter D. Increased burial depth d reduced peak ground heave but linearly expanded the heave zone range, concurrently elevating the overall stratum stress level and generating larger stress reduction zones (i.e., when d/D = 3.0, the range of the stress reduction zone was 8.0D). All geotextile layout configurations exhibited different disaster mitigation effects (the peak ground heave was reduced by at least 15%). The semi-circular closely fitted configuration (SCCF) optimally restricted the expansion of the erosion cavity, reduced the stratum displacement (i.e., 39% reduction in the peak ground heave), and avoided stress concentration. Comprehensive analysis indicated that SCCF was suited for low-pressure pipelines in deformation-sensitive stratum and semi-circular configuration (SC) was suitable for deformation-insensitive pipeline sections. These findings provide actionable insights for tailoring mitigation strategies to specific operational risks. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 527
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

19 pages, 6699 KiB  
Article
Research on Peak Characteristics of Turbulent Flow in Horizontal Annuli with Varying Curvatures Based on Numerical Simulation
by Panliang Liu, Yanchao Sun, Jinxiang Wang and Guohua Chang
Symmetry 2025, 17(7), 1167; https://doi.org/10.3390/sym17071167 - 21 Jul 2025
Viewed by 204
Abstract
Annular flow is a common flow configuration encountered in fields such as food engineering, energy and power engineering, and petroleum engineering. The annular space formed by the inner and outer pipes exhibits unique characteristics, with the distinct curvatures of the inner and outer [...] Read more.
Annular flow is a common flow configuration encountered in fields such as food engineering, energy and power engineering, and petroleum engineering. The annular space formed by the inner and outer pipes exhibits unique characteristics, with the distinct curvatures of the inner and outer pipes rendering the annulus fundamentally different from a circular pipe. The complexity of the annular structure complicates the rapid calculation of turbulent statistics in engineering practice, as modeling these statistics necessitates a comprehensive understanding of their peak characteristics. However, current research lacks a thorough understanding of the peak characteristics of turbulent flows in annuli with varying diameter ratios (the ratio of the inner tube’s diameter to the outer tube’s diameter) between the inner and outer pipes. To gain a deeper insight into the turbulent peak characteristics within annular flows, this study employs numerical simulation methods to investigate the first- and second-order turbulent statistics under different diameter ratios resulting from varying curvatures of the inner and outer pipes. These statistics encompass velocity distribution, the position and magnitude of maximum velocity, turbulence intensity, turbulent kinetic energy, and Reynolds stress. The research findings indicate that the contour plots of velocity, turbulence intensity, and turbulent kinetic energy distributions under different diameter ratio conditions exhibit central symmetry. The peaks of the first-order statistical quantities are located in the mainstream region of the annulus, and their positions gradually shift closer to the center of the annulus as the diameter ratio increases. For the second-order statistical quantities, peaks are observed near both the inner and outer walls, and their positions move closer to the walls as the diameter ratio rises. The peak values of turbulent characteristics show significant variations across different diameter ratios. Both the inner and outer wall surfaces exhibit peaks in their second-order statistical quantities. For instance, the maximum value of Reynolds stress near the inner tube is 101.4% of that near the outer tube, and the distance from the wall where the maximum Reynolds stress occurs near the inner tube is 97.2% of the corresponding distance near the outer tube. This study is of great significance for optimizing the diameter combination of the inner and outer pipes in annular configurations and for evaluating turbulent statistics. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

17 pages, 4948 KiB  
Article
Plane-Stress Measurement in Anisotropic Pipe Walls Using an Improved Tri-Directional LCR Ultrasonic Method
by Yukun Li, Longsheng Wang, Fan Fei, Dongying Wang, Zhangna Xue, Xin Liu and Xinyu Sun
Sensors 2025, 25(14), 4371; https://doi.org/10.3390/s25144371 - 12 Jul 2025
Viewed by 373
Abstract
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted [...] Read more.
It is important to accurately characterize the plane-stress state of pipe walls for evaluating the bearing capacity of the pipe and ensuring the structural safety. This paper describes a novel ultrasonic technique for evaluating anisotropic pipe-wall plane stresses using three-directional longitudinal critical refracted (LCR) wave time-of-flight (TOF) measurements. The connection between plane stress and ultrasonic TOF is confirmed by examining how the anisotropy of rolled steel plates affects the speed of ultrasonic wave propagation, which is a finding not previously documented in spiral-welded pipes. Then based on this relationship, an ultrasonic stress coefficient calibration experiment for spiral-welded pipes is designed. The results show that the principal stress obtained by the ultrasonic method is closer to the engineering stress than that obtained from the coercivity method. And, as a nondestructive testing technique, the ultrasonic method is more suitable for in-service pipelines. It also elucidates the effects of probe pressure and steel plate surface roughness on the ultrasonic TOF, obtains a threshold for probe pressure, and reveals a linear relationship between roughness and TOF. This study provides a feasible technique for nondestructive measurement of plane stress in anisotropic spiral-welded pipelines, which has potential application prospects in the health monitoring of in-service pipelines. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 2057 KiB  
Article
Corrected Correlation for Turbulent Convective Heat Transfer in Concentric Annular Pipes
by Jinping Xu, Zhiyun Wang and Mo Yang
Energies 2025, 18(14), 3643; https://doi.org/10.3390/en18143643 - 9 Jul 2025
Viewed by 296
Abstract
This paper addresses the errors that arise when calculating the convective heat transfer in concentric annular pipes by using the equivalent diameter and turbulent heat transfer formula for circular pipes. This approach employs numerical simulations to solve the Reynolds-averaged Navier–Stokes equations and uses [...] Read more.
This paper addresses the errors that arise when calculating the convective heat transfer in concentric annular pipes by using the equivalent diameter and turbulent heat transfer formula for circular pipes. This approach employs numerical simulations to solve the Reynolds-averaged Navier–Stokes equations and uses the realizable k–ε turbulence model and a low Reynolds number model near a wall. This study conducts numerical simulations of turbulent convective heat transfer within a concentric annular pipe. The results show that the shear stress on the inner wall surface of the concentric annular pipe and the heat transfer Nusselt number are significantly higher than those on the outer wall surface. At the same Reynolds number, both the entrance length and the peak velocity increase upon increasing the inner-to-outer diameter ratio. A correction factor for the inner-to-outer diameter ratio is proposed to achieve differentiated and accurate predictions for the inner and outer wall surfaces. The results clearly demonstrate the effect of the inner-to-outer diameter ratio on heat transfer. Full article
Show Figures

Figure 1

20 pages, 4012 KiB  
Article
Optimization Design Method of Pipe-Insulating Joints Based on Surrogate Model and Genetic Algorithm
by Chen Guo, Zheng Yang, Jianbo Dong, Yanchao Yue, Linjun Tian and Ping Ma
Appl. Sci. 2025, 15(13), 7601; https://doi.org/10.3390/app15137601 - 7 Jul 2025
Viewed by 322
Abstract
Pipe-insulating joints are common cathodic protection devices in long-distance oil and gas pipeline infrastructures. To ensure safety, they are often designed too conservatively, resulting in large dimensions, high self-weight, and substantial costs. This study analyzed an insulating joint under the most unfavorable conditions [...] Read more.
Pipe-insulating joints are common cathodic protection devices in long-distance oil and gas pipeline infrastructures. To ensure safety, they are often designed too conservatively, resulting in large dimensions, high self-weight, and substantial costs. This study analyzed an insulating joint under the most unfavorable conditions to identify the component of the maximum stress in the insulating joint, which is the right flange. Then, using parameterized finite element calculations, five independent dimensions of the right flange were combined and arranged to obtain a dataset of the right flange dimensions and their maximum stress. Subsequently, four different fitting algorithms were trained with this dataset, and the ridge regression algorithm, which showed the best predictive performance, was used to establish a surrogate model for calculating the maximum stress of the right flange. Finally, the surrogate model was combined with a genetic algorithm to determine the optimal design dimensions of the right flange. This study also provides examples verifying the accuracy and reliability of the surrogate model and genetic algorithm. In these examples, the maximum stress under the design dimensions given by the optimization algorithm has a maximum error of 8.98% and an average error of 4.63% compared to the preset maximum stress target, while the stress predicted by the surrogate model has a maximum error of 9.65% and an average error of 5.33% compared to the actual stress. This improves the computational efficiency of the optimization algorithm by establishing a surrogate model, which can be used to optimize the dimensions of insulation joints. Full article
Show Figures

Figure 1

26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 283
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

7 pages, 581 KiB  
Proceeding Paper
Non-Linear Investigation of a Functionally Graded Pipe
by Victor Rizov
Eng. Proc. 2025, 100(1), 4; https://doi.org/10.3390/engproc2025100004 - 30 Jun 2025
Viewed by 182
Abstract
A pipe subjected to an evenly distributed internal pressure is investigated in this theoretical paper. The pipe has a thin wall that is built-up by a functionally graded engineering material. The circumferential stresses and strains in the pipe wall are investigated. In essence, [...] Read more.
A pipe subjected to an evenly distributed internal pressure is investigated in this theoretical paper. The pipe has a thin wall that is built-up by a functionally graded engineering material. The circumferential stresses and strains in the pipe wall are investigated. In essence, the current investigation is non-linear since the wall behaves as a non-linear elastic body with non-linearly distributed properties through the wall thickness. The different stages of the work of the wall are investigated and the corresponding parameters of stressed and strained state are derived. The dependence of the pressure on the material and geometrical parameters are studied. Full article
Show Figures

Figure 1

20 pages, 1845 KiB  
Article
Meta-Transcriptomic Response to Copper Corrosion in Drinking Water Biofilms
by Jingrang Lu, Ian Struewing and Nicholas J. Ashbolt
Microorganisms 2025, 13(7), 1528; https://doi.org/10.3390/microorganisms13071528 - 30 Jun 2025
Viewed by 460
Abstract
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe [...] Read more.
Drinking water biofilm ecosystems harbor complex and dynamic prokaryotic and eukaryotic microbial communities. However, little is known about the impact of copper corrosion on microbial community functions in metabolisms and resistance. This study was conducted to evaluate the impact of upstream Cu pipe materials on downstream viable community structures, pathogen populations, and metatranscriptomic responses of the microbial communities in drinking water biofilms. Randomly transcribed cDNA was generated and sequenced from downstream biofilm samples of either unplasticized polyvinylchloride (PVC) or Cu coupons. Diverse viable microbial organisms with enriched pathogen-like organisms and opportunistic pathogens were active in those biofilm samples. Cu-influenced tubing biofilms had a greater upregulation of genes associated with potassium (K) metabolic pathways (i.e., K-homeostasis, K-transporting ATPase, and transcriptional attenuator), and a major component of the cell wall of mycobacteria (mycolic acids) compared to tubing biofilms downstream of PVC. Other upregulated genes on Cu influenced biofilms included those associated with stress responses (various oxidative resistance genes), biofilm formation, and resistance to toxic compounds. Downregulated genes included those associated with membrane proteins responsible for ion interactions with potassium; respiration–electron-donating reactions; RNA metabolism in eukaryotes; nitrogen metabolism; virulence, disease, and defense; and antibiotic resistance genes. When combined with our previous identification of biofilm community differences, our studies reveal how microbial biofilms adapt to Cu plumbing conditions by fine-tuning gene expression, altering metabolic pathways, and optimizing their structural organization. This study offers new insights into how copper pipe materials affect the development and composition of biofilms in premise plumbing. Specifically, it highlights copper’s role in inhibiting the growth of many microbes while also contributing to the resistance of some microbes within the drinking water biofilm community. Full article
Show Figures

Graphical abstract

16 pages, 5503 KiB  
Article
Bending Stress and Deformation Characteristics of Gas Pipelines in Mountainous Terrain Under the Influence of Subsidence
by Guozhen Zhao, Jiadong Li and Haoyan Liang
Energies 2025, 18(13), 3323; https://doi.org/10.3390/en18133323 - 24 Jun 2025
Viewed by 361
Abstract
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as [...] Read more.
Aiming at the problem that the surface subsidence caused by coal mining in mountainous areas will pose a potential threat to the safe operation of gas pipelines in goaf subsidence areas, taking the geological conditions of Mugua Coal Mine in Shanxi Province as the research background, through the combination of similar simulation and finite element simulation, the deformation and stress characteristics of gas pipelines affected by subsidence in mountainous terrain are analyzed, and the failure law of gas pipelines in different terrains of the coal mining area is revealed. The results demonstrate that topographic stress convergence creates a maximum compression zone at the valley base of the central subsidence basin, causing significant pipeline depression. Hillslope areas primarily experience tension from soil slippage, while slope–valley transition zones exhibit a high-risk shear–tension coupling. Analysis via the pipe–soil interaction model reveals concentrated mid-subsidence pipeline stresses with subsequent relaxation through redistribution. Accordingly, the following zoned protection strategy is proposed: enhanced compression monitoring in valley segments, tensile reinforcement for slope sections, and prioritized shear prevention in transition zones. The research provides a theoretical basis for the safe operation and maintenance of gas pipeline networks in mountainous areas. Full article
Show Figures

Figure 1

18 pages, 3371 KiB  
Article
Evaluating Parameter Value Identification Methods for Modeling of Nonlinear Stress Relaxation in Polyethylene
by Furui Shi and P.-Y. Ben Jar
Materials 2025, 18(13), 2960; https://doi.org/10.3390/ma18132960 - 23 Jun 2025
Viewed by 261
Abstract
Viscous properties play a major role in the time-dependent deformation behavior of polymers and have long been characterized using spring-dashpot models. However, such models face a bottleneck of having multiple sets of model parameter values that can all be used to simulate the [...] Read more.
Viscous properties play a major role in the time-dependent deformation behavior of polymers and have long been characterized using spring-dashpot models. However, such models face a bottleneck of having multiple sets of model parameter values that can all be used to simulate the same deformation behavior. As a result, these model parameters have not been widely used to quantify the viscous properties. In this study, a newly developed multi-relaxation-recovery test was used to obtain the variation in stress response to deformation of polyethylene (PE) and its pipes during relaxation, revealing the complexity of PE’s nonlinear viscous stress response to deformation. Using a three-branch spring-dashpot model with two Eyring’s dashpots, this study shows the possibility of determining the model parameter values using four different analysis methods, namely, the mode method, peak-point method, highest-frequency method, and best-five-fits method. Model parameter values from these methods are compared and discussed in this paper, to reach the conclusion that the best-five-fits method provides the most reliable and relatively unique set of model parameter values for characterizing the mechanical performance of PE and its pipes. The best-five-fits method is expected to enable the use of the model parameters to quantify PE’s viscous properties so that PE’s load-carrying performance can be properly characterized, even for long-term applications. Full article
Show Figures

Figure 1

17 pages, 10785 KiB  
Article
Monitoring and Analysis of Mechanical Response of Main Tunnel Structure During Segment-Cutting Process
by Xiaofeng Liu, Quansheng Zang, Xuanxuan Zi, Mingcong Ji and Changyi Yu
Buildings 2025, 15(13), 2175; https://doi.org/10.3390/buildings15132175 - 22 Jun 2025
Viewed by 258
Abstract
This study analyzes the deformation and internal force changes of the main tunnel during the cutting process of the pipe jacking method for cross passages. A combination of field monitoring and numerical simulation was used to investigate a construction case of the pipe [...] Read more.
This study analyzes the deformation and internal force changes of the main tunnel during the cutting process of the pipe jacking method for cross passages. A combination of field monitoring and numerical simulation was used to investigate a construction case of the pipe jacking method for the cross passage of Zhengzhou Metro Line 12. The study provides an in-depth analysis of the stress characteristics of the main tunnel structure during the segment-cutting process. The research findings indicate that during the pre-support stage, the internal support system helps to disperse external water and soil pressure, thereby reducing the internal forces and deformation of the tunnel. In the segment-cutting stage, the horizontal diameter of the main tunnel near the hole location gradually increases, while the vertical diameter decreases. At the same time, the stress on the bolts also rises, with the circumferential bolt stress exceeding that of the longitudinal bolts, eventually approaching their yield strength. The upper and lower ends of the tunnel opening are cut to form cantilever ends, leading to inward converging deformation. This deformation causes the internal forces to disperse toward both sides of the opening, resulting in a noticeable increase in internal force at the 90° position of the semi-cutting ring. The research findings provide a theoretical reference for understanding the deformation patterns and internal force transfer mechanisms of the main tunnel structure during the construction process of cross passages using the pipe jacking method. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 3737 KiB  
Article
The Application of Numerical Ductile Fracture Simulation in the LBB Evaluation of Nuclear Pipes
by Yuxuan Fang, Biao Li, Chang-Sung Seok and Tao Shen
Appl. Sci. 2025, 15(13), 7010; https://doi.org/10.3390/app15137010 - 21 Jun 2025
Viewed by 293
Abstract
The leak-before-break (LBB) concept is widely used in the design and estimation of piping systems of nuclear power plants, which requires considerable test work to obtain the fracture resistance (J-R) curves of nuclear pipes. The application of numerical ductile fracture simulation can effectively [...] Read more.
The leak-before-break (LBB) concept is widely used in the design and estimation of piping systems of nuclear power plants, which requires considerable test work to obtain the fracture resistance (J-R) curves of nuclear pipes. The application of numerical ductile fracture simulation can effectively limit the test work. In this study, an extended stress-modified critical strain (SMCS) model is applied to simulate the crack growth behaviors of full-scale nuclear pipes (SA312 TP304L stainless steel) with a circumferential through-wall crack under a four-point bending load. The LBB evaluation is performed based on the J-R curves of CT specimens and full-scale pipes obtained from fracture resistance tests and numerical simulations. It shows that due to the high crack-tip constraint effect, CT specimens may cause lots of conservatism in the LBB evaluation of nuclear pipes, while the application of numerical ductile fracture simulation can largely reduce the conservatism. Full article
Show Figures

Figure 1

Back to TopTop