Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Texture Evolution
3.2. Impact of Post-Annealing Treatment on Recrystallization Behavior
3.3. Impact of Post-Annealing Treatment on the Mechanical Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AR | As received |
| HT | Heat-treated |
| IPF | Inverse pole figure |
| PSN | Particle simulated nucleation |
| EBSD | Electron backscattered diffraction |
| GOS | Grain orientation spread |
| KAM | Kernel average misorientation |
References
- Zhou, J.; Wu, M.; Zhang, W.; Ning, J. High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates. Materials 2025, 18, 4085. [Google Scholar] [CrossRef] [PubMed]
- Nidadavolu, E.; Mikulics, M.; Wolff, M.; Ebel, T.; Willumeit-Römer, R.; Zeller-Plumhoff, B.; Mayer, J.; Hardtdegen, H.H. Correlative Raman Spectroscopy–SEM Investigations of Sintered Magnesium–Calcium Alloys for Biomedical Applications. Materials 2025, 18, 3873. [Google Scholar] [CrossRef] [PubMed]
- Chaudry, U.M.; Tariq, H.M.R.; Ansari, N.; Kim, C.-S.; Lee, S.Y.; Jun, T.-S. Exceptional improvement in the yield strength of AZ61 magnesium alloy via cryo-stretching and its implications on the grain growth during annealing. J. Alloys Compd. 2024, 970, 172630. [Google Scholar] [CrossRef]
- Hafiz Muhammad Rehan, T.; Umer Masood, C.; Jeong-Rim, L.; Nooruddin, A.; Mansoor, A.; Tea-Sung, J. Tensile Failure Mode Transitions from Subzero to Elevated Deformation Temperature in Mg-6Al-1Zn Alloy. Int. J. Miner. Metall. Mater. 2025. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, J.; Lee, T.; Li, M.; Gao, Y.; Pan, F. Effect of Substituting Y with Gd on LPSO Phase Dispersion and Mechanical Properties of Mg-2Ni-2Y Alloy. Met. Mater. Int. 2023, 30, 618–628. [Google Scholar] [CrossRef]
- Khan, M.A.; Afifi, M.A.; Hafeez, M.A.; Chaudry, U.M.; Brechtl, J.; Zulfiqar, M.; Tariq, H.M.R.; Hussain, M.A.; Kamran, M.; ishtiaq, M.; et al. Evolution of microstructure, texture, and mechanical performance of Mg-13Gd-2Er-0.3 Zr alloy by double extrusion at different temperatures. Arch. Civ. Mech. Eng. 2024, 25, 26. [Google Scholar] [CrossRef]
- Zhou, W.; Aprilia, A.; Mark, C.K. Mechanisms of cracking in laser welding of magnesium alloy AZ91D. Metals 2021, 11, 1127. [Google Scholar] [CrossRef]
- Li, X.; Jiao, F.; Al-Samman, T.; Chowdhury, S.G. Influence of second-phase precipitates on the texture evolution of Mg–Al–Zn alloys during hot deformation. Scr. Mater. 2012, 66, 159–162. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Ishtiaq, M.; Kang, H.-H.; Chaudry, U.M.; Jun, T.-S. A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys. Metals 2025, 15, 128. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Chaudry, U.M.; Kim, C.-S.; Jun, T.-S. Synergetic improvement in strength and ductility of AZX211 Mg alloy facilitated by {10–12}-{01–12} twin-twin interactions during pre-stretching at cryogenic temperature. J. Mater. Res. Technol. 2024, 29, 3249–3254. [Google Scholar] [CrossRef]
- Fouad, M.; Nakata, T.; Xu, C.; Zuo, J.; Wu, Z.; Geng, L. Effect of Deep Cryogenic Treatment on Aging Strength of Mg–Al–Ca–Mn Alloy. Materials 2025, 18, 4769. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Tariq, H.M.R.; Ansari, N.; Lee, S.Y.; Jun, T.-S. Room and cryogenic deformation behavior of AZ61 and AZ61-xCaO (x= 0.5, 1 wt.%) alloy. J. Magnes. Alloys 2024, 12, 1996–2009. [Google Scholar] [CrossRef]
- Kraus, P.; Náprstková, N.; Cais, J.; Kuśmierczak, S.; Caisová, K.; Rudawska, A.; Sviantek, J. Analysis of the Mechanical Properties of the AlSi7CrMnCu2. 5 Alloy and Their Changes After Heat Treatment. Materials 2025, 18, 4586. [Google Scholar] [CrossRef] [PubMed]
- Chaudry, U.M.; Tariq, H.M.R.; Ansari, N.; Mansoor, A.; Khan, M.K.; Hamad, K.; Jun, T.-S. Effect of CaO content and annealing treatment on the room-temperature mechanical properties of AZ61 and AZ61-CaO alloys. Metals 2023, 13, 1962. [Google Scholar] [CrossRef]
- Shah, S.; Liu, M.; Khan, A.; Ahmad, F.; Chaudry, U.M.; Khan, M.Y.; Abdullah, M.; Xu, S.; Peng, Z. Recrystallization aspects and factors affecting their roles in Mg alloys: A comprehensive review. J. Magnes. Alloys 2025, 13, 1879–1914. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Kang, H.H.; Chaudry, U.M.; Khan, M.K.; Jun, T.S. Impact of Surface Roughness on the Yield Drop of Hot-Rolled AZX311 Mg Alloy. Adv. Eng. Mater. 2024, 27, 2401689. [Google Scholar] [CrossRef]
- ASTM E8/E8M-25; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2025.
- Park, J.; Kim, M.; Yoon, U.; Kim, W. Microstructures and mechanical properties of Mg–Al–Zn–Ca alloys fabricated by high frequency electromagnetic casting method. J. Mater. Sci. 2009, 44, 47–54. [Google Scholar] [CrossRef]
- Gneiger, S.; Papenberg, N.; Mitsche, S.; Fehlbier, M. Manufacturing and processing of sheets using a Mg–Al–Ca–Zn–Y alloy for automotive applications. Results Eng. 2024, 21, 101700. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, K.-k.; Nie, K.-b.; Xu, F.-j.; Su, K.; Liang, W. Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Mater. Sci. Eng. A 2015, 636, 279–288. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, B.; Yang, H.; Yang, Q.; Dai, J.; Pan, F. Influence of the Al2Ca phase on microstructure and mechanical properties of Mg–Al–Ca alloys. J. Alloys Compd. 2015, 647, 357–363. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, G.; Park, J.-S.; Zhang, X.; Song, Z.; Wang, H.; Zeng, X.; Wang, L. The role of Ca on the microstructure and tensile properties of Mg-Al-Zn-Ca alloys. Materialia 2023, 29, 101787. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Chaudry, U.M.; Kim, C.-S.; Jun, T.-S. Effect of Calcium on the Rate of Grain Boundary Migration in Pure Magnesium During Annealing. Met. Mater. Int. 2024, 30, 2038–2043. [Google Scholar] [CrossRef]
- Siddique, J.A.; Kim, B.H.; Rafiei, S.; Shah, A.W.; Song, R.; Ha, S.-H.; Yoon, Y.O.; Lim, H.K.; Kim, S.K. Role of dislocation density on the onset and intensity of stretcher strain marks in novel Al-Mg alloys with high Mg content. J. Mater. Res. Technol. 2025, 35, 5552–5562. [Google Scholar] [CrossRef]
- Pei, R.; Zou, Y.; Wei, D.; Al-Samman, T. Grain boundary co-segregation in magnesium alloys with multiple substitutional elements. Acta Mater. 2021, 208, 116749. [Google Scholar] [CrossRef]
- Kim, H.J.; Jin, S.-C.; Jung, J.-G.; Park, S.H. Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg–7Sn–1Al–1Zn alloy during low-and high-temperature extrusions. J. Mater. Sci. Technol. 2021, 71, 87–97. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Zhang, X.; Yang, X.; Li, Y. Constitutive model and recrystallization mechanism of Mg-8.7 Gd-4.18 Y-0.42 Zr magnesium alloy during hot deformation. Materials 2022, 15, 3914. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Chaudry, U.M.; Suh, J.S.; Kim, Y.M.; Jun, T.-S. Effect of cryogenic temperature on the strengthening mechanisms of AZ61 Mg alloy extruded at different temperatures. J. Mater. Res. Technol. 2024, 33, 335–348. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, S.; Cheng, M.; Zhang, S.; Li, Y.; Yang, Y. Controlling dynamic recrystallization via modified LPSO phase morphology and distribution in Mg-Gd-Y-Zn-Zr alloy. J. Magnes. Alloys 2023, 11, 4218–4234. [Google Scholar] [CrossRef]
- Tariq, H.M.R.; Chaudry, U.M.; Ishtiaq, M.; Kim, M.; Ali, M.; Jun, T.-S. Effect of Al addition on the room and cryogenic temperature deformation of Mg-xAl-1Zn-1Ca alloy (x= 1, 2 wt.%). J. Magnes. Alloys 2024, 12, 4694–4708. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, L.; Wang, J.; Wang, J.; Park, J.-S.; Zeng, X. Highly deformable Mg–Al–Ca alloy with Al2Ca precipitates. Acta Mater. 2020, 200, 236–245. [Google Scholar] [CrossRef]
- Chaudry, U.M.; Lee, M.-S.; Jun, T.-S. Dynamic recrystallization of commercially pure titanium during cryogenic compression. Mater. Charact. 2023, 206, 113423. [Google Scholar] [CrossRef]
- Changizian, P.; Zarei-Hanzaki, A.; Abedi, H.R. On the recrystallization behavior of homogenized AZ81 magnesium alloy: The effect of mechanical twins and γ precipitates. Mater. Sci. Eng. A 2012, 558, 44–51. [Google Scholar] [CrossRef]
- Robson, J.D.; Henry, D.T.; Davis, B. Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation. Acta Mater. 2009, 57, 2739–2747. [Google Scholar] [CrossRef]
- Zhang, K.; Shao, Z.; Jiang, J. Effects of twin-twin interactions and deformation bands on the nucleation of recrystallization in AZ31 magnesium alloy. Mater. Des. 2020, 194, 108936. [Google Scholar] [CrossRef]
- Masood Chaudry, U.; Hoo Kim, T.; Duck Park, S.; Sik Kim, Y.; Hamad, K.; Kim, J.-G. On the High Formability of AZ31-0.5Ca Magnesium Alloy. Materials 2018, 11, 2201. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Raabe, D. 23-Recovery and Recrystallization: Phenomena, Physics, Models, Simulation. In Physical Metallurgy, 5th ed.; Laughlin, D.E., Hono, K., Eds.; Elsevier: Oxford, UK, 2014; pp. 2291–2397. [Google Scholar]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, A.R.; Tariq, H.M.R.; Ishtiaq, M.; Baek, H.-S.; Chaudhry, U.M.; Jun, T.-S. Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy. Materials 2025, 18, 4897. https://doi.org/10.3390/ma18214897
Kannan AR, Tariq HMR, Ishtiaq M, Baek H-S, Chaudhry UM, Jun T-S. Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy. Materials. 2025; 18(21):4897. https://doi.org/10.3390/ma18214897
Chicago/Turabian StyleKannan, Arasappan Rajesh, Hafiz Muhammad Rehan Tariq, Muhammad Ishtiaq, Ha-Seong Baek, Umer Masood Chaudhry, and Tea-Sung Jun. 2025. "Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy" Materials 18, no. 21: 4897. https://doi.org/10.3390/ma18214897
APA StyleKannan, A. R., Tariq, H. M. R., Ishtiaq, M., Baek, H.-S., Chaudhry, U. M., & Jun, T.-S. (2025). Impact of Post-Annealing Treatment on the Microstructure, Recrystallization and Mechanical Behavior of Hot-Rolled Mg-Al-Zn-Ca Alloy. Materials, 18(21), 4897. https://doi.org/10.3390/ma18214897

