Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (561)

Search Parameters:
Keywords = picking robot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2924 KB  
Article
Path Planning for a Cartesian Apple Harvesting Robot Using the Improved Grey Wolf Optimizer
by Dachen Wang, Huiping Jin, Chun Lu, Xuanbo Wu, Qing Chen, Lei Zhou, Xuesong Jiang and Hongping Zhou
Agronomy 2026, 16(2), 272; https://doi.org/10.3390/agronomy16020272 - 22 Jan 2026
Viewed by 68
Abstract
As a high-value fruit crop grown worldwide, apples require efficient harvesting solutions to maintain a stable supply. Intelligent harvesting robots represent a promising approach to address labour shortages. This study introduced a Cartesian robot integrated with a continuous-picking end-effector, providing a cost-effective and [...] Read more.
As a high-value fruit crop grown worldwide, apples require efficient harvesting solutions to maintain a stable supply. Intelligent harvesting robots represent a promising approach to address labour shortages. This study introduced a Cartesian robot integrated with a continuous-picking end-effector, providing a cost-effective and mechanically simpler alternative to complex articulated arms. The system employed a hand–eye calibration model to enhance positioning accuracy. To overcome the inefficiencies resulting from disordered harvesting sequences and excessive motion trajectories, the harvesting process was treated as a travelling salesman problem (TSP). The conventional fixed-plane return trajectory of Cartesian robots was enhanced using a three-dimensional continuous picking path strategy based on a fixed retraction distance (H). The value of H was determined through mechanical characterization of the apple stem’s brittle fracture, which eliminated redundant horizontal displacements and improved operational efficiency. Furthermore, an improved grey wolf optimizer (IGWO) was proposed for multi-fruit path planning. Simulations demonstrated that the IGWO achieved shorter path lengths compared to conventional algorithms. Laboratory experiments validated that the system successfully achieved vision-based localization and fruit harvesting through optimal path planning, with a fruit picking success rate of 89%. The proposed methodology provides a practical framework for automated continuous harvesting systems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 69667 KB  
Article
YOLO-ELS: A Lightweight Cherry Tomato Maturity Detection Algorithm
by Zhimin Tong, Yu Zhou, Changhao Li, Changqing Cai and Lihong Rong
Appl. Sci. 2026, 16(2), 1043; https://doi.org/10.3390/app16021043 - 20 Jan 2026
Viewed by 82
Abstract
Within the domain of intelligent picking robotics, fruit recognition and positioning are essential. Challenging conditions such as varying light, occlusion, and limited edge-computing power compromise fruit maturity detection. To tackle these issues, this paper proposes a lightweight algorithm YOLO-ELS based on YOLOv8n. Specifically, [...] Read more.
Within the domain of intelligent picking robotics, fruit recognition and positioning are essential. Challenging conditions such as varying light, occlusion, and limited edge-computing power compromise fruit maturity detection. To tackle these issues, this paper proposes a lightweight algorithm YOLO-ELS based on YOLOv8n. Specifically, we reconstruct the backbone by replacing the bottlenecks in the C2f structure with Edge-Information-Enhanced Modules (EIEM) to prioritize morphological cues and filter background redundancy. Furthermore, a Large Separable Kernel Attention (LSKA) mechanism is integrated into the SPPF layer to expand the effective receptive field for multi-scale targets. To mitigate occlusion-induced errors, a Spatially Enhanced Attention Module (SEAM) is incorporated into the decoupled detection head to enhance feature responses in obscured regions. Finally, the Inner-GIoU loss is adopted to refine bounding box regression and accelerate convergence. Experimental results demonstrate that compared to the YOLOv8n baseline, the proposed YOLO-ELS achieves a 14.8% reduction in GFLOPs and a 2.3% decrease in parameters, while attaining a precision, recall, and mAP@50% of 92.7%, 83.9%, and 92.0%, respectively. When compared with mainstream models such as DETR, Faster-RCNN, SSD, TOOD, YOLOv5s, and YOLO11n, the mAP@50% is improved by 7.0%, 4.7%, 11.4%, 8.6%, 3.1%, and 3.2%. Deployment tests on the NVIDIA Jetson Orin Nano Super edge platform yield an inference latency of 25.2 ms and a detection speed of 28.2 FPS, successfully meeting the real-time operational requirements of automated harvesting systems. These findings confirm that YOLO-ELS effectively balances high detection accuracy with lightweight architecture, providing a robust technical foundation for intelligent fruit picking in resource-constrained greenhouse environments. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

18 pages, 14158 KB  
Article
Vision-Based Perception and Execution Decision-Making for Fruit Picking Robots Using Generative AI Models
by Yunhe Zhou, Chunjiang Yu, Jiaming Zhang, Yuanhang Liu, Jiangming Kan, Xiangjun Zou, Kang Zhang, Hanyan Liang, Sheng Zhang and Fengyun Wu
Machines 2026, 14(1), 117; https://doi.org/10.3390/machines14010117 - 19 Jan 2026
Viewed by 129
Abstract
At present, fruit picking mainly relies on manual operation. Taking the litchi (litchi chinensis Sonn.)-picking robot as an example, visual perception is often affected by illumination variations, low recognition accuracy, complex maturity judgment, and occlusion, which lead to inaccurate fruit localization. This study [...] Read more.
At present, fruit picking mainly relies on manual operation. Taking the litchi (litchi chinensis Sonn.)-picking robot as an example, visual perception is often affected by illumination variations, low recognition accuracy, complex maturity judgment, and occlusion, which lead to inaccurate fruit localization. This study aims to establish an embodied perception mechanism based on “perception-reasoning-execution” to enhance the visual perception and decision-making capability of the robot in complex orchard environments. First, a Y-LitchiC instance segmentation method is proposed to achieve high-precision segmentation of litchi clusters. Second, a generative artificial intelligence model is introduced to intelligently assess fruit maturity and occlusion, providing auxiliary support for automatic picking. Based on the auxiliary judgments provided by the generative AI model, two types of dynamic harvesting decisions are formulated for subsequent operations. For unoccluded main fruit-bearing branches, a skeleton thinning algorithm is applied within the segmented region to extract the skeleton line, and the midpoint of the skeleton is used to perform the first type of localization and harvesting decision. In contrast, for main fruit-bearing branches occluded by leaves, threshold-based segmentation combined with maximum connected component extraction is employed to obtain the target region, followed by skeleton thinning, thereby completing the second type of dynamic picking decision. Experimental results show that the Y-LitchiC model improves the mean average precision (mAP) by 1.6% compared with the YOLOv11s-seg model, achieving higher accuracy in litchi cluster segmentation and recognition. The generative artificial intelligence model provides higher-level reasoning and decision-making capabilities for automatic picking. Overall, the proposed embodied perception mechanism and dynamic picking strategies effectively enhance the autonomous perception and decision-making of the picking robot in complex orchard environments, providing a reliable theoretical basis and technical support for accurate fruit localization and precision picking. Full article
(This article belongs to the Special Issue Control Engineering and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 11774 KB  
Article
Retrieval Augment: Robust Path Planning for Fruit-Picking Robot Based on Real-Time Policy Reconstruction
by Binhao Chen, Shuo Zhang, Zichuan He and Liang Gong
Sustainability 2026, 18(2), 829; https://doi.org/10.3390/su18020829 - 14 Jan 2026
Viewed by 133
Abstract
The working environment of fruit-picking robots is highly complex, involving numerous obstacles such as branches. Sampling-based algorithms like Rapidly Exploring Random Trees (RRTs) are faster but suffer from low success rates and poor path quality. Deep reinforcement learning (DRL) has excelled in high-degree-of-freedom [...] Read more.
The working environment of fruit-picking robots is highly complex, involving numerous obstacles such as branches. Sampling-based algorithms like Rapidly Exploring Random Trees (RRTs) are faster but suffer from low success rates and poor path quality. Deep reinforcement learning (DRL) has excelled in high-degree-of-freedom (DOF) robot path planning, but typically requires substantial computational resources and long training cycles, which limits its applicability in resource-constrained and large-scale agricultural deployments. However, picking robot agents trained by DRL underperform because of the complexity and dynamics of the picking scenes. We propose a real-time policy reconstruction method based on experience retrieval to augment an agent trained by DRL. The key idea is to optimize the agent’s policy during inference rather than retraining, thereby reducing training cost, energy consumption, and data requirements, which are critical factors for sustainable agricultural robotics. We first use Soft Actor–Critic (SAC) to train the agent with simple picking tasks and less episodes. When faced with complex picking tasks, instead of retraining the agent, we reconstruct its policy by retrieving experience from similar tasks and revising action in real time, which is implemented specifically by real-time action evaluation and rejection sampling. Overall, the agent evolves into an augment agent through policy reconstruction, enabling it to perform much better in complex tasks with narrow passages and dense obstacles than the original agent. We test our method both in simulation and in the real world. Results show that the augment agent outperforms the original agent and sampling-based algorithms such as BIT* and AIT* in terms of success rate (+133.3%) and path quality (+60.4%), demonstrating its potential to support reliable, scalable, and sustainable fruit-picking automation. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 4498 KB  
Article
Research and Implementation of Peach Fruit Detection and Growth Posture Recognition Algorithms
by Linjing Xie, Wei Ji, Bo Xu, Donghao Wu and Jiaxin Ao
Agriculture 2026, 16(2), 193; https://doi.org/10.3390/agriculture16020193 - 12 Jan 2026
Viewed by 187
Abstract
Robotic peach harvesting represents a pivotal strategy for reducing labor costs and improving production efficiency. The fundamental prerequisite for a harvesting robot to successfully complete picking tasks is the accurate recognition of fruit growth posture subsequent to target identification. This study proposes a [...] Read more.
Robotic peach harvesting represents a pivotal strategy for reducing labor costs and improving production efficiency. The fundamental prerequisite for a harvesting robot to successfully complete picking tasks is the accurate recognition of fruit growth posture subsequent to target identification. This study proposes a novel methodology for peach growth posture recognition by integrating an enhanced YOLOv8 algorithm with the RTMpose keypoint detection framework. Specifically, the conventional Neck network in YOLOv8 was replaced by an Atrous Feature Pyramid Network (AFPN) to bolster multi-scale feature representation. Additionally, the Soft Non-Maximum Suppression (Soft-NMS) algorithm was implemented to suppress redundant detections. The RTMpose model was further employed to locate critical morphological landmarks, including the stem and apex, to facilitate precise growth posture recognition. Experimental results indicated that the refined YOLOv8 model attained precision, recall, and mean average precision (mAP) of 98.62%, 96.3%, and 98.01%, respectively, surpassing the baseline model by 8.5%, 6.2%, and 3.0%. The overall accuracy for growth posture recognition achieved 89.60%. This integrated approach enables robust peach detection and reliable posture recognition, thereby providing actionable guidance for the end-effector of an autonomous harvesting robot. Full article
Show Figures

Figure 1

30 pages, 4603 KB  
Article
Joint Optimization of Storage Assignment and Order Batching for Efficient Heterogeneous Robot G2P Systems
by Li Li, Yan Wei, Yanjie Liang and Jin Ren
Sustainability 2026, 18(2), 743; https://doi.org/10.3390/su18020743 - 11 Jan 2026
Viewed by 220
Abstract
Currently, with the widespread popularization of e-commerce systems, enterprises have increasingly high requirements for the timeliness of order fulfillment. It has become particularly critical to enhance the operational efficiency of heterogeneous robotic “goods-to-person” (G2P) systems in book e-commerce fulfillment, reduce enterprise operational costs, [...] Read more.
Currently, with the widespread popularization of e-commerce systems, enterprises have increasingly high requirements for the timeliness of order fulfillment. It has become particularly critical to enhance the operational efficiency of heterogeneous robotic “goods-to-person” (G2P) systems in book e-commerce fulfillment, reduce enterprise operational costs, and achieve highly efficient, low-carbon, and sustainable warehouse management. Therefore, this study focuses on determining the optimal storage location assignment strategy and order batching method. By comprehensively considering the characteristics of book e-commerce, such as small-batch, high-frequency orders and diverse SKU requirements, as well as existing system issues including uncoordinated storage assignment and order processing, and differences in the operational efficiency of heterogeneous robots, this study proposes a joint optimization framework for storage location assignment and order batching centered on a multi-objective model. The framework integrates the time costs of robot picking operations, SKU turnover rates, and inter-commodity correlations, introduces the STCSPBC storage strategy to optimize storage location assignment, and designs the SA-ANS algorithm to solve the storage assignment problem. Meanwhile, order batching optimization is based on dynamic inventory data, and the S-O Greedy algorithm is adopted to find solutions with lower picking costs. This achieves the joint optimization of storage location assignment and order batching, improves the system’s picking efficiency, reduces operational costs, and realizes green and sustainable management. Finally, validation via a spatiotemporal network model shows that the proposed joint optimization framework outperforms existing benchmark methods, achieving a 45.73% improvement in average order hit rate, a 48.79% reduction in total movement distance, a 46.59% decrease in operation time, and a 24.04% reduction in conflict frequency. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

28 pages, 9738 KB  
Article
Design and Evaluation of an Underactuated Rigid–Flexible Coupled End-Effector for Non-Destructive Apple Harvesting
by Zeyi Li, Zhiyuan Zhang, Jingbin Li, Gang Hou, Xianfei Wang, Yingjie Li, Huizhe Ding and Yufeng Li
Agriculture 2026, 16(2), 178; https://doi.org/10.3390/agriculture16020178 - 10 Jan 2026
Viewed by 253
Abstract
In response to the growing need for efficient, stable, and non-destructive gripping in apple harvesting robots, this study proposes a novel rigid–flexible coupled end-effector. The design integrates an underactuated mechanism with a real-time force feedback control system. First, compression tests on ‘Red Fuji’ [...] Read more.
In response to the growing need for efficient, stable, and non-destructive gripping in apple harvesting robots, this study proposes a novel rigid–flexible coupled end-effector. The design integrates an underactuated mechanism with a real-time force feedback control system. First, compression tests on ‘Red Fuji’ apples determined the minimum damage threshold to be 24.33 N. A genetic algorithm (GA) was employed to optimize the geometric parameters of the finger mechanism for uniform force distribution. Subsequently, a rigid–flexible coupled multibody dynamics model was established to simulate the grasping of small (70 mm), medium (80 mm), and large (90 mm) apples. Additionally, a harvesting experimental platform was constructed to verify the performance. Results demonstrated that by limiting the contact force of the distal phalange region silicone (DPRS) to 24 N via active feedback, the peak contact forces on the proximal phalange region silicone (PPRS) and middle phalange region silicone (MPRS) were effectively maintained below the damage threshold across all three sizes. The maximum equivalent stress remained significantly below the fruit’s yield limit, ensuring no mechanical damage occurred, with an average enveloping time of approximately 1.30 s. The experimental data showed strong agreement with the simulation, with a mean absolute percentage error (MAPE) of 5.98% for contact force and 5.40% for enveloping time. These results confirm that the proposed end-effector successfully achieves high adaptability and reliability in non-destructive harvesting, offering a valuable reference for agricultural robotics. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 4952 KB  
Article
Star Lightweight Convolution and NDT-RRT: An Integrated Path Planning Method for Walnut Harvesting Robots
by Xiangdong Liu, Xuan Li, Bangbang Chen, Jijing Lin, Kejia Zhuang and Baojian Ma
Sensors 2026, 26(1), 305; https://doi.org/10.3390/s26010305 - 2 Jan 2026
Viewed by 503
Abstract
To address issues such as slow response speed and low detection accuracy in fallen walnut picking robots in complex orchard environments, this paper proposes a detection and path planning method that integrates star-shaped lightweight convolution with NDT-RRT. The method includes the improved lightweight [...] Read more.
To address issues such as slow response speed and low detection accuracy in fallen walnut picking robots in complex orchard environments, this paper proposes a detection and path planning method that integrates star-shaped lightweight convolution with NDT-RRT. The method includes the improved lightweight detection model YOLO-FW and an efficient path planning algorithm NDT-RRT. YOLO-FW enhances feature extraction by integrating star-shaped convolution (Star Blocks) and the C3K2 module in the backbone network, while the introduction of a multi-level scale pyramid structure (CA_HSFPN) in the neck network improves multi-scale feature fusion. Additionally, the loss function is replaced with the PIoU loss, which incorporates the concept of Inner-IoU, thus improving regression accuracy while maintaining the model’s lightweight nature. The NDT-RRT path planning algorithm builds upon the RRT algorithm by employing node rejection strategies, dynamic step-size adjustment, and target-bias sampling, which reduces planning time while maintaining path quality. Experiments show that, compared to the baseline model, the YOLO-FW model achieves precision, recall, and mAP@0.5 of 90.6%, 90.4%, and 95.7%, respectively, with a volume of only 3.62 MB and a 30.65% reduction in the number of parameters. The NDT-RRT algorithm reduces search time by 87.71% under conditions of relatively optimal paths. Furthermore, a detection and planning system was developed based on the PySide6 framework on an NVIDIA Jetson Xavier NX embedded device. On-site testing demonstrated that the system exhibits good robustness, high precision, and real-time performance in real orchard environments, providing an effective technological reference for the intelligent operation of fallen walnut picking robots. Full article
(This article belongs to the Special Issue Robotic Systems for Future Farming)
Show Figures

Figure 1

30 pages, 11819 KB  
Article
A Smart Four-DOF SCARA Robot: Design, Kinematic Modeling, and Machine Learning-Based Performance Evaluation
by Ahmed G. Mahmoud A. Aziz, Saleh Al Dawsari, Amr E. Rafaat, Ayat G. Abo El-Magd and Ahmed A. Zaki Diab
Automation 2026, 7(1), 11; https://doi.org/10.3390/automation7010011 - 1 Jan 2026
Viewed by 367
Abstract
Robotics is increasingly used in higher education laboratories, but most commercial robots are costly and designed for industrial use. This paper presents the design, modeling, and experimental evaluation of a low-cost four-degree-of-freedom (DOF) SCARA robot for educational and research purposes. The robot supports [...] Read more.
Robotics is increasingly used in higher education laboratories, but most commercial robots are costly and designed for industrial use. This paper presents the design, modeling, and experimental evaluation of a low-cost four-degree-of-freedom (DOF) SCARA robot for educational and research purposes. The robot supports pick-and-place and laser engraving tasks. Direct and inverse kinematics were developed using Denavit–Hartenberg parameters, and the mechanical structure was validated through the dynamic analyses. A new machine learning (ML) framework integrating Support Vector Machine (SVM) and Random Forest (RF) models was implemented to enhance motion precision, predict task success, and compensate positioning errors in real time. Experimental tests over 360 cyles under varying speeds, payloads, and object types show that the SVM predicts grasp success with 94.4% accuracy, while the RF model estimates XY positioning error with an RMSE of 1.84 mm and cycle time error with an RMSE of 0.41 s. Moreover, a novel approach in this work that combines it with a laser engraving machine has been suggested. Repeatability experiments report 0.97 mm ISO-standard repeatability, and laser engraving trials yield mean positional errors of 0.45 mm, with maximum deviation of 0.90 mm. Compared to a baseline PID controller, the ML-enhanced strategy reduces RMS positioning error from 3.30 mm to 1.83 mm and improves repeatability by 36.5%, while slightly decreasing cycle time. These results demonstrate that the proposed SCARA robot achieves high-precision, consistent, and flexible operation suitable for both academic and light-duty practical applications. Full article
(This article belongs to the Section Robotics and Autonomous Systems)
Show Figures

Figure 1

17 pages, 3382 KB  
Article
Ultra-Low Power Consumption Electromagnetic Actuator Based on Potential Magnetic Energy Harnessing: Principle of Operation and Experimental Validation
by M. Albertos-Cabanas, I. Valiente-Blanco, O. Manzano-Narro, D. Lopez-Pascual and S. Sanchez-Prieto
Actuators 2026, 15(1), 25; https://doi.org/10.3390/act15010025 - 1 Jan 2026
Viewed by 209
Abstract
This paper presents a novel rotary electromagnetic actuator designed for high-speed and high-precision positioning with ultra-low power consumption, intended for industrial and scientific applications such as rotary index tables, pick and place robots, or optical systems, among others. The actuator is based on [...] Read more.
This paper presents a novel rotary electromagnetic actuator designed for high-speed and high-precision positioning with ultra-low power consumption, intended for industrial and scientific applications such as rotary index tables, pick and place robots, or optical systems, among others. The actuator is based on harnessing electromagnetic potential energy and its transformation into kinetic energy to enable accurate and rapid changes between different equilibrium positions of the device. A prototype with an outer diameter of 86 mm and a thickness of 25 mm and a mass of about 0.57 kg has been manufactured and tested. It presents eight equilibrium positions evenly separated to 45 degrees, reachable in just 48 ms with a positioning accuracy of 20 arcmin. Experimental results demonstrate that the device generates a torque of 590 mNm, maximum angular speed and acceleration up to 663 rpm and 14,500 rad/s2, respectively, with an input current of ±500 mA and a maximum power consumption of just 6.3 W. This value of power consumption represents a power saving up to 80% when compared to a conventional electromagnetic actuator that reproduces the same motion profile. An energy saving up to 38% is calculated for a change between two adjacent equilibrium positions. This innovative technology provides a new tool for precise positioning in highly dynamic applications with unprecedented energy and power savings. Full article
Show Figures

Figure 1

22 pages, 14360 KB  
Article
Kinematic Characterization of a Novel 4-DoF Parallel Mechanism with Modular Actuation
by Zoltán Forgó and Ferenc Tolvaly-Roșca
Robotics 2026, 15(1), 13; https://doi.org/10.3390/robotics15010013 - 1 Jan 2026
Viewed by 187
Abstract
The accelerating industrial demand for high-speed manipulation has necessitated the development of robotic architectures that effectively balance dynamic performance with workspace size. While serial SCARA robots offer large workspaces and parallel Delta robots provide high acceleration, existing architectures fail to combine these benefits [...] Read more.
The accelerating industrial demand for high-speed manipulation has necessitated the development of robotic architectures that effectively balance dynamic performance with workspace size. While serial SCARA robots offer large workspaces and parallel Delta robots provide high acceleration, existing architectures fail to combine these benefits effectively for specific four-degree-of-freedom (4-DoF) Schoenflies motion tasks. This study introduces and characterizes a novel 4-DoF parallel topology, having a symmetrical build-up, which is distinguished by its use of modular 2-DoF linear drive units. The research methodology entails the structural synthesis of the kinematic chain followed by kinematic analysis using vector algebra to derive closed-form inverse geometric models. Additionally, the Jacobian matrix is formulated to evaluate velocity transmission and systematically classify singular configurations, while the dexterity index is defined to assess the rotational capabilities of the mechanism. Numerical simulations of pick-and-place trajectory were also conducted, varying trajectory curvature to analyze kinematic behavior. The results demonstrate that the proposed modular architecture yields a highly symmetric and homogeneous workspace that can be scaled simply by adjusting the drive module lengths. Furthermore, the singularity and dexterity analyses reveal a substantial, singularity-free operational workspace, although tighter trajectory curvatures were found to impose higher velocity demands on the joints. In conclusion, the proposed mechanism successfully achieves the targeted Schoenflies motion, offering a solution for automated industrial tasks. Full article
(This article belongs to the Special Issue Advanced Control and Optimization for Robotic Systems)
Show Figures

Figure 1

20 pages, 1440 KB  
Article
Robust Optimization and Workspace Enhancement of a Reconfigurable Delta Robot via a Singularity-Sensitive Index
by Arturo Franco-López, Mauro Maya, Alejandro González, Liliana Félix-Ávila, César-Fernando Méndez-Barrios and Antonio Cardenas
Robotics 2026, 15(1), 11; https://doi.org/10.3390/robotics15010011 - 30 Dec 2025
Viewed by 273
Abstract
This study investigates the kinematic behavior of a reconfigurable Delta parallel robot aiming to enhance its performance in real industrial applications such as high-speed packaging, precision pick-and-place operations, automated inspection, and lightweight assembly tasks. While Delta robots are widely recognized for their speed [...] Read more.
This study investigates the kinematic behavior of a reconfigurable Delta parallel robot aiming to enhance its performance in real industrial applications such as high-speed packaging, precision pick-and-place operations, automated inspection, and lightweight assembly tasks. While Delta robots are widely recognized for their speed and accuracy, their practical use is often limited by workspace constraints and singularities that compromise motion stability and control safety. Through a detailed analysis, it is shown that classical Jacobian-based performance indices are unsuitable for resolving the redundancy introduced by geometric reconfiguration, as they may lead the system toward singular or ill-conditioned configurations. To overcome these limitations, this work introduces an adjustable singularity-sensitive performance index designed to penalize extreme velocity and force singular values and enables tuning between velocity and force performance. Simulation results demonstrate that optimizing the reconfiguration parameter using this index increases the usable workspace by approximately 82% and improves the uniformity of manipulability across the workspace. These findings suggest that the proposed approach provides a robust framework for enhancing the operational range and kinematic safety of reconfigurable Delta robots, while remaining adaptable to different design priorities. Full article
(This article belongs to the Topic New Trends in Robotics: Automation and Autonomous Systems)
Show Figures

Figure 1

13 pages, 254 KB  
Article
MixedPalletBoxes Dataset: A Synthetic Benchmark Dataset for Warehouse Applications
by Adamos Daios and Ioannis Kostavelis
Appl. Syst. Innov. 2026, 9(1), 14; https://doi.org/10.3390/asi9010014 - 29 Dec 2025
Viewed by 456
Abstract
Mixed palletizing remains a core challenge in distribution centers and modern warehouse operations, particularly within robotic handling and automation systems. Progress in this domain has been hindered by the lack of realistic, freely available datasets for rigorous algorithmic benchmarking. This work addresses this [...] Read more.
Mixed palletizing remains a core challenge in distribution centers and modern warehouse operations, particularly within robotic handling and automation systems. Progress in this domain has been hindered by the lack of realistic, freely available datasets for rigorous algorithmic benchmarking. This work addresses this gap by introducing MixedPalletBoxes, a family of seven synthetic datasets designed to evaluate algorithm scalability, adaptability and performance variability across a broad spectrum of workload sizes (500–100,000 records) generated via an open source Python script. These datasets enable the assessment of algorithmic behavior under varying operational complexities and scales. Each box instance is richly annotated with geometric dimensions, material properties, load capacities, environmental tolerances and handling flags. To support dynamic experimentation, the dataset is accompanied by a FastAPI-based tool that enables the on-demand creation of randomized daily picking lists simulating realistic inbound orders. Performance is analyzed through metrics such as pallet count, volume utilization, item distribution per pallet and runtime. Across all dataset sizes, the distributions of the physical attributes remain consistent, confirming stable generation behavior. The proposed framework combines standardization, feature richness and scalability, offering a transparent and extensible platform for benchmarking and advancing robotic mixed palletizing solutions. All datasets, generation code and evaluation scripts are publicly released to foster open collaboration and accelerate innovation in data-driven warehouse automation research. Full article
28 pages, 5880 KB  
Article
Load Dynamic Characteristics and Energy Consumption Model of Manipulator Joints for Picking Robots Based on Bond Graphs: Taking Joints V and VI as Examples
by Jinzhi Xie, Yunfeng Zhang, Changpin Chun, Congbo Li, Gang Xu and Li Li
Agriculture 2026, 16(1), 14; https://doi.org/10.3390/agriculture16010014 - 20 Dec 2025
Viewed by 385
Abstract
The manipulator is a key component for harvesting citrus and other fruit crops. A study of the dynamic characteristics and energy consumption modelling of its joints is the foundation for optimising the manipulator’s load parameters and achieving efficient operation. To address the issues [...] Read more.
The manipulator is a key component for harvesting citrus and other fruit crops. A study of the dynamic characteristics and energy consumption modelling of its joints is the foundation for optimising the manipulator’s load parameters and achieving efficient operation. To address the issues of the 6-DOF citrus-picking manipulator’s high degrees of freedom and complex structure, which lead to complex dynamic characteristics and an unclear energy transfer and consumption mechanism, the electromechanical coupling dynamics and energy consumption of the joint system are systematically studied using bond graphs. Firstly, the bond graph model is constructed by combining it with the joint system’s physical structure. On this basis, the corresponding dynamic characteristic state equation and energy consumption model are established. Secondly, the dynamic response and energy consumption characteristics of the joint system are analysed, revealing the system’s energy consumption and dynamic characteristics under different working conditions. Finally, the effectiveness and precision of the proposed model in describing the dynamic behaviour of the joint system and energy consumption are verified through experiments. The model provides a theoretical basis and a new research perspective for optimizing joint parameters, load solutions, and energy efficiency of the harvesting manipulator. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 6491 KB  
Article
An Enhanced Network Based on Improved YOLOv7 for Apple Robot Picking
by Jie Wu, Huawei Yang, Shucheng Wang, Ning Li, Xiaojie Shi, Xuzhen Lu, Zhimin Lun, Shaowei Wang, Supakorn Wongsuk and Peng Qi
Horticulturae 2025, 11(12), 1539; https://doi.org/10.3390/horticulturae11121539 - 18 Dec 2025
Viewed by 405
Abstract
In the conventional agricultural production process, the harvesting of mature fruits is frequently dependent on the observation and labor of workers, a process that is often time-consuming and labor-intensive. This study proposes an enhanced YOLOv7 detection and recognition model that incorporates a cross-spatial-channel [...] Read more.
In the conventional agricultural production process, the harvesting of mature fruits is frequently dependent on the observation and labor of workers, a process that is often time-consuming and labor-intensive. This study proposes an enhanced YOLOv7 detection and recognition model that incorporates a cross-spatial-channel 3D attention mechanism, a prediction head, and a weighted bidirectional feature pyramid neck optimization. The motivation for this study is to address the issues of uneven target distribution, mutual occlusion of fruits, and uneven light distribution that are prevalent in harvesting operations within orchards. The experimental findings demonstrate that the proposed model achieves an mAP@0.5–0.95 of 89.3%, representing an enhancement of 8.9% in comparison to the initial network. This method has resolved the issue of detecting and positioning the harvesting manipulator in complex orchard scenarios, thereby providing technical support for unmanned agricultural operations. Full article
Show Figures

Figure 1

Back to TopTop