Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = pinned–pinned boundary conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3343 KB  
Article
Influence of Alumina Abrasive Particles on Wear Behavior of Textured Surfaces Under Heavy-Load Conditions
by Dongyun Wang, Wenyao Zhang, Hongkang Dong, Xiaofeng Wei, Wei Hao and Xin Yao
Lubricants 2025, 13(12), 553; https://doi.org/10.3390/lubricants13120553 - 18 Dec 2025
Viewed by 210
Abstract
This study investigates the lubrication properties of GCr15 steel textured surfaces under the conditions of low speed, heavy load, and boundary lubrication, with varying concentrations of Al2O3 particles. Through pin-on-disk tests in 46# hydraulic fluid, it was found that the [...] Read more.
This study investigates the lubrication properties of GCr15 steel textured surfaces under the conditions of low speed, heavy load, and boundary lubrication, with varying concentrations of Al2O3 particles. Through pin-on-disk tests in 46# hydraulic fluid, it was found that the texture density had little effect on the friction in the absence of abrasive particles and that the friction increases with an increasing texture density in the presence of abrasive particles. Abrasive particle concentration significantly increases the friction on smooth surfaces, while textured surfaces can retain abrasive particles and lubricants, mitigating the increase in friction. The impact of abrasive particles can wear down the texture edges and weaken its friction-reducing effect. This study reveals the interaction between abrasive particle concentration and texture density, providing a theoretical basis for designing textured surfaces suitable for abrasive-containing lubrication environments. Full article
(This article belongs to the Topic Engineered Surfaces and Tribological Performance)
Show Figures

Figure 1

16 pages, 6928 KB  
Article
Comparative Study on Intermediate-Temperature Deformation Mechanisms of Inconel 718 Alloys Fabricated by Additive Manufacturing and Conventional Forging
by Jin Wu, Yetao Cheng, Jinlong Su, Yubin Ke, Jie Teng and Fulin Jiang
Materials 2025, 18(23), 5354; https://doi.org/10.3390/ma18235354 - 27 Nov 2025
Viewed by 302
Abstract
The distinct solidification behavior of additively manufactured (AM) Inconel 718 (IN718) produces a unique microstructure and precipitation response compared with its conventionally forged counterpart, leading to fundamentally different responses to heat treatment and intermediate-temperature deformation behaviors. In this work, the intermediate-temperature (450–750 °C) [...] Read more.
The distinct solidification behavior of additively manufactured (AM) Inconel 718 (IN718) produces a unique microstructure and precipitation response compared with its conventionally forged counterpart, leading to fundamentally different responses to heat treatment and intermediate-temperature deformation behaviors. In this work, the intermediate-temperature (450–750 °C) deformation mechanisms of laser powder bed fusion (LPBF)-fabricated and forged IN718 alloys were systematically compared under various heat-treatment conditions. Overall, under solution treatment state, the LPBF alloy exhibited fine columnar grains, a high dislocation density, and retained δ phases along the grain boundaries, whereas the forged alloy showed coarse equiaxed γ grains without the δ phase. Under solution + aging (STA) treatment, the δ phase in the LPBF alloy effectively pinned grain boundaries and enhanced flow stress, while in the forged alloy, strengthening was dominated by the uniform precipitation of γ″ and γ′ phases. Owing to Nb consumption by δ-phase formation, the STA-treated LPBF alloy contained fewer γ″/γ′ precipitates and exhibited slightly lower strength than the STA-treated forged alloy. This study demonstrates that the inherent δ phase retention and Nb segregation in LPBF-built IN718 critically influence its precipitation behavior and deformation resistance, distinguishing it from conventionally processed alloys and providing valuable insights for microstructure design in AM-built high-temperature superalloys. Full article
Show Figures

Figure 1

19 pages, 19254 KB  
Article
Hybrid Al6060/TiB2/Microsilica Composites Produced by Ultrasonically Assisted Stir Casting and Radial-Shear Rolling: Microstructural Evolution and Strength–Ductility Balance
by Maxat Abishkenov, Ilgar Tavshanov, Nikita Lutchenko, Kairosh Nogayev, Zhassulan Ashkeyev and Siman Kulidan
Eng 2025, 6(11), 298; https://doi.org/10.3390/eng6110298 - 1 Nov 2025
Viewed by 284
Abstract
We report a scalable route to hybrid aluminum matrix composites (AMCs) based on Al6060 (as-fabricated condition) reinforced with 2 wt.% TiB2 and 1 wt.% microsilica, fabricated by ultrasonically assisted stir casting (UASC) followed by radial-shear rolling (RSR). Premixing and preheating of powders [...] Read more.
We report a scalable route to hybrid aluminum matrix composites (AMCs) based on Al6060 (as-fabricated condition) reinforced with 2 wt.% TiB2 and 1 wt.% microsilica, fabricated by ultrasonically assisted stir casting (UASC) followed by radial-shear rolling (RSR). Premixing and preheating of powders combined with acoustic cavitation/streaming during UASC ensured uniform, non-sedimentary particle dispersion and low-defect cast billets. X-ray diffraction of the as-cast composite shows fcc-Al with weak TiB2 reflections and no reaction products; microsilica remains amorphous. Electron microscopy and EBSD after RSR reveal full erasure of cast dendrites, fine equiaxed grains, weakened texture, and a high fraction of high-angle boundaries due to the concurrent action of particle-stimulated nucleation (micron-scale TiB2) and Zener pinning/Orowan strengthening (50–350 nm microsilica). Mechanical testing shows that, in the cast state—comparing cast monolithic Al6060 to the cast hybrid-reinforced composite—yield strength (YS) increases from 61.7 to 77.2 MPa and ultimate tensile strength (UTS) from 103.4 to 130.7 MPa, without loss of ductility. After RSR to Ø16 mm (cumulated true strain ≈ 0.893), the hybrid attains YS 101.2 MPa, UTS 150.6 MPa, and elongation ≈ 22.0%, i.e., comparable strength to rolled Al6060 (UTS 145.1 MPa) while restoring/raising ductility by ~9.7 percentage points. Microhardness follows the same trend, increasing from 50.2 HV0.2 to 73.1 HV0.2 when comparing the base cast condition with the rolled hybrid. The route from UASC to RSR thus achieves a favorable mechanical strength–ductility balance using an economical, eco-friendly oxide/boride hybrid reinforcement, making it attractive for formable AMC bar and rod products. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

25 pages, 12718 KB  
Article
Temperature-Dependent Effectiveness of Ti, Nb, Zr, and Y in Controlling Grain Growth of AISI 304 Austenitic Stainless Steel
by Jaka Burja, Samo Tome and Aleš Nagode
Crystals 2025, 15(11), 931; https://doi.org/10.3390/cryst15110931 - 29 Oct 2025
Viewed by 359
Abstract
Crystal grain size control in steel is critical for achieving mechanical properties. This study investigates the effectiveness of microalloying with titanium, niobium, zirconium, and yttrium to inhibit grain growth with the pinning effect. The comparison of selected microalloying elements in the exact same [...] Read more.
Crystal grain size control in steel is critical for achieving mechanical properties. This study investigates the effectiveness of microalloying with titanium, niobium, zirconium, and yttrium to inhibit grain growth with the pinning effect. The comparison of selected microalloying elements in the exact same conditions is crucial for understanding their effect and is novel. Hot-rolled samples were annealed across a wide range of temperatures (1050 to 1200 °C) for up to eight hours. Microstructural analysis confirmed the presence of stable precipitates and non-metallic inclusions such as Nb(C,N), Ti(C,N), ZrO2, and Y2O3 acting as obstacles to grain boundary migration. All microalloying elements significantly outperformed the reference steel, but their effectiveness was highly dependent on the annealing temperature. Titanium was the most effective inhibitor at lower temperatures (1050 °C), while zirconium maintained control up to 1150 °C. Critically, at the highest temperature of 1200 °C, only the yttrium-alloyed steel retained a fine-grain structure, demonstrating superior thermal stability. Niobium, conversely, only showed a minimal effect at 1050 °C, though this grade also exhibited the highest hardness (up to 165 HB) due to precipitation hardening. The kinetics of grain growth were successfully modeled using the Arrhenius-type Sellars–Whiteman equation, accurately describing the behavior for up to four hours of annealing. The findings provide critical insight for selecting optimal microalloying strategies based on maximum operating temperature. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 3486 KB  
Article
Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy
by Arasappan Rajesh Kannan, Hafiz Muhammad Rehan Tariq, Muhammad Ishtiaq, Ha-Seong Baek, Umer Masood Chaudhry and Tea-Sung Jun
Materials 2025, 18(21), 4897; https://doi.org/10.3390/ma18214897 - 26 Oct 2025
Viewed by 626
Abstract
Lightweight magnesium alloys are gaining increasing attention as potential structural materials for automotive and aerospace applications due to their high specific strength and excellent recyclability. However, their formability and mechanical performance are often limited by strong basal texture and limited recrystallization during thermomechanical [...] Read more.
Lightweight magnesium alloys are gaining increasing attention as potential structural materials for automotive and aerospace applications due to their high specific strength and excellent recyclability. However, their formability and mechanical performance are often limited by strong basal texture and limited recrystallization during thermomechanical processing. In this context, the present study systematically investigates the effect of post-annealing treatment on the microstructural evolution, recrystallization behavior, and mechanical response of a hot-rolled Mg-3Al-1Zn-1Ca alloy. Detailed microstructural characterization revealed that Al2Ca precipitates were uniformly distributed along grain boundaries in the as-received (AR) condition, where they contributed to significant pinning of boundary migration. Post-annealing treatment (350 °C, furnace cooling) resulted in non-uniform grain coarsening, driven by the interplay of precipitate pinning and differential stored strain energy, while also facilitating particle-stimulated nucleation (PSN) and recrystallization. Electron backscatter diffraction (EBSD) analysis confirmed a substantial increase in the fraction of high-angle grain boundaries and recrystallized grains in the heat-treated (HT) state, with kernel average misorientation (KAM) and grain orientation spread (GOS) analyses indicating pronounced recovery of lattice distortions. Mechanical testing demonstrated a significant decrease in yield strength (263 MPa to 187.4 MPa) and hardness (65.7 to 54.1 HV) due to dislocation annihilation and stress relaxation, while ultimate tensile strength remained nearly unchanged (~338 MPa) and ductility improved markedly (12.6% to 16.4%). These findings highlight the dual role of Al2Ca precipitates in promoting recrystallization through PSN while simultaneously restricting excessive grain growth through Zener pinning. Full article
Show Figures

Figure 1

16 pages, 3717 KB  
Article
Experimental Study on the Tribological Performance of Shark Denticle-Inspired Texture for Roller Cone Bit Bearings
by Wanzhong Li, Yapeng Li, Jinlong Fan, Zexiong Chen and Pengbo Huo
Lubricants 2025, 13(11), 468; https://doi.org/10.3390/lubricants13110468 - 23 Oct 2025
Viewed by 610
Abstract
During drilling in complex formations, the sliding bearings of roller cone bits are continuously subjected to low-speed, heavy-load, and boundary lubrication conditions, under which adhesive failure readily occurs, severely limiting drilling efficiency. To enhance their wear resistance, a bionic texture inspired by shark [...] Read more.
During drilling in complex formations, the sliding bearings of roller cone bits are continuously subjected to low-speed, heavy-load, and boundary lubrication conditions, under which adhesive failure readily occurs, severely limiting drilling efficiency. To enhance their wear resistance, a bionic texture inspired by shark denticles was designed and compared with conventional rectangular and circular textures. An equivalent pin–disk contact model was established based on Hertzian contact theory, and tribological experiments were conducted under typical formation conditions using a friction and wear testing machine. The friction coefficient, friction torque, and wear volume of different textures were measured under both lubricated and dry contact conditions, and the underlying mechanisms were elucidated through three-dimensional surface morphology analysis. The results show that the shark denticle-inspired texture reduced the friction coefficient and wear volume by 33.3% and 35%, respectively, under lubrication, while suppressing debris intrusion at the frictional interface under dry contact, thereby providing a degree of surface protection. This study offers theoretical guidance and experimental evidence for advancing the engineering application of bionic tribology in the petroleum industry. Full article
Show Figures

Figure 1

16 pages, 11319 KB  
Article
Dynamic Response Mechanism and Risk Assessment of Threaded Connections During Jarring Operations in Ultra-Deep Wells
by Zhe Wang, Chunsheng Wang, Zhaoyang Zhao, Shaobo Feng, Ning Li, Xiaohai Zhao and Zhanghua Lian
Modelling 2025, 6(4), 123; https://doi.org/10.3390/modelling6040123 - 10 Oct 2025
Viewed by 452
Abstract
With the frequent occurrence of stuck pipe incidents during the ultra-deep well drilling operation, the hydraulic-while-drilling (HWD) jar has become a critical component of the bottom hole assembly (BHA). However, during jarring operations for stuck pipe release, the drill string experiences severe vibrations [...] Read more.
With the frequent occurrence of stuck pipe incidents during the ultra-deep well drilling operation, the hydraulic-while-drilling (HWD) jar has become a critical component of the bottom hole assembly (BHA). However, during jarring operations for stuck pipe release, the drill string experiences severe vibrations induced by the impact loads from the jar, which significantly alter the stress state and dynamic response of the threaded connections—the structurally weakest elements—under cyclic dynamic loading, often leading to fracture failures. here, a thread failure incident of a hydraulic jar in an ultra-deep well in the Tarim Basin, Xinjiang, is investigated. A drill string dynamic impact model incorporating the actual three-dimensional wellbore trajectory is established to capture the time-history characteristics of multi-axial loads at the threaded connection during up and down jarring. Meanwhile, a three-dimensional finite element model of a double-shouldered threaded connection with helix angle is developed, and the stress distribution of the joint thread is analyzed on the boundary condition acquired from the time-history characteristics of multi-axial loads. Numerical results indicate that the axial compression induces local bending of the drill string during down jarring, resulting in significantly greater bending moment fluctuations than in up jarring and a correspondingly higher amplitude of circumferential acceleration at the thread location. Among all thread positions, the first thread root at the pin end consistently experiences the highest average stress and stress variation, rendering it most susceptible to fatigue failure. This study provides theoretical and practical insights for optimizing drill string design and enhancing the reliability of threaded connections in deep and ultra-deep well drilling. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Graphical abstract

16 pages, 8448 KB  
Article
Effect of Zr Additions on the Microstructure and Elevated-Temperature Mechanical Properties of Al–Cu–Mg–Ag–Zn–Mn–Zr Alloys
by Haoyang Fu, Hongda Yan, Bin Wei, Bin Sun, Zihang Liu and Weihong Gao
Materials 2025, 18(17), 4062; https://doi.org/10.3390/ma18174062 - 29 Aug 2025
Cited by 2 | Viewed by 776
Abstract
This study systematically investigates the influence of Zr additions (0–0.24 wt.%) on the microstructure evolution and mechanical properties of Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag alloys under peak-aged conditions. Alloys were subjected to homogenization (420 °C/8 h + 510 °C/16 h), solution treatment (510 °C/1.5 h), and aging [...] Read more.
This study systematically investigates the influence of Zr additions (0–0.24 wt.%) on the microstructure evolution and mechanical properties of Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag alloys under peak-aged conditions. Alloys were subjected to homogenization (420 °C/8 h + 510 °C/16 h), solution treatment (510 °C/1.5 h), and aging (190 °C/3 h). Microstructural characterization via OM, SEM, EBSD, and TEM revealed that Zr refines grains and enhances recrystallization resistance through coherent Al3Zr precipitates, which pin grain boundaries and dislocations. However, excessive Zr (0.24 wt.%) induces heterogeneous grain size distribution and significant Schmid factor variations, promoting stress concentration and premature intergranular cracking. Crucially, Al3Zr particles act as heterogeneous nucleation sites for Ω-phase precipitates, accelerating their nucleation near grain boundaries, refining precipitates, and narrowing precipitate-free zones (PFZs). Mechanical testing demonstrated that the Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag alloy exhibits optimal properties: peak tensile strength of 368.8 MPa and 79.8% tensile strength retention at 200 °C. These improvements are attributed to synergistic microstructural modifications driven by controlled Zr addition, establishing Al–4.0Cu–0.5Mg–0.5Zn–0.5Mn–0.4Ag–0.16Zr as a promising candidate for high-temperature aerospace applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

17 pages, 4717 KB  
Article
Design of Stretch-Dominated Metamaterials Avoiding Bandgap Resonance
by Zijian Wang
Symmetry 2025, 17(9), 1390; https://doi.org/10.3390/sym17091390 - 26 Aug 2025
Viewed by 892
Abstract
Mechanical metamaterials subjected to dynamic loads within their bandgaps can still experience significant undesired structural responses, which are referred to as bandgap resonances. This paper proposes a design method for stretch-dominated metamaterials to avoid such a phenomenon. The metamaterials are modeled as pin-jointed [...] Read more.
Mechanical metamaterials subjected to dynamic loads within their bandgaps can still experience significant undesired structural responses, which are referred to as bandgap resonances. This paper proposes a design method for stretch-dominated metamaterials to avoid such a phenomenon. The metamaterials are modeled as pin-jointed bar structures, and the sufficient condition for preventing their bandgap resonances is derived: they must exhibit spatial inversion symmetry and satisfy certain boundary conditions. A matrix-form perturbation expression of the bandgap is then provided to generate expected bandgaps by adjusting the node coordinates and element cross-sectional areas of the unit cells under symmetry constraint. As an example, a two-dimensional metamaterial is designed to achieve an expected bandgap of 600–1000 Hz. The frequency-response analyses show that the sufficient condition ensures the suppression of bandgap resonances. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

22 pages, 3432 KB  
Article
The Formation Mechanism of Residual Stress in Friction Stir Welding Based on Thermo-Mechanical Coupled Simulation
by Tianlei Yang, Xiao Wei, Jiangfan Zhou, Hao Jiang, Xinyu Liu and Zongzhe Man
Symmetry 2025, 17(6), 917; https://doi.org/10.3390/sym17060917 - 10 Jun 2025
Viewed by 1607
Abstract
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused [...] Read more.
Friction Stir Welding (FSW) is widely used for high-strength aluminum alloys due to its solid-state bonding, which ensures superior weld quality and service stability. However, thermo-mechanical interactions during welding can induce complex residual stress distributions, compromising joint integrity. Previous studies have primarily focused on thermal load-driven stress evolution, often neglecting mechanical factors such as the shear force generated by the stirring pin. This study develops a three-dimensional thermo-mechanical coupled finite element model based on a moving heat source. The model incorporates axial pressure from the tool shoulder and torque-derived shear force from the stirring pin. A hybrid surface–volumetric heat source is applied to represent frictional heating, and realistic mechanical boundary conditions are introduced to reflect actual welding conditions. Simulations on AA6061-T6 aluminum alloy show that under stable welding, the peak temperature in the weld zone reaches approximately 453 °C. Residual stress analysis indicates a longitudinal tensile peak of ~170 MPa under thermal loading alone, which reduces to ~150 MPa when mechanical loads are included, forming a characteristic M-shaped distribution. Further comparison with a Coupled Eulerian–Lagrangian (CEL) model reveals stress asymmetry, with higher tensile stress on the advancing side. This is primarily attributed to the directional shear force, which promotes greater plastic deformation on the advancing side than on the retreating side. The consistency between the proposed model and CEL results confirms its validity. This study provides a reliable framework for residual stress prediction in FSW and supports process parameter optimization. Full article
(This article belongs to the Special Issue Symmetry in Impact Mechanics of Materials and Structures)
Show Figures

Figure 1

18 pages, 4934 KB  
Article
Prediction of the Probability of IC Failure and Validation of Stochastic EM-Fields Coupling into PCB Traces Using a Bespoke RF IC Detector
by Arunkumar Hunasanahalli Venkateshaiah, John F. Dawson, Martin A. Trefzer, Haiyan Xie, Simon J. Bale, Andrew C. Marvin and Martin P. Robinson
Electronics 2025, 14(11), 2187; https://doi.org/10.3390/electronics14112187 - 28 May 2025
Viewed by 678
Abstract
In this paper, a method of estimating the probability of susceptibility of a component on a circuit board to electromagnetic interference (EMI) is presented. The integrated circuit electromagnetic compatibility (IC EMC) standard IEC 62132-4 enables the assessment of the susceptibility of an IC [...] Read more.
In this paper, a method of estimating the probability of susceptibility of a component on a circuit board to electromagnetic interference (EMI) is presented. The integrated circuit electromagnetic compatibility (IC EMC) standard IEC 62132-4 enables the assessment of the susceptibility of an IC by determining the forward power incident on each pin required to induce a malfunction. Although we focus on IC susceptibility, the method might be applied to other components and sub-circuits where the same information is known. Building upon a previously established numerical model capable of estimating the average coupled forward power at the end of a trace of a lossless PCB trace for a known load in a reverberant environment, this paper updates the model by incorporating PCB losses and utilizes the updated model to estimate the distribution of coupled forward power at the package pin over a number of boundary conditions in a reverberant field. Thus, the probability of failure can be predicted from the known component susceptibility level, the length, transmission line parameters, and the loading of the track to which it is attached. To validate this numerical model, the paper includes measurements obtained with a custom-designed RF IC detector, created for the purpose of measuring RF power coupled into the package pin via test PCB tracks. Full article
(This article belongs to the Special Issue Antennas and Microwave/Millimeter-Wave Applications)
Show Figures

Figure 1

32 pages, 22664 KB  
Article
Buckling Behavior of Perforated Cold-Formed Steel Uprights: Experimental Evaluation and Comparative Assessment Using FEM, EWM, and DSM
by George Taranu, Serban Iacob and Nicolae Taranu
Buildings 2025, 15(9), 1561; https://doi.org/10.3390/buildings15091561 - 6 May 2025
Cited by 3 | Viewed by 1877
Abstract
This paper presents an experimental and numerical investigation of the axial compression behavior of perforated cold-formed steel upright profiles commonly used in pallet racking systems. The primary objective is to examine how slenderness influences the failure modes and load-bearing capacity of these structural [...] Read more.
This paper presents an experimental and numerical investigation of the axial compression behavior of perforated cold-formed steel upright profiles commonly used in pallet racking systems. The primary objective is to examine how slenderness influences the failure modes and load-bearing capacity of these structural elements. Three column lengths, representative of typical vertical spacing in industrial rack systems, were tested under pin-ended boundary conditions. All specimens were fabricated from 2 mm thick S355 steel sheets, incorporating web perforations and a central longitudinal stiffener. Experimental results highlighted three distinct failure mechanisms dependent on slenderness: local buckling for short columns (SS-340), combined distortional–flexural buckling for medium-length columns (MS-990), and global flexural buckling for slender columns (TS-1990). Finite Element Method (FEM) models developed using ANSYS Workbench 2021 R1 software accurately replicated the observed deformation patterns, stress concentrations, and load–displacement curves, with numerical results differing by less than 5% from experimental peak loads. Analytical evaluations performed using the Effective Width Method (EWM) and Direct Strength Method (DSM), following EN 1993-1-3 and AISI S100 specifications, indicated that EWM tends to underestimate the ultimate strength by up to 15%, whereas DSM provided results within 2–7% of experimental values, especially when the entire net cross-sectional area was considered fully effective. The originality of the study is the comprehensive evaluation of full-scale, perforated, stiffened cold-formed steel uprights, supported by robust experimental validation and detailed comparative analyses between FEM, EWM, and DSM methodologies. Findings demonstrate that DSM can be reliably applied to perforated sections with moderate slenderness and adequate web stiffening, without requiring further local reduction in the net cross-sectional area. Full article
(This article belongs to the Special Issue Cold-Formed Steel Structures)
Show Figures

Figure 1

24 pages, 23216 KB  
Article
Effect of Aging at Different Temperatures on Microstructure Evolution of 347H Heat-Resistant Steel-Welded Joints
by Jun Xiao, Geng Tian, Di Wang, Kuo Cao and Aimin Zhao
Metals 2025, 15(5), 518; https://doi.org/10.3390/met15050518 - 4 May 2025
Cited by 4 | Viewed by 1600
Abstract
This study used 347H heat-resistant steel as the base material and systematically investigated the microstructural evolution and second-phase precipitation in typical regions during welding and aging processes. The results showed that the weld metal consisted of austenitic dendrites and inter-dendritic ferrite in a [...] Read more.
This study used 347H heat-resistant steel as the base material and systematically investigated the microstructural evolution and second-phase precipitation in typical regions during welding and aging processes. The results showed that the weld metal consisted of austenitic dendrites and inter-dendritic ferrite in a lath-like form. In the welded samples, the HAZ (Heat-Affected Zone) and BM (Base Material) regions were composed of equiaxed crystals. The microhardness of the HAZ was lower, mainly due to the coarser grain size and fewer second-phase particles. After aging at 700 °C, the hardness of all regions of the welded joint increased significantly due to the precipitation of M23C6 and MX phases. When the aging temperature increased to above 800 °C, the stability of the M23C6 phase decreased, and the diffusion rate of Nb in the matrix accelerated, promoting the preferential growth and stable presence of the MX phase. As the MX phase competes with the M23C6 phase for carbon during its formation, its generation suppresses the further precipitation of the M23C6 phase. Under 800 °C aging conditions, the γ/δ interface exhibited high interfacial energy, and the Nb content in the ferrite was higher, which facilitated the formation of the MX phase along this interface. As the aging temperature continued to rise, the hardness of the HAZ and BM regions initially increased and then decreased. After aging at 800 °C, the hardness decreased because the M23C6 phase no longer precipitated. After aging at 900 °C, the hardness of the HAZ and BM regions significantly increased, mainly due to the large precipitation of the MX phase. The hardness of the W (Weld Zone) and FZ (Fusion Zone) regions gradually decreased with the increase in aging temperature, mainly due to the reduction of inter-dendritic ferrite content, coarsening of second-phase particles, weakening of the pinning effect, and grain growth. In the 900 °C aging samples, the MX phase particle size from largest to smallest was as follows: W > HAZ > BM. The Nb-enriched ferrite provided the chemical driving force for the precipitation of the MX phase, while the δ/γ interface provided favorable conditions for its nucleation and growth; thus, the MX phase particles were the largest in the W region. The HAZ region, due to residual stress and smaller grain boundary area, had MX phase particle size second only to the W region. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Graphical abstract

20 pages, 1657 KB  
Article
An Efficient Petrov–Galerkin Scheme for the Euler–Bernoulli Beam Equation via Second-Kind Chebyshev Polynomials
by Youssri Hassan Youssri, Waleed Mohamed Abd-Elhameed, Amr Ahmed Elmasry and Ahmed Gamal Atta
Fractal Fract. 2025, 9(2), 78; https://doi.org/10.3390/fractalfract9020078 - 24 Jan 2025
Cited by 9 | Viewed by 1715
Abstract
The current article introduces a Petrov–Galerkin method (PGM) to address the fourth-order uniform Euler–Bernoulli pinned–pinned beam equation. Utilizing a suitable combination of second-kind Chebyshev polynomials as a basis in spatial variables, the proposed method elegantly and simultaneously satisfies pinned–pinned and clamped–clamped boundary conditions. [...] Read more.
The current article introduces a Petrov–Galerkin method (PGM) to address the fourth-order uniform Euler–Bernoulli pinned–pinned beam equation. Utilizing a suitable combination of second-kind Chebyshev polynomials as a basis in spatial variables, the proposed method elegantly and simultaneously satisfies pinned–pinned and clamped–clamped boundary conditions. To make PGM application easier, explicit formulas for the inner product between these basis functions and their derivatives with second-kind Chebyshev polynomials are derived. This leads to a simplified system of algebraic equations with a recognizable pattern that facilitates effective inversion to produce an approximate spectral solution. Presentations are made regarding the method’s convergence analysis and the computational cost of matrix inversion. The efficiency of the method described in precisely solving the Euler–Bernoulli beam equation under different scenarios has been validated by numerical testing. Additionally, the procedure proposed in this paper is more effective compared to other existing techniques. Full article
Show Figures

Figure 1

23 pages, 12935 KB  
Article
Strain-Controlled Thermal–Mechanical Fatigue Behavior and Microstructural Evolution Mechanism of the Novel Cr-Mo-V Hot-Work Die Steel
by Yasha Yuan, Yichou Lin, Wenyan Wang, Ruxing Shi, Chuan Wu, Pei Zhang, Lei Yao, Zhaocai Jie, Mengchao Wang and Jingpei Xie
Materials 2025, 18(2), 334; https://doi.org/10.3390/ma18020334 - 13 Jan 2025
Cited by 4 | Viewed by 1455
Abstract
In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of [...] Read more.
In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal–mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel. The thermal–mechanical fatigue (TMF) tests of two test steels were conducted in reverse mechanical strain control at 0.6% and 1.0% strain levels by a TMF servo-hydraulic testing system (MTS). The microstructures of the two steels were characterized using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results indicate that throughout the entire thermomechanical fatigue cycle, both steels exhibit initial hardening during the low-temperature half-cycle (tension half-cycle) and subsequent continuous softening during the high-temperature half-cycle (compression half-cycle). Furthermore, under the same strain condition, the cumulative cyclic softening damage of MES 1 steel is more pronounced than that of the newly developed MES 2 steel. The number, width, and length of cracks in MES 2 steel are smaller than those in MES 1 steel, and the thermomechanical fatigue life of MES 2 steel is significantly longer than that of MES 1 steel. The microstructures show that the main precipitate phase in MES 1 steel is Cr-dominated rod-shaped carbide. It presents obvious coarsening and is prone to inducing stress concentration, thus facilitating crack initiation and propagation. The precipitate phase in MES 2 steel is mainly MC carbide containing Mo and V. It has a high thermal activation energy and is dispersed in the matrix in the form of particles, pinning dislocations and grain boundaries. This effectively delays the reduction in dislocation density and grain growth, thus contributing positively to the improvement in thermomechanical fatigue performance. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

Back to TopTop