Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = picophytoplankton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2276 KiB  
Article
Key Environmental Drivers of Summer Phytoplankton Size Class Variability and Decadal Trends in the Northern East China Sea
by Jung-Woo Park, Huitae Joo, Hyo Keun Jang, Jae Joong Kang, Joon-Soo Lee and Changsin Kim
Remote Sens. 2025, 17(11), 1954; https://doi.org/10.3390/rs17111954 - 5 Jun 2025
Viewed by 600
Abstract
Phytoplankton size classes (PSC), which categorize phytoplankton into pico- (<2 µm), nano- (2–20 µm), and microphytoplankton (>20 µm), have been widely used to describe functional group responses to environmental variability. Distribution of PSCs heavily influences marine ecosystems and biogeochemical processes. Despite the importance [...] Read more.
Phytoplankton size classes (PSC), which categorize phytoplankton into pico- (<2 µm), nano- (2–20 µm), and microphytoplankton (>20 µm), have been widely used to describe functional group responses to environmental variability. Distribution of PSCs heavily influences marine ecosystems and biogeochemical processes. Despite the importance of PSC distributions, especially in the face of climate change, long-term studies on PSC variability and its driving factors are lacking. This study aimed to identify the key environmental drivers affecting summer PSC variability in the northern East China Sea (NECS) by analyzing 27 years (1998–2024) of satellite-derived data. Statistical analyses using random forest and multiple linear regression models revealed that euphotic depth (Zeu) and suspended particulate matter (SPM) were the primary factors influencing PSC variation; deeper Zeu values favored smaller picophytoplankton, whereas higher SPM concentrations supported larger PSCs. Long-term trend analysis showed a clear shift toward increasing picophytoplankton contributions (+2.4% per year), with corresponding declines in nano- and microphytoplankton levels (2.2% and 0.4% annually, respectively). These long-term changes are hypothesized to result from a persistent decline in SPM concentrations, which modulate light attenuation and nutrient dynamics in the euphotic zone. Marine heat waves intensify these shifts by promoting picophytoplankton dominance through enhanced stratification and reduced nutrient availability. These findings underscore the need for continuous monitoring to inform ecosystem management and predict the impacts of climate change in the NECS. Full article
Show Figures

Figure 1

15 pages, 2126 KiB  
Article
Dynamics of Microbial Abundance in Unvegetated and Seagrass Habitats: A Case Study
by Madeline Olivia, Patrichka Wei-Yi Chen, Clara Natalie Annabel, Wen-Chen Chou, Jian-Jhih Chen, Vladimir Mukhanov, Chien-Fu Chao and An-Yi Tsai
J. Mar. Sci. Eng. 2025, 13(6), 1048; https://doi.org/10.3390/jmse13061048 - 26 May 2025
Viewed by 411
Abstract
Seagrass meadows are recognized for their ecological importance, yet their influence on microbial community structure remains insufficiently characterized. This study examined the effects of seagrass presence on microbial assemblages in a subtropical coastal environment by comparing seagrass habitats to adjacent unvegetated sediments. Microbial [...] Read more.
Seagrass meadows are recognized for their ecological importance, yet their influence on microbial community structure remains insufficiently characterized. This study examined the effects of seagrass presence on microbial assemblages in a subtropical coastal environment by comparing seagrass habitats to adjacent unvegetated sediments. Microbial abundances, including viruses, bacteria, picophytoplankton (Synechococcus spp. and picoeukaryotes), and heterotrophic nanoflagellates, were quantified using flow cytometry. Viral concentrations were significantly higher in seagrass treatments (2.4–9.2 × 106 viruses mL−1) than in controls (0.6–2.0 × 106 viruses mL−1), while bacterial abundances were slightly lower in seagrass treatments (5.1–16.0 × 105 cells mL−1) than in controls (7.9–16.6 × 105 cells mL−1). As a result, the virus-to-bacteria ratio (VBR) was significantly elevated in seagrass habitats, suggesting enhanced viral regulation of bacterial populations. Additionally, picophytoplankton and heterotrophic nanoflagellates increased in seagrass incubations, with strong correlations indicating that nanoflagellates are likely major grazers of picophytoplankton. These results highlight the role of seagrass habitats in modulating microbial interactions and emphasize the need to consider habitat-specific characteristics when evaluating microbial dynamics and biogeochemical processes in coastal systems. Full article
(This article belongs to the Special Issue Microbial Biogeography in Global Oceanic Systems)
Show Figures

Figure 1

18 pages, 5842 KiB  
Article
Light-Mediated Population Dynamics of Picocyanobacteria Shaping the Diurnal Patterns of Microbial Communities in an Atoll Lagoon
by Ying Yu, Maosen Shangguan, Ping Sun, Xiaofeng Lin and Jiqiu Li
Microorganisms 2025, 13(4), 727; https://doi.org/10.3390/microorganisms13040727 - 24 Mar 2025
Viewed by 510
Abstract
The diurnal cycle of light significantly impacts microbes, making diurnal investigations crucial for understanding microbial communities. Zhubi Reef is known to harbor exceptionally rich biodiversity, with both zooplankton and seawater properties demonstrating diurnal patterns. However, microbial community structures and their potential diurnal dynamics [...] Read more.
The diurnal cycle of light significantly impacts microbes, making diurnal investigations crucial for understanding microbial communities. Zhubi Reef is known to harbor exceptionally rich biodiversity, with both zooplankton and seawater properties demonstrating diurnal patterns. However, microbial community structures and their potential diurnal dynamics remain largely unexplored. This study is the first to utilize flow cytometry and high-throughput sequencing to investigate prokaryotic and microeukaryotic communities in the Zhubi lagoon, focusing on diurnal variations under different light intensities. The picophytoplankton cell abundance and the microbial community structures both exhibit clear diurnal variations. Light is identified as the primary driver of diurnal variations in the picophytoplankton cell abundance. The diurnal variation in microbial community diversity is driven by changes in the cell abundance of two dominant picocyanobacterial groups. Our findings reveal the diurnal variation in microbial community structures is mediated by the light-driven fluctuation of dominant cyanobacterial populations, and the diurnal variation patterns of specific populations may vary with habitats and sampling timepoints. This research provides valuable insights into the microbial community structure within the Zhubi lagoon. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 2689 KiB  
Article
The rDNA Diversity, Interseasonal Dynamic, and Functional Role of Cyanobacteria Synechococcus in the Sub-Arctic White Sea
by Tatiana A. Belevich, Irina A. Milyutina, Olga V. Vorob’eva and Aleksey V. Troitsky
Plants 2024, 13(22), 3153; https://doi.org/10.3390/plants13223153 - 9 Nov 2024
Viewed by 1043
Abstract
Planktonic unicellular cyanobacteria are the dominant biomass producers and carbon fixers in the global ocean ecosystem, but they are not abundant in polar seawater. The interseasonal dynamics of picocyanobacterial (PC) abundance, picophytoplankton primary production, and phylogenetic diversity of PC Synechococcus were studied in [...] Read more.
Planktonic unicellular cyanobacteria are the dominant biomass producers and carbon fixers in the global ocean ecosystem, but they are not abundant in polar seawater. The interseasonal dynamics of picocyanobacterial (PC) abundance, picophytoplankton primary production, and phylogenetic diversity of PC Synechococcus were studied in the sub-Arctic White Sea. The PC abundance varied from 0.2–0.3 × 106 cells/L in February to 5.2–16.7 × 106 cells/L in July. Picophytoplankton primary production ranged from 0.22 mg C/m3 per day in winter to 11.32 mg C/m3 per day in summer. Synechococcus abundance positively correlated with water temperature and river discharge that increased in recent years in the White Sea. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries from the White Sea and Barents Sea eDNA revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.I-IV, 5.2, and 5.3. All Synechococcus S5.1-I were common in the White and Barents seas and were consistently present in the picophytoplankton composition throughout the year. Synechococcus S5.2 and S5.3 appear in the PC community in summer, suggesting their river origin, and Synechococcus S5.1-IV inhabits only the Barents Sea and was not detected in the White Sea. A unique Synechococcus phylotype was revealed. It is expected that the increase in the abundance of PC and their increasing role in ecosystem functioning, as well as the enrichment of the species composition with new phylotypes in the semi-enclosed sub-Arctic White Sea, which is vulnerable to the effects of climate change, will be characteristic of all Arctic seas in general. Full article
(This article belongs to the Special Issue Microalgae Genomics and Metagenomics)
Show Figures

Figure 1

16 pages, 3696 KiB  
Article
Impact of Phytoplankton Community Structure Changes in the South Sea of Korea on Marine Ecosystems Due to Climate Change
by Kyung-Woo Park, Mi-Hee Chung, Man-Ho Yoo, Kwang-Seok O, Kyoung-Yeon Kim, Tae-Gyu Park and Seok-Hyun Youn
Water 2023, 15(23), 4043; https://doi.org/10.3390/w15234043 - 22 Nov 2023
Cited by 2 | Viewed by 3027
Abstract
Herein, we conducted surveys during the 2018–2022 summers to investigate the impact of climate change-related changes in the phytoplankton community structure on the marine ecosystem in the South Sea of Korea. The average surface water temperature increased by ~1.07 °C at 0.0195 °C·yr [...] Read more.
Herein, we conducted surveys during the 2018–2022 summers to investigate the impact of climate change-related changes in the phytoplankton community structure on the marine ecosystem in the South Sea of Korea. The average surface water temperature increased by ~1.07 °C at 0.0195 °C·yr−1 between 1968 and 2022. During the summers, the rate was 0.0211 °C·yr−1, with a total increase of ~1.16 °C, indicating a stronger increase in summer surface water temperature. Over the last 30 years, nutrient levels in the South Sea have decreased, particularly at the surface. Moreover, 29.3–90.0% of the phytoplankton community structure was dominated by nanoflagellates (≤20 μm). Based on the size of the phytoplankton chl-a, the average contribution rate of picophytoplankton was the highest (60.1%). Redundancy analysis revealed negative correlations between nutrients and water depth, excluding NH4. Increased stratification due to climate change is causing reduced nutrient availability at the surface mixed layer, and the size of the phytoplankton structure is progressively reducing. These changes are expected to manifest in a complex microbial food web centered on smaller phytoplankton with low primary productivity. This can reduce the efficiency of carbon transfer to higher consumer levels, suggesting a potential decrease in marine productivity. Full article
(This article belongs to the Special Issue Environment and Ecosystems Research for Natural Waters)
Show Figures

Figure 1

20 pages, 7627 KiB  
Article
Seasonal Patterns of Picocyanobacterial Community Structure in the Kuroshio Current
by Ya-Fan Chan, Chih-Ching Chung, Gwo-Ching Gong, I-Jung Lin and Ching-Wei Hsu
Biology 2023, 12(11), 1424; https://doi.org/10.3390/biology12111424 - 13 Nov 2023
Cited by 1 | Viewed by 2031
Abstract
The nutrient-scarce, warm, and high-salinity Kuroshio current has a profound impact on both the marine ecology of the northwestern Pacific Ocean and the global climate. This study aims to reveal the seasonal dynamics of picoplankton in the subtropical Kuroshio current. Our results showed [...] Read more.
The nutrient-scarce, warm, and high-salinity Kuroshio current has a profound impact on both the marine ecology of the northwestern Pacific Ocean and the global climate. This study aims to reveal the seasonal dynamics of picoplankton in the subtropical Kuroshio current. Our results showed that one of the picocyanobacteria, Synechococcus, mainly distributed in the surface water layer regardless of seasonal changes, and the cell abundance ranged from 104 to 105 cells mL−1. In contrast, the maximum concentration of the other picocyanobacteria, Prochlorococcus, was maintained at more than 105 cells mL−1 throughout the year. In the summer and the autumn, Prochlorococcus were mainly concentrated at the water layer near the bottom of the euphotic zone. They were evenly distributed in the euphotic zone in the spring and winter. The stirring effect caused by the monsoon determined their distribution in the water column. In addition, the results of 16S rRNA gene diversity analysis showed that the seasonal changes in the relative abundance of Synechococcus and Prochlorococcus in the surface water of each station accounted for 20 to 40% of the total reads. The clade II of Synechococcus and the High-light II of Prochlorococcus were the dominant strains in the waters all year round. Regarding other picoplankton, Proteobacteria and Actinobacteria occupied 45% and 10% of the total picoplankton in the four seasons. These data should be helpful for elucidating the impacts of global climate changes on marine ecology and biogeochemical cycles in the Western Boundary Currents in the future. Full article
(This article belongs to the Special Issue Climate Change and Marine Plankton)
Show Figures

Figure 1

15 pages, 3079 KiB  
Article
Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution
by Tatiana A. Belevich, Irina A. Milyutina and Aleksey V. Troitsky
Diversity 2023, 15(10), 1049; https://doi.org/10.3390/d15101049 - 28 Sep 2023
Cited by 2 | Viewed by 1485
Abstract
Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of [...] Read more.
Single-cell cyanobacteria, being an integral part of picoplankton in marine ecosystems, have been suggested to be important contributors to primary production and carbon cycles in the global ocean. The spatial distribution, abundance and diversity of natural communities of picocyanobacteria (PC) in estuaries of Khatanga, Indigirka and Kolyma rivers and adjacent shelves of the Laptev and East Siberian seas were studied in September 2017. The PC concentrations were higher in the estuaries than in the shelf stations of the seas. The abundance of PC was 1.25 × 106 cells/L, 0.42 × 106 cells/L and 1.58 × 106 cells/L in the surface layer of Khatanga, Indigirka and Kolyma estuaries, respectively. The contribution of PC to total autumn picophytoplankton abundance averaged 6% and 3% in the Khatanga and Indigirka estuaries and reached 5% in the Kolyma estuary. Phylogenetic analysis of the 16S rRNA gene and ITS region clone libraries revealed picocyanobacterial sequences related to marine Synechococcus subclusters 5.1-I, 5.2 and 5.3. Of the phylotypes from Synechococcus S5.1-I and S5.2 that were found, only several were discovered earlier, while the remaining clones were unique. Two groups of phylotypes (clades A and E) were found that were not closely similar to those previously described in both marine and freshwater habitats. It can be expected that a more detailed study of the phytoplankton of the Arctic seas will further expand our understanding of the diversity of these key components of the food chains of oceanic biocenoses. Full article
(This article belongs to the Special Issue Estuaries Ecology and Coastal Marine Waters)
Show Figures

Figure 1

18 pages, 2450 KiB  
Article
A CHEMTAX Study Based on Picoeukaryotic Phytoplankton Pigments and Next-Generation Sequencing Data from the Ulleungdo–Dokdo Marine System of the East Sea (Japan Sea): Improvement of Long-Unresolved Underdetermined Bias
by Myung Jin Hyun, Jongseok Won, Dong Han Choi, Howon Lee, Yeonjung Lee, Charity Mijin Lee, Chan Hong Park and Jae Hoon Noh
J. Mar. Sci. Eng. 2022, 10(12), 1967; https://doi.org/10.3390/jmse10121967 - 10 Dec 2022
Cited by 6 | Viewed by 2620
Abstract
The CHEMTAX program has been widely used to estimate community composition based on major pigment concentrations in seawater. However, because CHEMTAX is an underdetermined optimization algorithm, underdetermined bias has remained an unsolved problem since its development in 1996. The risk of producing biased [...] Read more.
The CHEMTAX program has been widely used to estimate community composition based on major pigment concentrations in seawater. However, because CHEMTAX is an underdetermined optimization algorithm, underdetermined bias has remained an unsolved problem since its development in 1996. The risk of producing biased results increases when analyzing the picophytoplankton community; therefore, this study tested a new method for avoiding biased CHEMTAX results using the picophytoplankton community around the East Sea (Japan Sea). This method involves building a linear model between pigment concentration data and community composition data based on DNA sequencing to predict the pigment range for each operational taxonomic unit, based on the 95% prediction interval. Finally, the range data are transformed into an initial ratio and ratio limits for CHEMTAX analysis. Three combinations of initial ratios and ratio limits were tested to determine whether the modeled initial ratio and ratio limit could prevent underdetermined bias in the CHEMTAX estimates; these combinations were the modeled initial ratio and ratio limit, the modeled initial ratio with a default ratio limit of 500 s, and an initial ratio from previous research with the default ratio limit. The final ratio and composition data for each combination were compared with Bayesian compositional estimator-based final ratio and composition data, which are robust against underdetermined bias. Only CHEMTAX analysis using the modeled initial ratio and ratio limit was unbiased; all other combinations showed significant signs of bias. Therefore, the findings in this study indicate that ratio limits and the initial ratio are equally important in the CHEMTAX analysis of biased datasets. Moreover, we obtained statistically supported initial ratios and ratio limits through linear modeling of pigment concentrations and 16s rDNA composition data. Full article
Show Figures

Figure 1

14 pages, 1898 KiB  
Article
Plankton Community Respiration and Particulate Organic Carbon in the Kuroshio East of Taiwan
by Chung-Chi Chen, Pei-Jie Meng, Chih-hao Hsieh and Sen Jan
Plants 2022, 11(21), 2909; https://doi.org/10.3390/plants11212909 - 29 Oct 2022
Cited by 2 | Viewed by 2070
Abstract
Biological organic carbon production and consumption play a fundamental role in the understanding of organic carbon cycling in oceans. However, studies on them in the Kuroshio, the western boundary current in the North Pacific Ocean, are scarce. To better understand the variations of [...] Read more.
Biological organic carbon production and consumption play a fundamental role in the understanding of organic carbon cycling in oceans. However, studies on them in the Kuroshio, the western boundary current in the North Pacific Ocean, are scarce. To better understand the variations of plankton community respiration (CR) and particulate organic carbon (POC), eight cruises. which covered four seasons over a 2-year period, were surveyed across the Kuroshio at the KTV1 transect east of Taiwan. Spatially, a coastal uplift of isotherms (i.e., onshore lifting and offshore deepening) was observed along the KTV1 transect. During the uplift, the cold and nutrient-rich deep waters shoal to shallow water and enhance phytoplankton growth, resulting in higher values of phytoplankton, POC, and plankton CR on the onshore side. In this study, phytoplankton was dominated by picophytoplankton including Prochlorococcus, Synechococcus, and picoeukaryotes. Plankton CR was low, and its mean depth-normalized integrated rate (the upper 100 m water depth) ranged from 7.07 to 22.27 mg C m−3 d−1, to which the picophytoplankton and heterotrophic bacteria contributed the most. The mean depth-normalized integrated value of POC ranged from 12.7 to 21.6 μg C L−1. POC is mainly associated with phytoplankton biomass with a mean carbon ratio of chlorophyll a/POC ≈ 1.03. All results suggest that plankton CR and POC variations may be associated with picoplankton dynamics in the Kuroshio. Full article
(This article belongs to the Special Issue The Metabolic Balance of Planktonic Communities)
Show Figures

Figure 1

15 pages, 4043 KiB  
Article
Simulation Experiment of Environmental Impact of Deep-Sea Mining: Response of Phytoplankton Community to Polymetallic Nodules and Sediment Enrichment in Surface Water
by Rimei Ou, Lei Cai, Jinli Qiu, Hao Huang, Danyun Ou, Weiwen Li, Fanyu Lin, Xuebao He, Lei Wang and Risheng Wu
Toxics 2022, 10(10), 610; https://doi.org/10.3390/toxics10100610 - 14 Oct 2022
Cited by 4 | Viewed by 2820
Abstract
In this paper, simulation experiments were conducted to study the response of phytoplankton biomass and community composition to the influence of polymetallic nodules and sediment at four stations in the western Pacific in 2021. Chlorophyll a, pico-phytoplankton cell abundance, and metal concentration [...] Read more.
In this paper, simulation experiments were conducted to study the response of phytoplankton biomass and community composition to the influence of polymetallic nodules and sediment at four stations in the western Pacific in 2021. Chlorophyll a, pico-phytoplankton cell abundance, and metal concentration were measured before and after 24 h of deck incubation. The results show that there were three different patterns of response, namely, restrained, stimulated, and unaffected patterns. The restrained pattern appeared in the filtered treatments at station Incub.01, and the stimulated pattern appeared in the unfiltered treatments at station Incub.02. The response of the phytoplankton was not detectable at stations Incub.03 and 04. Regardless, positive and negative responses were found in the dominant pico-phytoplankton group—Prochlorococcus—and with slight variation in Synechococcus. The concentration of manganese varied among the treatments compared to that of iron and other metals. The factors affecting the growth of the phytoplankton in this study were metal concentrations and turbidity. The phytoplankton biomass baseline may also have played an important role: the lower the biomass, the higher the growth rate. This study proved that deep-sea polymetallic nodule mining will have a specific impact on surface phytoplankton biomass, but turbidity and particle retention time could be important factors in mitigating the extent of the impact. Full article
(This article belongs to the Special Issue Marine Pollution and Stress Responses in Marine Organisms)
Show Figures

Figure 1

22 pages, 3891 KiB  
Article
Impacts of Mesoscale Eddies on Biogeochemical Variables in the Northwest Pacific
by Jianhua Kang, Yu Wang, Shuhong Huang, Lulu Pei and Zhaohe Luo
J. Mar. Sci. Eng. 2022, 10(10), 1451; https://doi.org/10.3390/jmse10101451 - 7 Oct 2022
Cited by 4 | Viewed by 2292
Abstract
Mesoscale eddies play an important role in regulating biogeochemical cycles. However, the response of biogeochemical variables to cold and warm eddies has not been well elucidated, mainly due to most previous studies relying on remote sensing techniques and lacking in situ observations below [...] Read more.
Mesoscale eddies play an important role in regulating biogeochemical cycles. However, the response of biogeochemical variables to cold and warm eddies has not been well elucidated, mainly due to most previous studies relying on remote sensing techniques and lacking in situ observations below the surface water. Here, we used hydrographic and biochemical data from one survey in the northwestern Pacific to document the vertical biogeochemical structure of one cold and two warm eddies. We first compared the changes of key variables in the eddy core relative to eddy outside, explained the role of key layers (the mixing depth, pycnocline, nutricline, euphotic) in causing these changes, and then analyzed the main environmental factors affecting chlorophyll a (Chla) and phytoplankton communities. Finally we focused on the response mechanisms of key biogeochemical variables to the cold and warm eddies. The results showed that biological variables (Chla, microphytoplankton, picophytoplankton), salinity, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphate (DIP), and dissolved inorganic silicate (DSi) in the cold eddy core increased by 0.2–134%, while in the warm eddy core, they decreased by 0.2–70% relative to the eddy outside. The cold and warm eddies were able to force the deep chlorophyll maximum (DCM), which rose or fell with the pycnocline, nutricline and euphotic depth (Zeu) as a whole. Cold eddies with a raised thermocline could lead to about 20 m elevated DCM and enhanced phytoplankton biomass when the nutricline and thermocline were coincident. In contrast, warm eddies drove isopycnals downward, resulting in a 10–25 m drop in DCM and a decrease in nutrient and Chla concentrations at the center of the eddies. The significant difference in the vertical structure of the phytoplankton community between the center and the outside of the eddy might be explained by the direct influence of both nutrient concentrations and stoichiometry changes. The contribution of microphytoplankton to total biomass was much smaller than that of picophytoplankton in oligotrophic waters where the DIN:DIP and DSi:DIN ratios are significantly low. Compared to nutrients, photosynthetically active radiation (PAR) might not be the main factor controlling phytoplankton biomass and abundance attributed to Zeu being consistently deeper than the mixed depth (Zm), whereas it was likely to be the key limiting factor affecting the vertical distribution of the phytoplankton community. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

17 pages, 3600 KiB  
Article
Feeding Selectivity of Ruditapes philippinarum on Phytoplankton
by Yin Liu, Lun Song, Guangjun Song, Jinhao Wu, Kun Wang, Zhaohui Wang and Suxuan Liu
Fishes 2022, 7(5), 222; https://doi.org/10.3390/fishes7050222 - 26 Aug 2022
Cited by 5 | Viewed by 2496
Abstract
A monthly survey of the feeding selectivity of Ruditapes philippinarum in the Yalu River Estuary in 2020–2021 was conducted using high-throughput sequencing identification and visual grading technology. The results showed that the most-dominant species in the water of the shellfish culture area and [...] Read more.
A monthly survey of the feeding selectivity of Ruditapes philippinarum in the Yalu River Estuary in 2020–2021 was conducted using high-throughput sequencing identification and visual grading technology. The results showed that the most-dominant species in the water of the shellfish culture area and in the stomachs of R. philippinarum was Karlodinium veneficum in those years. The selectivity index (E) indicated that R. philippinarum avoided consuming Bacillariophyta, Chrysophyta and Cryptophyta throughout the year and preferentially consumed Dinophyta and Chlorophyta. In 2020, the annual average biomass of Dinophyta, Bacillariophyta, Chlorophyta, Dictyochophyta, Cryptophyta and Chrysophyta in the stomach contents of R. philippinarum was 54:14:16:1:10:4; it was 41:12:28:0:1:17 in 2021. The annual average biomass ratio of picophytoplankton, nanophytoplankton and microphytoplankton in the stomachs of R. philippinarum was 13:48:39 in 2020; it was 14:66:20 in 2021. R. philippinarum actively fed on nanophytoplankton and avoided picophytoplankton. Among the phytoplankton of different sizes and groups that R. philippinarum prefer to feed, chemical oxygen demand (COD) and organic phosphorus (DOP) have a significant negative effect on the nanophytoplankton community, pH has a positive effect on the Dictyochophyta community and COD and the inorganic nitrogen to phosphorus ratio (DI-N/P) have a significant positive effect on the Chlorophyta community. Full article
Show Figures

Figure 1

20 pages, 2403 KiB  
Article
Phytoplankton Responses to Bacterially Regenerated Iron in a Southern Ocean Eddy
by Marion Fourquez, Robert F. Strzepek, Michael J. Ellwood, Christel Hassler, Damien Cabanes, Sam Eggins, Imojen Pearce, Stacy Deppeler, Thomas W. Trull, Philip W. Boyd and Matthieu Bressac
Microorganisms 2022, 10(8), 1655; https://doi.org/10.3390/microorganisms10081655 - 16 Aug 2022
Cited by 7 | Viewed by 3781
Abstract
In the Subantarctic sector of the Southern Ocean, vertical entrainment of iron (Fe) triggers the seasonal productivity cycle but diminishing physical supply during the spring to summer transition forces microbial assemblages to rapidly acclimate. Here, we tested how phytoplankton and bacteria within an [...] Read more.
In the Subantarctic sector of the Southern Ocean, vertical entrainment of iron (Fe) triggers the seasonal productivity cycle but diminishing physical supply during the spring to summer transition forces microbial assemblages to rapidly acclimate. Here, we tested how phytoplankton and bacteria within an isolated eddy respond to different dissolved Fe (DFe)/ligand inputs. We used three treatments: one that mimicked the entrainment of new DFe (Fe-NEW), another in which DFe was supplied from bacterial regeneration of particles (Fe-REG), and a control with no addition of DFe (Fe-NO). After 6 days, 3.5 (Fe-NO, Fe-NEW) to 5-fold (Fe-REG) increases in Chlorophyll a were observed. These responses of the phytoplankton community were best explained by the differences between the treatments in the amount of DFe recycled during the incubation (Fe-REG, 15% recycled c.f. 40% Fe-NEW, 60% Fe-NO). This additional recycling was more likely mediated by bacteria. By day 6, bacterial production was comparable between Fe-NO and Fe-NEW but was approximately two-fold higher in Fe-REG. A preferential response of phytoplankton (haptophyte-dominated) relative to high nucleic acid (HNA) bacteria was also found in the Fe-REG treatment while the relative proportion of diatoms increased faster in the Fe-NEW and Fe-NO treatments. Comparisons between light and dark incubations further confirmed the competition between picophytoplankton and HNA for DFe. Overall, our results demonstrate great versatility by microorganisms to use different Fe sources that results in highly efficient Fe recycling within surface waters. This study also encourages future research to further investigate the interactions between functional groups of microbes (e.g. HNA and cyanobacteria) to better constraint modeling in Fe and carbon biogeochemical cycles. Full article
(This article belongs to the Special Issue Phytoplankton-Bacteria Interactions 2.0)
Show Figures

Figure 1

13 pages, 2937 KiB  
Article
Distribution and Environmental Impact Factors of Picophytoplankton in the Eastern Indian Ocean
by Xingzhou Wang, Feng Wang and Jun Sun
J. Mar. Sci. Eng. 2022, 10(5), 628; https://doi.org/10.3390/jmse10050628 - 5 May 2022
Cited by 3 | Viewed by 2408
Abstract
Picophytoplankton (pico) in the eastern Indian Ocean (EIO) were investigated during the inter-monsoon periods. They were found to typically comprise Prochlorococcus (Pro), Synechococcus (Syn), and Picoeukaryotes (PEuks). In the survey area, the pico showed two different vertical [...] Read more.
Picophytoplankton (pico) in the eastern Indian Ocean (EIO) were investigated during the inter-monsoon periods. They were found to typically comprise Prochlorococcus (Pro), Synechococcus (Syn), and Picoeukaryotes (PEuks). In the survey area, the pico showed two different vertical distribution patterns in different regions, whereby the Syn abundance decreased with depth, whereas those of Pro and PEuks increased and then decreased with depth, with the maximum depths ranging from 50 to 100 m. The cell abundance and community structure of the pico were similar at the equator (EQ) and the eastern boundary of the Indian Ocean near Sumatra (EB), but the pico cell abundance was significantly lower in the Bay of Bengal (BOB). Pro dominated most regions of the entire EIO and were approximately one-to-two orders of magnitude more abundant than Syn and PEuks. The distributions of Syn and PEuks showed little difference across various regions. Influenced by the physicochemistry of circulation and water masses, there were many different environmental factors in the different regions. The abundance of pico domination by Pro showed a strong positive correlation with the nutrients and salinity in the survey area, indicating increasing nutrient availability, particularly in the oligotrophic EIO. Generalized additive models (GAMs) analysis showed the differences in their responses to environmental variability. Pro and PEuks both increased strongly with warming up to below 26 °C, and Pro and PEuks were more responsive to chemical (nutrient) variability. Syn showed a broader tolerance of low-salinity conditions. In a certain range, an increase in nitrite and nitric acid can improve the cell abundance of Pro. As a significant contributor to primary productivity in oligotrophic waters, this study provides essential information for studying pico communities in the EIO and its adjacent marine ecosystems. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

17 pages, 2491 KiB  
Article
Phytoplankton Surveys in the Arctic Fram Strait Demonstrate the Tiny Eukaryotic Alga Micromonas and Other Picoprasinophytes Contribute to Deep Sea Export
by Charles Bachy, Lisa Sudek, Chang Jae Choi, Charlotte A. Eckmann, Eva-Maria Nöthig, Katja Metfies and Alexandra Z. Worden
Microorganisms 2022, 10(5), 961; https://doi.org/10.3390/microorganisms10050961 - 3 May 2022
Cited by 14 | Viewed by 3392
Abstract
Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears [...] Read more.
Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears to constitute a large, but variable, proportion of the phytoplankton in these waters. Here, we analyze 81 samples from the upper 100 m of the water column from the Fram Strait collected over multiple years (2009–2015). We also analyze sediment trap samples to examine picophytoplankton contributions to export, using both 18S rRNA gene qPCR and V1-V2 16S rRNA Illumina amplicon sequencing to assess the Micromonas abundance within the broader diversity of photosynthetic eukaryotes based on the phylogenetic placement of plastid-derived 16S amplicons. The material sequenced from the sediment traps in July and September 2010 showed that 11.2 ± 12.4% of plastid-derived amplicons are from picoplanktonic prasinophyte algae and other green lineage (Viridiplantae) members. In the traps, Micromonas dominated (83.6 ± 21.3%) in terms of the overall relative abundance of Viridiplantae amplicons, specifically the species Micromonas polaris. Temporal variations in Micromonas abundances quantified by qPCR were also observed, with higher abundances in the late-July traps and deeper traps. In the photic zone samples, four prasinophyte classes were detected in the amplicon data, with Micromonas again being the dominant prasinophyte, based on the relative abundance (89.4 ± 8.0%), but with two species (M. polaris and M. commoda-like) present. The quantitative PCR assessments showed that the photic zone samples with higher Micromonas abundances (>1000 gene copies per mL) had significantly lower standing stocks of phosphate and nitrate, and a shallower average depth (20 m) than those with fewer Micromonas. This study shows that despite their size, prasinophyte picophytoplankton are exported to the deep sea, and that Micromonas is particularly important within this size fraction in Arctic marine ecosystems. Full article
(This article belongs to the Special Issue Polar Microbes)
Show Figures

Figure 1

Back to TopTop