Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = piezoelectric atomizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3652 KB  
Article
Impact of Calefaction and AdBlue Atomization by Magneto-Strictive and Piezoelectric Phenomena on NOx in SCR Systems for Diesel Engines
by Ioan Mihai, Claudiu Marian Picus and Cornel Suciu
Appl. Sci. 2025, 15(17), 9648; https://doi.org/10.3390/app15179648 - 2 Sep 2025
Viewed by 449
Abstract
In recent decades, pollutant emissions from the combustion of fossil fuels have become increasingly serious for the environment. The present paper reports experimental results for research carried out under laboratory conditions for a Selective Catalytic Reduction (SCR) system, implemented in different configurations on [...] Read more.
In recent decades, pollutant emissions from the combustion of fossil fuels have become increasingly serious for the environment. The present paper reports experimental results for research carried out under laboratory conditions for a Selective Catalytic Reduction (SCR) system, implemented in different configurations on an ISUZU 4JB1 diesel engine. The obtained results allow for a comparative analysis of NOx formation as a function of diesel engine load (χ = 25–100%), at 1350, 2100, 2850, and 3600 rpm, with the engine operating under either cold (T < 343 K) or warm (T > 343 K) regimes. A preheating system for AdBlue droplets, in the form of a metal honeycomb that uses electromagnetic induction and incorporates a high-frequency generator, was introduced in the flow path of the combustion gases and tested to compare the experimental results. This system enabled temperatures of up to 643 K. A magneto-strictive system was also introduced in the SCR structure to atomize the AdBlue droplets to a minimum diameter of 3.5 μm. Using this principle, combined with preheating, the effect of calefaction was compared with the classical case of the internal heating of the SCR catalyst. For experimental purposes, piezoelectric cells dedicated to the transformation of the AdBlue solution into micro- or nano-droplets, which were entrained into the SCR by an ejector, were also used. Experimental results are presented in graphical form and reveal that the use of preheating, heating, or piezoelectric cells leads to improved NOx conversion. The tested solutions showed reductions in NOx emissions of up to eight times depending on the diesel engine load, demonstrating their strong impact on NOx reduction. Full article
Show Figures

Figure 1

23 pages, 4352 KB  
Article
Nondestructive Mechanical and Electrical Characterization of Piezoelectric Zinc Oxide Nanowires for Energy Harvesting
by Frank Eric Boye Anang, Markys Cain, Min Xu, Zhi Li, Uwe Brand, Darshit Jangid, Sebastian Seibert, Chris Schwalb and Erwin Peiner
Micromachines 2025, 16(8), 927; https://doi.org/10.3390/mi16080927 - 12 Aug 2025
Viewed by 719
Abstract
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could [...] Read more.
In this study we report on the structural, mechanical, and electrical characterization of different structures of vertically aligned zinc oxide (ZnO) nanowires (NWs) synthesized using hydrothermal methods. By optimizing the growth conditions, scanning electron microscopy (SEM) micrographs show that the ZnO NWs could reach an astounding 51.9 ± 0.82 µm in length, 0.7 ± 0.08 µm in diameter, and 3.3 ± 2.1 µm−2 density of the number of NWs per area within 24 h of growth time, compared with a reported value of ~26.8 µm in length for the same period. The indentation modulus of the as-grown ZnO NWs was determined using contact resonance (CR) measurements using atomic force microscopy (AFM). An indentation modulus of 122.2 ± 2.3 GPa for the NW array sample with an average diameter of ~690 nm was found to be close to the reference bulk ZnO value of 125 GPa. Furthermore, the measurement of the piezoelectric coefficient (d33) using the traceable ESPY33 tool under cyclic compressive stress gave a value of 1.6 ± 0.4 pC/N at 0.02 N with ZnO NWs of 100 ± 10 nm and 2.69 ± 0.05 µm in diameter and length, respectively, which were embedded in an S1818 polymer. Current–voltage (I-V) measurements of the ZnO NWs fabricated on an n-type silicon (Si) substrate utilizing a micromanipulator integrated with a tungsten (W) probe exhibits Ohmic behavior, revealing an important phenomenon which can be attributed to the generated electric field by the tungsten probe, dielectric residue, or conductive material. Full article
(This article belongs to the Special Issue Research Progress on Advanced Piezoelectric Energy Harvesters)
Show Figures

Figure 1

42 pages, 6922 KB  
Review
A Brief Review of Atomistic Studies on BaTiO3 as a Photocatalyst for Solar Water Splitting
by Aisulu U. Abuova, Ulzhan Zh. Tolegen, Talgat M. Inerbaev, Mirat Karibayev, Balzhan M. Satanova, Fatima U. Abuova and Anatoli I. Popov
Ceramics 2025, 8(3), 100; https://doi.org/10.3390/ceramics8030100 - 4 Aug 2025
Viewed by 1991
Abstract
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role [...] Read more.
Barium titanate (BaTiO3) has long been recognized as a promising photocatalyst for solar-driven water splitting due to its unique ferroelectric, piezoelectric, and electronic properties. This review provides a comprehensive analysis of atomistic simulation studies of BaTiO3, highlighting the role of density functional theory (DFT), ab initio molecular dynamics (MD), and classical all-atom MD in exploring its photocatalytic behavior, in line with various experimental findings. DFT studies have offered valuable insights into the electronic structure, density of state, optical properties, bandgap engineering, and other features of BaTiO3, while MD simulations have enabled dynamic understanding of water-splitting mechanisms at finite temperatures. Experimental studies demonstrate photocatalytic water decomposition and certain modifications, often accompanied by schematic diagrams illustrating the principles. This review discusses the impact of doping, surface modifications, and defect engineering on enhancing charge separation and reaction kinetics. Key findings from recent computational works are summarized, offering a deeper understanding of BaTiO3’s photocatalytic activity. This study underscores the significance of advanced multiscale simulation techniques for optimizing BaTiO3 for solar water splitting and provides perspectives on future research in developing high-performance photocatalytic materials. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

24 pages, 7263 KB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 3152
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 3187 KB  
Article
Prediction of ABX3 Perovskite Formation Energy Using Machine Learning
by Ziliang Deng, Kailing Fang, Chong Guo, Zhichao Gong, Haojie Yue, Huacheng Zhang, Kang Li, Kun Guo, Zhiyong Liu, Bing Xie, Jinshan Lu, Kui Yao and Francis Eng Hock Tay
Materials 2025, 18(13), 2927; https://doi.org/10.3390/ma18132927 - 20 Jun 2025
Cited by 1 | Viewed by 964
Abstract
Materials with perovskite phases are widely used in solar cells and ferroelectric, piezoelectric, dielectric and superconducting devices due to their various notable functions. However, structural instability limits some compositions in forming robust perovskite phases for device applications. The analytical approach using the tolerance [...] Read more.
Materials with perovskite phases are widely used in solar cells and ferroelectric, piezoelectric, dielectric and superconducting devices due to their various notable functions. However, structural instability limits some compositions in forming robust perovskite phases for device applications. The analytical approach using the tolerance factor (t) can only guarantee prediction accuracy within a limited range, ascribed to its nature of overlooking the atomic interaction. Hence, here we establish a prediction model using formation energy as the target parameter for its reflection of the reaction of atoms and apply machine learning as the analysis method since it has been successfully employed in plenty of material property prediction studies. Machine learning employs statistical methodologies to identify correlative patterns within large-scale datasets, enabling accurate predictions with robust generalization. In this work, we built a model to predict the formation energy of ABX3 perovskite using machine learning and achieved a model with an R-squared value of 0.928 and a root mean square error of 0.301 eV/atom, validated by first-principles computations. In total, 75% of the values were correctly predicted within an error lower than 0.06. This work could contribute to accelerating the study of solving perovskites’ instability. Full article
(This article belongs to the Special Issue Advances in Ferroelectric and Piezoelectric Materials)
Show Figures

Figure 1

36 pages, 5287 KB  
Review
Preparation, Properties, and Applications of 2D Janus Transition Metal Dichalcogenides
by Haoyang Zhao and Jeffrey Chor Keung Lam
Crystals 2025, 15(6), 567; https://doi.org/10.3390/cryst15060567 - 16 Jun 2025
Viewed by 1958
Abstract
Structural symmetry significantly influences the fundamental characteristics of two-dimensional (2D) materials. In conventional transition metal dichalcogenides (TMDs), the absence of in-plane symmetry introduces distinct optoelectronic behaviors. To further enrich the functionality of such materials, recent efforts have focused on disrupting out-of-plane symmetry—often through [...] Read more.
Structural symmetry significantly influences the fundamental characteristics of two-dimensional (2D) materials. In conventional transition metal dichalcogenides (TMDs), the absence of in-plane symmetry introduces distinct optoelectronic behaviors. To further enrich the functionality of such materials, recent efforts have focused on disrupting out-of-plane symmetry—often through the application of external electric fields—which leads to the generation of an intrinsic electric field within the lattice. This internal field alters the electronic band configuration, broadening the material’s applicability in fields like optoelectronics and spintronics. Among various engineered 2D systems, Janus transition metal dichalcogenides (JTMDs) have shown as a compelling class. Their intrinsic structural asymmetry, resulting from the replacement of chalcogen atoms on one side, naturally breaks out-of-plane symmetry and surpasses certain limitations of traditional TMDs. This unique arrangement imparts exceptional physical properties, such as vertical piezoelectric responses, pronounced Rashba spin splitting, and notable changes in Raman modes. These distinctive traits position JTMDs as promising candidates for use in sensors, spintronic devices, valleytronic applications, advanced optoelectronics, and catalytic processes. In this Review, we discuss the synthesis methods, structural features, properties, and potential applications of 2D JTMDs. We also highlight key challenges and propose future research directions. Compared with previous reviews, this work focusing on the latest scientific research breakthroughs and discoveries in recent years, not only provides an in-depth discussion of the out-of-plane asymmetry in JTMDs but also emphasizes recent advances in their synthesis techniques and the prospects for scalable industrial production. In addition, it highlights the rapid development of JTMD-based applications in recent years and explores their potential integration with machine learning and artificial intelligence for the development of next-generation intelligent devices. Full article
Show Figures

Figure 1

15 pages, 3635 KB  
Article
Effect of Oxygen Vacancy Concentration on the Electrical Properties and Microstructure of Bi4Ti3O12 Ceramics: Experimental and First-Principles Investigation
by Tao Chen, Yang Chen, Ning Zhang, Tiantian Liu, Songlin Wang and Qi Zhang
Materials 2025, 18(11), 2666; https://doi.org/10.3390/ma18112666 - 5 Jun 2025
Viewed by 749
Abstract
This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to [...] Read more.
This paper investigates the impact of sintering temperature on oxygen vacancy concentration and its subsequent effect on the microstructure and electrical properties of Bi4Ti3O12 (BIT) ceramics. To further clarify these effects, VASP software was employed to simulate BIT ceramics with varying oxygen vacancy concentrations.The experimental results demonstrate that sintering temperature significantly influences the oxygen vacancy concentration. At the optimal sintering temperature of 1080 °C, the BIT ceramics exhibit a balanced microstructure with a grain size of 4.16 μm, the lowest measured oxygen vacancy concentration of 18.44%, and a piezoelectric coefficient (d33) of 9.8 pC/N. Additionally, the dielectric loss (tanδ) remains below 0.2 at 500 °C, indicating excellent thermal stability. VASP-based simulations reveal that increasing the oxygen vacancy concentration from 18.56% to 44.55% results in a significant collapse of the band gap (from 2.8 eV → 1.0 eV) and a transition in conductivity type from p-type to n-type. This shift induces a leakage current-dominated threshold effect, leading to a decrease in piezoelectric properties (d33 reduced from 9.8 to 6.9 pC/N). Atomic-scale density of states (DOS) analyses indicate that the delocalization of Ti3+ and the weakening of Bi–O hybridization collectively induce lattice distortion and ferroelectric inconsistency. These changes are correlated with an increase in dielectric loss and a slight reduction in Curie temperature (from 620 °C → 618 °C). In conclusion, this study comprehensively elucidates the influence of oxygen vacancy concentration on the microstructure and electrical properties of BIT ceramics. The findings provide a theoretical foundation and practical insights for designing high-performance piezoelectric ceramics. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

15 pages, 3388 KB  
Article
Fabrication of Air Cavity Structures Using DRIE for Acoustic Signal Confinement in FBAR Devices
by Raju Patel, Manoj Singh Adhikari, Deepak Bansal and Tanmoy Majumder
Micromachines 2025, 16(6), 647; https://doi.org/10.3390/mi16060647 - 29 May 2025
Viewed by 2805
Abstract
Acoustic energy penetrates into the Si substrate at cavity boundaries. Due to this, the air cavity-based bulk acoustic resonators experience higher harmonic mode, parasitic resonance, and spurious mode. To overcome these effects and enhance the performance parameters, a backside air cavity is fabricated [...] Read more.
Acoustic energy penetrates into the Si substrate at cavity boundaries. Due to this, the air cavity-based bulk acoustic resonators experience higher harmonic mode, parasitic resonance, and spurious mode. To overcome these effects and enhance the performance parameters, a backside air cavity is fabricated using the deep reactive ion etching (DRIE) method. The DRIE method helps to achieve the optimized active area of the resonator. SiO2 film on a silicon substrate as the support layer and ZnO as the piezoelectric (PZE) film are used for the resonator. The crystal growth and surface morphology of ZnO film were investigated with X-ray diffraction, scanning electron microscopy, and atomic force microscopy. FBAR is modeled in a 1-D modified Butterworth–Van Dyke (mBVD) equivalent circuit. As RF measurement results, we successfully demonstrated a FBAR with optimized active area of 320 × 320 μm2, center frequency of 1.261 GHz, having a quality factor of 583.8. Overall, this suppression of higher harmonic mode shows the great potential for improving the selectivity of the sensor and also in RF filter design applications. This integration of DRIE-based cavity formation with ZnO-based FBAR architecture not only enables compact design but also effectively suppresses spurious and higher-order modes, which demonstrates a performance-enhancing fabrication strategy not fully explored in the current literature. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

10 pages, 3451 KB  
Article
Interfacial Charge Transfer Mechanism and Output Characteristics of Identical-Material Triboelectric Nanogenerators
by Lin-Xin Wu, Shi-Jia Ma, Meng-Jie Li, Xian-Lei Zhang, Gang Zheng, Zheng Liang, Ru Li, Hao Dong, Jun Zhang and Yun-Ze Long
Nanomaterials 2025, 15(10), 708; https://doi.org/10.3390/nano15100708 - 8 May 2025
Viewed by 618
Abstract
When testing the output of piezoelectric devices under different pressures, the friction between the pressure platform and the device causes a large amount of frictional electrical signals to be mixed in the output piezoelectric signal, seriously affecting the measurement accuracy of the piezoelectric [...] Read more.
When testing the output of piezoelectric devices under different pressures, the friction between the pressure platform and the device causes a large amount of frictional electrical signals to be mixed in the output piezoelectric signal, seriously affecting the measurement accuracy of the piezoelectric signal. The current solution is to encapsulate the contact interface with identical materials to suppress triboelectric interference. However, this work has shown that even when contact separation is implemented at the interface of same media, triboelectric signals can still be generated. The heterogeneous potential distribution of the same material in contact separation has been discovered for the first time through the contact interface potential distribution, proving that charge transfer still exists between the same materials. Atomic force microscopy (AFM) was used to analyze the microstructure of the interface, and it was found that the existence of the surface tip structure would enhance the electron loss. Based on this, a new electron transfer model for surface–tip electron cloud interaction is proposed in this work. In addition, by comparing the output voltage characteristics of the triboelectric nanogenerators (TENGs) of seven polymer materials (e.g., polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polyoxymethylene (POM), polyimide (PI), and polyethylene terephthalate (PET)), it was found that the open circuit voltage of PP material was only 0.06 V when they friction with each other, which is 2–3 orders of magnitude lower than other materials. When PP materials are applied to the package of piezoelectric devices, the precision of piezoelectric output characterization can be improved significantly, and a new experimental basis for a triboelectric theory system can be provided. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 5787 KB  
Communication
Theoretical Analysis and Characteristic Study of Li-Doped P-Type ZnO Ultra-Thin Cantilever Beam Accelerometer
by Yingqi Shang, Jiayu Bi, Weiwei Liu, Chunpeng Ai and Hongquan Zhang
Materials 2025, 18(8), 1766; https://doi.org/10.3390/ma18081766 - 11 Apr 2025
Viewed by 393
Abstract
Nonlinear correction was performed on the mechanical motion of ultra-thin cantilever beams, and strain effects were calculated on ultra-thin multi-layer heterogeneous material stacked cantilever beams. The atomic structure and piezoelectric properties of ZnO were studied using first-principles calculations. In this study, generalized gradient [...] Read more.
Nonlinear correction was performed on the mechanical motion of ultra-thin cantilever beams, and strain effects were calculated on ultra-thin multi-layer heterogeneous material stacked cantilever beams. The atomic structure and piezoelectric properties of ZnO were studied using first-principles calculations. In this study, generalized gradient approximations of Perdew–Burke–Erzerhof (GGA-PBE) functionals and Plain Wave Basis Sets were used to calculate the electronic structure, density of states, energy bands, charge density, and piezoelectric coefficient of intrinsic ZnO. Research and calculations were conducted on Li-doped ZnO with different ratios. According to our calculations, as the Li doping ratio increases from 0 to 10%, the bandgap width of ZnO material increases from 0.74 to 1.21 eV. The results for the density of states and partial density of states indicate that the increase in band gap is due to the movement of Zn-3d states towards the high-energy end, and the piezoelectric coefficient of the material increases from 2.07 to 3.3 C/m2. Meanwhile, based on the optimized Li-doped ZnO cantilever beam accelerometer, an ultra-thin cantilever beam accelerometer with a sensitivity of 7.04 mV/g was fabricated. Full article
Show Figures

Figure 1

48 pages, 3881 KB  
Review
Advances and Perspectives on Bioelectronic and Atomic Nanogenerators for Anticancer Therapy
by Massimo Mariello
Nanoenergy Adv. 2025, 5(2), 4; https://doi.org/10.3390/nanoenergyadv5020004 - 31 Mar 2025
Viewed by 1334
Abstract
Nowadays, due to improvements in living standards, more attention is reserved to all-around disease prevention and health care. In particular, research efforts have been made for developing novel methods and treatments for anti-cancer therapy. Self-powered nanogenerators have emerged in recent years as an [...] Read more.
Nowadays, due to improvements in living standards, more attention is reserved to all-around disease prevention and health care. In particular, research efforts have been made for developing novel methods and treatments for anti-cancer therapy. Self-powered nanogenerators have emerged in recent years as an attractive cost-effective technology to harvest energy or for biosensing applications. Bioelectronic nanogenerators can be used for inducing tissue recovery and for treating human illness through electrical stimulation. However, there is still a lack of comprehensive cognitive assessment of these devices and platforms, especially regarding which requirements must be satisfied and which working principles for energy transduction can be adopted effectively in the body. This review covers the most recent advances in bioelectronic nanogenerators for anti-cancer therapy, based on different transducing strategies (photodynamic therapy, drug delivery, electrical stimulation, atomic nanogenerators, etc.), and the potential mechanisms for tissue repair promotion are discussed. The prospective challenges are finally summarized with an indication of a future outlook. Full article
Show Figures

Figure 1

11 pages, 4413 KB  
Article
Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique
by Ya-Chih Cheng, Sanjaya Brahma, Sean Wu, Jow-Lay Huang and Alex C. H. Lee
Condens. Matter 2025, 10(1), 6; https://doi.org/10.3390/condmat10010006 - 15 Jan 2025
Cited by 3 | Viewed by 1395
Abstract
Zinc oxide (ZnO) exhibits piezoelectric properties due to its asymmetric structure, making it suitable for piezoelectric devices. This experiment deposited Fe-doped ZnO films on silicon substrates using a dual-target magnetron co-sputtering system. The films achieved a high c-axis orientation, and the piezoelectric coefficient [...] Read more.
Zinc oxide (ZnO) exhibits piezoelectric properties due to its asymmetric structure, making it suitable for piezoelectric devices. This experiment deposited Fe-doped ZnO films on silicon substrates using a dual-target magnetron co-sputtering system. The films achieved a high c-axis orientation, and the piezoelectric coefficient of the film reached its optimal value of 44.35 pC/N when doped with 0.5 at% of Fe. This value is approximately three times that of undoped ZnO films with a piezoelectric coefficient of 13.04 pC/N. The study utilized a diffractometer, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy to evaluate the crystal structure evolution of the zinc oxide films and employed X-ray photoelectron spectroscopy to assess the valence state of the Fe ions. Full article
Show Figures

Figure 1

16 pages, 7946 KB  
Article
Design and Experimental Characterization of a Microfluidic Piezoelectric Pump Utilizing P(VDF-TrFE) Film
by Bei Zhao, Xiaomeng Li, Jing Shi and Huiling Liu
Coatings 2024, 14(12), 1483; https://doi.org/10.3390/coatings14121483 - 24 Nov 2024
Viewed by 1581
Abstract
Advancements in wearable technology and lab-on-chip devices necessitate improved integrated microflow pumps with lower driving voltages. This study examines a piezoelectric pump using a flexible β-phase copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) film. Six samples (S1–S6) were fabricated and subjected to a three-step annealing process [...] Read more.
Advancements in wearable technology and lab-on-chip devices necessitate improved integrated microflow pumps with lower driving voltages. This study examines a piezoelectric pump using a flexible β-phase copolymer poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) film. Six samples (S1–S6) were fabricated and subjected to a three-step annealing process to optimize their properties. Characterization was conducted via atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, impedance analysis, and polarization hysteresis loop measurements. The results show that annealing at approximately 135 degrees Celsius produces a β-phase structure with uniform “rice grain”-like crystallites. A microfluidic pump with a nozzle/diffuser structure, using S4 film as the drive layer, was designed and manufactured. Diaphragm deformation and pump performance were assessed, showing a maximum water flow rate of 25 µL/min at 60 Hz with a peak-to-peak voltage (Vpp) of 60 V. The flow rate could be precisely controlled within 0–25 µL/min by adjusting the Vpp and frequency. This study effectively reduced the driving voltage of the piezoelectric pump, showing that it has significant implications for smart wearable devices. Full article
Show Figures

Figure 1

17 pages, 5545 KB  
Article
Effects of Samarium Doping on the Dielectric Properties of BaBi2Nb2O9 Aurivillius Ceramics
by Michał Rerak, Jolanta Makowska, Tomasz Goryczka, Beata Wodecka-Duś, Katarzyna Osińska, Grzegorz Tytko and Małgorzata Adamczyk-Habrajska
Materials 2024, 17(20), 4952; https://doi.org/10.3390/ma17204952 - 10 Oct 2024
Viewed by 1228
Abstract
This study investigates the influence of samarium (Sm3+) doping on the structural, microstructural, mechanical, and dielectric properties of BaBi2Nb2O9 (BBN) ceramics. Using the solid-state reaction method, samples of BaBi2-xSmxNb2O9 [...] Read more.
This study investigates the influence of samarium (Sm3+) doping on the structural, microstructural, mechanical, and dielectric properties of BaBi2Nb2O9 (BBN) ceramics. Using the solid-state reaction method, samples of BaBi2-xSmxNb2O9 with varying concentrations of Sm (x = 0.01; 0.02; 0.04; 0.06; 0.08; 0.1) were prepared. Thermal analysis, microstructure characterization via SEM and EDS, X-ray diffraction, mechanical testing, and dielectric measurements were conducted. The results revealed that increasing Sm3+ concentration led to the formation of single-phase materials with a tetragonal structure at room temperature. Mechanical properties, such as Young’s modulus and stiffness, improved with Sm doping, indicating stronger atomic bonding. Dielectric properties showed that low concentrations of Sm3+ slightly increased electrical permittivity, while higher concentrations reduced it. The presence of Sm3⁺ also affected the relaxor properties, evidenced by changes in the freezing temperature and activation energy. Overall, the study concludes that samarium doping enhances the structural and functional properties of BBN ceramics, making them promising candidates for high-temperature piezoelectric and dielectric applications. The findings provide valuable insights into tailoring ceramic materials for advanced technological applications. Full article
(This article belongs to the Special Issue Properties of Ceramic Composites)
Show Figures

Figure 1

14 pages, 5334 KB  
Article
Development and Field Test of Integrated Electronics Piezoelectric Accelerometer Based on Lead-Free Piezoelectric Ceramic for Centrifugal Pump Monitoring
by Byung-Hoon Kim, Dae-Sic Jang, Jeong-Han Lee, Min-Ku Lee and Gyoung-Ja Lee
Sensors 2024, 24(19), 6436; https://doi.org/10.3390/s24196436 - 4 Oct 2024
Viewed by 1644
Abstract
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, [...] Read more.
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, 0.96(K,Na)NbO3-0.03(Bi,Na,K,Li)ZrO3-0.01BiScO3 (0.96KNN-0.03BNKLZ-0.01BS) piezoceramic with an optimized piezoelectric charge constant (d33) was introduced. It was manufactured in a ring shape using a solid-state reaction method for application to a compression mode accelerometer. The fabricated ceramic ring has a high piezoelectric constant d33 of ~373 pC/N and a Curie temperature TC of ~330 °C. It was found that the electrical and physical characteristics of the 0.96KNN-0.03BNKLZ-0.01BS piezoceramic were comparable to those of a Pb(Zr,Ti)O3 (PZT) ring ceramic. As a result of a vibration test of the IEPE accelerometer fabricated using the lead-free piezoelectric ceramic, the resonant frequency fr = 20.0 kHz and voltage sensitivity Sv = 101.1 mV/g were confirmed. The fabricated IEPE accelerometer sensor showed an excellent performance equivalent to or superior to that of a commercial IEPE accelerometer sensor based on PZT for general industrial use. A field test was carried out to verify the applicability of the fabricated sensor in an actual industrial environment. The test was conducted by simultaneously installing the developed sensor and a commercial PZT-based sensor in the ball bearing housing location of a centrifugal pump. The centrifugal pump was operated at 1180 RPM, and the generated vibration signals were collected and analyzed. The test results confirmed that the developed eco-friendly lead-free sensor has comparable vibration measurement capability to that of commercial PZT-based sensors. Full article
Show Figures

Figure 1

Back to TopTop