Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (611)

Search Parameters:
Keywords = phytotoxic activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 25274 KB  
Article
EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation
by Haochen Shen, Ziyi Liu, Chen Wang, Ying Chu, Chuhan Zhang, Yang Yu and Shaohui Yang
Plants 2026, 15(2), 231; https://doi.org/10.3390/plants15020231 - 12 Jan 2026
Viewed by 87
Abstract
Soil co-contamination with cadmium (Cd) and zinc (Zn) poses serious threats to environmental safety and public health. This study investigates the enhancement effect and underlying mechanism of the biodegradable chelator Ethylenediamine-N,N′-disuccinic acid (EDDS) on phytoremediation of Cd-Zn contaminated soil using Sedum lineare. [...] Read more.
Soil co-contamination with cadmium (Cd) and zinc (Zn) poses serious threats to environmental safety and public health. This study investigates the enhancement effect and underlying mechanism of the biodegradable chelator Ethylenediamine-N,N′-disuccinic acid (EDDS) on phytoremediation of Cd-Zn contaminated soil using Sedum lineare. The results demonstrate that EDDS application (3.65 g·L−1) effectively alleviated metal-induced phytotoxicity by enhancing chlorophyll synthesis, activating antioxidant enzymes (catalase and dismutase), regulating S-nitrosoglutathione reductase activity, and promoting leaf protein synthesis, thereby improving photosynthetic performance and cellular integrity. The combined treatment significantly increased the bioavailability of Cd and Zn in soil, promoted their transformation into exchangeable fraction, and resulted in removal rates of 30.8% and 28.9%, respectively. EDDS also modified the interaction patterns between heavy metals and essential nutrients, particularly the competitive relationships through selective chelation between Cd/Zn and Fe/Mn during plant uptake. Soil health was substantially improved, as evidenced by reduced electrical conductivity, enhanced cation exchange capacity, and enriched beneficial microbial communities including Sphingomonadaceae. Based on the observed ion antagonism during metal uptake and translocation, this study proposes a novel “Nutrient Regulation Assisted Remediation” strategy to optimize heavy metal accumulation and improve remediation efficiency through rhizosphere nutrient management. These findings confirm the EDDS–S. lineare system as an efficient and sustainable solution for remediation of Cd–Zn co-contaminated soils. Full article
Show Figures

Figure 1

23 pages, 2465 KB  
Article
Biodegradable Polybutylene Adipate Terephthalate (PBAT) Microplastics Cause More Toxic Effects on Winter Wheat in the Presence of Trichoderma citrinoviride and 2,4-D than Low-Density Polyethylene (LDPE)
by Anna Jasińska, Mirosława Słaba, Sylwia Różalska, Anastasiia Kubera, Hermann J. Heipieper and Przemysław Bernat
Agronomy 2026, 16(2), 182; https://doi.org/10.3390/agronomy16020182 - 11 Jan 2026
Viewed by 202
Abstract
The increasing contamination of agricultural soils with microplastics (MPs) represents an emerging environmental challenge. While conventional plastics such as low-density polyethylene (LDPE) persist for decades, biodegradable alternatives like polybutylene adipate terephthalate (PBAT) are promoted as eco-friendly solutions. However, their environmental safety for crop [...] Read more.
The increasing contamination of agricultural soils with microplastics (MPs) represents an emerging environmental challenge. While conventional plastics such as low-density polyethylene (LDPE) persist for decades, biodegradable alternatives like polybutylene adipate terephthalate (PBAT) are promoted as eco-friendly solutions. However, their environmental safety for crop plants and soil microbiota remains poorly understood. In this study, we evaluated the effects of LDPE and PBAT microplastics (1% w/w) on the growth and physiological state of winter wheat (Triticum aestivum L.) cultivated in soil, either alone or in combination with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the plant-beneficial fungus Trichoderma citrinoviride. Growth parameters (root and shoot length and mass), germination index, chlorophyll content, antioxidant enzyme activity, and lipidomic profiles of wheat were assessed. PBAT stimulated biomass accumulation but simultaneously triggered oxidative stress and remodeled membrane phospholipids, indicating physiological disturbance. T. citrinoviride enhanced wheat growth and mitigated oxidative stress under non-contaminated conditions; however, its beneficial effect was generally suppressed in the presence of PBAT and/or 2,4-D. The results suggest that, despite its biodegradability, PBAT may pose a higher phytotoxic potential than conventional LDPE, particularly by altering oxidative balance and membrane lipid composition in wheat. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 14030 KB  
Article
Isolation and Identification of a Phytotoxic Substance from Echinochloa crus-galli Infected with Leaf Blight for the Development of Bioherbicides
by Hisashi Kato-Noguchi and Kana Tanaka
Processes 2026, 14(2), 214; https://doi.org/10.3390/pr14020214 - 7 Jan 2026
Viewed by 172
Abstract
The infestation of Echinochloa crus-galli (L.) P.Beauv. in crop fields results in significant yield loss in many agricultural systems. Currently, the most effective strategy for controlling E. crus-galli is the application of synthetic herbicides. However, biotypes of E. crus-galli that are resistant to [...] Read more.
The infestation of Echinochloa crus-galli (L.) P.Beauv. in crop fields results in significant yield loss in many agricultural systems. Currently, the most effective strategy for controlling E. crus-galli is the application of synthetic herbicides. However, biotypes of E. crus-galli that are resistant to different modes of herbicide action often emerge. Thus, it is necessary to develop alternative control methods and address ecological concerns about synthetic herbicides. During the field survey, we observed diseased E. crus-galli exhibiting symptoms of leaf blight. These symptoms indicate a potential pathogen infection and subsequent phytotoxin production during the pathogenesis. Therefore, we aimed to isolate and identify the phytotoxic substances present in the diseased leaves. Aqueous extracts of the diseased leaves exhibited phytotoxicity, suppressing the growth of Echinochloa crus-galli seedlings in a concentration-dependent manner. A phytotoxic substance was isolated from the leaf extracts through a bioassay-guided separation process using the E. crus-galli bioassay. Spectrum analysis revealed that the phytotoxic substance was monocerin. Monocerin inhibited the growth of coleoptiles and roots of E. crus-galli seedlings at concentrations greater than 30 and 10 μM, respectively, and inhibited germination at concentrations greater than 100 μM. Therefore, monocerin may be involved in the phytotoxic activity exhibited by the extracts of E. crus-galli leaves with blight symptoms. Creating bioherbicides based on the monocerin structure could be an environmentally friendly approach to weed management. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Figure 1

15 pages, 1581 KB  
Article
The Protective Role of Sodium Nitroprusside in Alleviating Salt Stress During Germination and Seedling Establishment of Thai Eggplant
by Siwakorn Ponkham and Kanogwan Seraypheap
Seeds 2026, 5(1), 4; https://doi.org/10.3390/seeds5010004 - 7 Jan 2026
Viewed by 108
Abstract
Thai eggplant (Solanum melongena L. cv. Chao Phraya), a widely cultivated vegetable with increasing global demand, is highly susceptible to salinity stress, which can severely impair seed germination and early seedling development. This study investigated the effects of sodium nitroprusside (SNP), a [...] Read more.
Thai eggplant (Solanum melongena L. cv. Chao Phraya), a widely cultivated vegetable with increasing global demand, is highly susceptible to salinity stress, which can severely impair seed germination and early seedling development. This study investigated the effects of sodium nitroprusside (SNP), a nitric oxide (NO) donor, on seed germination and seedling growth under salt stress conditions. Seeds were pre-treated with SNP at concentrations of 0, 0.05, 0.1, and 0.2 mM for 24 h and subsequently germinated under saline conditions with NaCl solutions (0, 100, and 200 mM). SNP pre-treatment, particularly at 0.05 and 0.1 mM, significantly improved germination percentage and germination rate in seeds exposed to 200 mM NaCl compared to untreated controls. Increased NaCl concentrations induced oxidative stress in seedlings, as evidenced by elevated hydrogen peroxide (H2O2) accumulation, which in turn caused lipid peroxidation, reflected by higher malondialdehyde (MDA) levels. Salt stress significantly increased ascorbate peroxidase (APX) activity, whereas catalase (CAT) activity showed no significant change across treatments. Correlation analysis revealed that APX activity was positively correlated with oxidative stress markers (H2O2) and delayed germination (T50/MGT), whereas CAT activity showed no significant correlation with these parameters. In contrast, elevated APX activity was strongly and negatively correlated with overall seedling growth and vigor (SVI/GI), indicating that the underlying stress condition had a detrimental effect on plant performance. Overall, SNP pre-treatment, particularly at 0.05 and 0.1 mM, significantly enhanced salt tolerance by promoting germination (increasing GP and reducing T50/MGT) and improving seedling growth (SL and RL). This protective effect is associated with improved redox regulation and partial mitigation of oxidative damage, as reflected by changes in H2O2, MDA, and APX; however, excessive SNP concentrations may exert phytotoxic effects, highlighting the importance of optimal dosing. Full article
Show Figures

Figure 1

23 pages, 4080 KB  
Article
Invasive Goldenrod (Solidago gigantea Aiton) as a Source of Natural Bioactive Antimicrobial, Insecticidal, and Allelopathic Compounds
by Elżbieta Gębarowska, Jacek Łyczko, Anna Kmieć, Paulina Bączek, Kamila Twardowska and Bogdan Stępień
Molecules 2026, 31(1), 126; https://doi.org/10.3390/molecules31010126 - 29 Dec 2025
Viewed by 253
Abstract
Goldenrod (Solidago gigantea Aiton) is a highly invasive species in Europe (e.g., Poland, Germany, and the Czech Republic) whose secondary metabolites can serve as potential sources of bioactive compounds. This study evaluated the phytochemical profile of S. gigantea extracts and evaluated their [...] Read more.
Goldenrod (Solidago gigantea Aiton) is a highly invasive species in Europe (e.g., Poland, Germany, and the Czech Republic) whose secondary metabolites can serve as potential sources of bioactive compounds. This study evaluated the phytochemical profile of S. gigantea extracts and evaluated their antibacterial, insecticidal, and phytotoxic activities. The extracts were found to be rich in flavonoids (TFC = 101 mg QE/g) and phenolics (TPC = 175 mg GAE/g), with chlorogenic acid and rutin as dominant constituents. Strong antibacterial activity was observed against Gram-positive bacteria, particularly Staphylococcus spp. (MIC90 = 2.3 mg/mL; MBC = 5 mg/mL), while Gram-negative bacteria were less sensitive, with moderate susceptibility in Rhizobium radiobacter and Pseudomonas syringae. The extract exhibited fungistatic activity against all tested filamentous fungi, with Fusarium species being the most sensitive (49–56% growth inhibition at 10 mg/mL). Insecticidal assays demonstrated significant mortality of Tribolium confusum adults at 2.5–7.0 mg/mL and feeding inhibition at concentrations as low as 0.5 mg/mL. Seedling growth tests showed dose-dependent effects—from mild suppression to moderate stimulation, varying by plant species. Foliar application revealed both stimulatory and inhibitory effects, with the strongest biomass reduction in cress at 10 mg/mL (−45%). These findings indicate that S. gigantea extracts possess potent antibacterial, antifungal, insecticidal, and allelopathic activities. Their concentration-dependent effects on pathogens and plants highlight potential applications in sustainable agriculture, including natural crop protection and integrated pest management. Full article
Show Figures

Figure 1

28 pages, 4688 KB  
Article
The Importance of Humic Acids in Shaping the Resistance of Soil Microorganisms and the Tolerance of Zea mays to Excess Cadmium in Soil
by Agata Borowik, Jadwiga Wyszkowska, Magdalena Zaborowska and Jan Kucharski
Int. J. Mol. Sci. 2025, 26(24), 12175; https://doi.org/10.3390/ijms262412175 - 18 Dec 2025
Viewed by 274
Abstract
Contamination with cadmium (Cd2+) poses a severe threat to the soil environment due to its toxic effect on bacteria, being of key importance to soil fertility and plant health. The present study aimed to evaluate the effect of a humic preparation, [...] Read more.
Contamination with cadmium (Cd2+) poses a severe threat to the soil environment due to its toxic effect on bacteria, being of key importance to soil fertility and plant health. The present study aimed to evaluate the effect of a humic preparation, Humus Active (HA), on the structure, diversity, and functional potential of soil bacteria under conditions of cadmium stress during Zea mays cultivation. A model study was conducted to analyze the response of bacteria to soil contamination with 60 mg Cd kg−1 under conditions of soil fertilization with humic acid at doses of 2 g (HA2) and 4 g (HA4) kg−1 of soil. Microbiological analyses were carried out with both culture and non-culture (16S rRNA gene amplicon sequencing method) methods. Bacteria function prediction was also performed using FAPROTAX software. The study results demonstrated that Cd caused a 92% reduction in Zea mays biomass and a significant decrease (by 52%) in the abundance of organotrophic bacteria. The NGS analysis showed that it also reduced the population of the Neobacillus bacteria in the soil (by 50%), simultaneously causing an over twofold increase in the population of the Nocardioides genus bacteria. The application of HA (particularly in the HA4 dose) substantially mitigated Cd phytotoxicity. In the Cd-contaminated soil, HA4 stimulated the growth of culturable actinobacteria. The soil bacteria community was predominated by chemoheterotrophic bacteria and the nitrogen cycle bacteria, driven by tolerant, Cd2+-resistant bacteria from the following genera: Bacillus, Nocardioides, and Arthrobacter. The study results enable concluding that even though Humus Active does not restore the original microbiome structure, it promotes the development of a new stress-resistant bacterial community exhibiting high bioremediating potential, thereby directly translating into improved plant condition. Subsequently, humic acids provide an innovative approach that not only extends knowledge about the mechanisms behind bacterial resistance but also enables developing practical methods for diminishing cadmium mobility in the soil. Full article
Show Figures

Figure 1

26 pages, 2127 KB  
Review
Plant Responses to Heavy Metal Stresses: Mechanisms, Defense Strategies, and Nanoparticle-Assisted Remediation
by Aysha Siddika Jarin, Md Arifur Rahman Khan, Tasfiqure Amin Apon, Md Ashraful Islam, Al Rahat, Munny Akter, Touhidur Rahman Anik, Huong Mai Nguyen, Thuong Thi Nguyen, Chien Van Ha and Lam-Son Phan Tran
Plants 2025, 14(24), 3834; https://doi.org/10.3390/plants14243834 - 16 Dec 2025
Viewed by 965
Abstract
Heavy metal (HM) contamination threatens environmental sustainability, food safety, and agricultural productivity worldwide. HM toxicity adversely affects plant growth, reducing germination rates by 20–50%, impairing seedling establishment, and inhibiting shoot and root development by 30–60% in various crops. HM disrupts key physiological processes, [...] Read more.
Heavy metal (HM) contamination threatens environmental sustainability, food safety, and agricultural productivity worldwide. HM toxicity adversely affects plant growth, reducing germination rates by 20–50%, impairing seedling establishment, and inhibiting shoot and root development by 30–60% in various crops. HM disrupts key physiological processes, including photosynthesis, stomatal regulation, membrane integrity, nutrient uptake, and enzymatic and nonenzymatic antioxidant activities. These disruptions largely result from oxidative stress, caused by the excessive accumulation of reactive oxygen species, which damage cellular components. To counteract HM toxicity, plants deploy a complex defense network involving antioxidant enzymes, metal chelation by phytochelatins and metallothioneins, vacuolar sequestration, and symbiotic interactions with arbuscular mycorrhizal fungi, which can retain 40–70% of metals in roots and reduce translocation to shoots. At the molecular level, MAPK (Mitogen-Activated Protein Kinase) signaling pathways, transcription factors (e.g., WRKY, MYB, bZIP, and NAC), and phytohormonal crosstalk regulate the expression of stress-responsive genes expression to enhance HM stress tolerance. Advances in nanotechnology offer promising strategies for the remediation of HM-contaminated soils and water sources (HM remediation); engineered and biogenic nanoparticles (e.g., ZnO, Fe3O4) improve metal immobilization, reduce bioavailability, and enhance plant growth by 15–35% under HM stresses, although excessive doses may induce phytotoxicity. Future applications of nanotechnology in HM remediation should consider nanoparticle transformation (e.g., dissolution and agglomeration) and environmentally relevant concentrations to ensure efficacy and minimize phytotoxicity. Integrating phytoremediation with nanoparticle-enabled strategies provides a sustainable approach for HM remediation. This review emphasizes the need for a multidisciplinary framework linking plant science, biotechnology, and nanoscience to advance HM remediation and safeguard agricultural productivity. Full article
Show Figures

Figure 1

41 pages, 1828 KB  
Review
Phytoremediation of Co-Contaminated Environments: A Review of Microplastic and Heavy Metal/Organic Pollutant Interactions and Plant-Based Removal Approaches
by Pavlos Tziourrou and Evangelia E. Golia
Soil Syst. 2025, 9(4), 137; https://doi.org/10.3390/soilsystems9040137 - 15 Dec 2025
Cited by 1 | Viewed by 677
Abstract
The increasing presence of microplastics (MPs) in terrestrial ecosystems, particularly when combined with organic pollutants and heavy metals, presents a considerable environmental challenge. This review examines the intricate interactions between MPs, co-contaminants (both organic and inorganic), and plants involved in phytoremediation processes. A [...] Read more.
The increasing presence of microplastics (MPs) in terrestrial ecosystems, particularly when combined with organic pollutants and heavy metals, presents a considerable environmental challenge. This review examines the intricate interactions between MPs, co-contaminants (both organic and inorganic), and plants involved in phytoremediation processes. A literature search was performed across the databases Scopus, ScienceDirect, and Google Scholar, covering the timeframe from 2015 to 2025. The studies selected specifically addressed the synergistic and antagonistic effects of microplastics in conjunction with heavy metals or organic pollutants (such as PAHs and pesticides) within plant–soil systems. The findings reveal that MPs influence pollutant mobility, bioavailability, and toxicity through adsorption and desorption mechanisms, leading to varied implications for plant growth, microbial communities, and contaminant uptake. Depending on the physicochemical characteristics of MPs and co-pollutants, the effects can range from increased phytotoxicity to diminished contaminant accumulation in plants. Additionally, physiological and molecular disruptions, including oxidative stress, hormonal imbalances, and impaired enzymatic activity, were frequently noted in co-contamination scenarios. Recent developments, such as the creation of genetically modified hyperaccumulator plants and the use of nanotechnology and microbial consortia, demonstrate potential to enhance phytoremediation efficiency in complex polluted soils. This review underscores the pressing need for integrated, multidisciplinary strategies to overcome the limitations of existing phytoremediation methods in co-contaminated environments. Future research should focus on standardized methodologies, a mechanistic understanding, and the safe implementation of emerging biotechnologies for sustainable soil remediation. Full article
Show Figures

Figure 1

25 pages, 14917 KB  
Article
Medicinal Plant Rhizospheres as Reservoirs of Aspergillus-Derived Phytochemicals with Antimicrobial and Insecticidal Potential
by Sidra Farooq, Asif Mehmood, Nasir Ali, Amjad Khan and Naeem Khan
Life 2025, 15(12), 1886; https://doi.org/10.3390/life15121886 - 10 Dec 2025
Viewed by 305
Abstract
The rhizosphere, a dynamic interface shaped by plant root exudates, fosters microbial communities with significant biochemical potential. This study investigated the interplay between soil properties and fungal bioactivity in the rhizospheres of Withania coagulans and Justicia adhatoda in Pakistan. Physicochemical analysis revealed silty [...] Read more.
The rhizosphere, a dynamic interface shaped by plant root exudates, fosters microbial communities with significant biochemical potential. This study investigated the interplay between soil properties and fungal bioactivity in the rhizospheres of Withania coagulans and Justicia adhatoda in Pakistan. Physicochemical analysis revealed silty loam textures with divergent phosphorus [25.7 vs. 71.5 mg/kg] and potassium [108 vs. 78 mg/kg] levels, alongside near-neutral pH, influencing microbial dynamics. Two fungal isolates, Aspergillus luchuensis and A. flavus, were identified through morphological traits and ITS-region sequencing. Gas chromatography-mass spectrometry [GC-MS] profiling of ethyl acetate extracts uncovered 30 and 25 previously uncharacterized metabolites in A. luchuensis and A. flavus, respectively, including bioactive compounds such as tetradecanoic acid and nonadecane. Bioassays demonstrated broad-spectrum efficacy against multidrug-resistant clinical isolates, with A. flavus exhibiting notable inhibition against Salmonella typhi [31.7 mm zone] and A. luchuensis against Shigella spp. [23 mm]. Both extracts suppressed Lemna minor growth by 70%, indicating phytotoxic potential, and displayed species-specific insecticidal activity, inducing 70% mortality by A. luchuensis against Blattodea and 50% by A. flavus against the same species. These findings underscore the rhizosphere’s role as a reservoir of bioactive fungi, with Aspergillus spp. producing metabolites of pharmaceutical and agrochemical relevance. The study highlights the necessity for advanced structural elucidation and ecotoxicological assessments to harness these compounds, advocating integrated approaches combining metabolomics and genomic mining to unlock novel biotechnological applications. Full article
Show Figures

Figure 1

16 pages, 1476 KB  
Article
Chitosan Nanoparticles Loaded with Sideritis serrata Lag. Extract: A New Eco-Friendly Antifungal Agent for Sustainable Agriculture
by Maria Mondéjar-López, María Paz García-Simarro, Alejandro Santiago-González, Cristián Martínez-Fajardo, Elena Moreno-Giménez, Alberto López-Jiménez, Oussama Ahrazem, Lourdes Gómez-Gómez and Enrique Niza
Plants 2025, 14(24), 3757; https://doi.org/10.3390/plants14243757 - 10 Dec 2025
Viewed by 386
Abstract
Fungal infections cause severe crop losses (15–60%) despite the use of antifungal agents, a problem exacerbated by climate change, population growth, and resistance. Regulatory restrictions on compounds like tebuconazole highlight the need for sustainable alternatives. This study evaluates the antifungal efficacy of chitosan [...] Read more.
Fungal infections cause severe crop losses (15–60%) despite the use of antifungal agents, a problem exacerbated by climate change, population growth, and resistance. Regulatory restrictions on compounds like tebuconazole highlight the need for sustainable alternatives. This study evaluates the antifungal efficacy of chitosan nanoparticles loaded with Sideritis serrata extract (NPCH-SID) as an eco-friendly solution. The extract was obtained by freeze-drying and ethanol extraction, while NPCH-SID was synthesized via ionic gelation, achieving optimal size and encapsulation efficiency. In vitro assays revealed broad antifungal activity, with up to 156,140-fold improvement against Aspergillus brasiliensis compared to the free extract. Phytotoxicity tests on wheat seeds showed ~95% germination and enhanced root and shoot growth, confirming the safety and growth-promoting effect of this method. These findings position NPCH-SID as a promising tool for sustainable agriculture. Future work will assess its performance against additional pathogens under greenhouse and field conditions. Full article
(This article belongs to the Special Issue The Application of Nanotechnology in Crop Protection and Management)
Show Figures

Figure 1

18 pages, 5919 KB  
Article
Safety Evaluation of Herbicides in Maize and Soybean and Their Antioxidant Defense Responses to Thifensulfuron-Methyl and Flufenacet
by Sohail Hamza, Jizhi Yang, Liping Yu, Jing Shang, Wenyu Yang and Xuegui Wang
Agronomy 2025, 15(12), 2833; https://doi.org/10.3390/agronomy15122833 - 10 Dec 2025
Viewed by 334
Abstract
Intercropping of maize (Zea mays) and soybean (Glycine max) is a sustainable practice, but herbicide safety is critical for weed control without crop injury. This study evaluated the safety of pre-emergence (acetochlor and flufenacet) and post-emergence (2,4-D iso-octyl ester, [...] Read more.
Intercropping of maize (Zea mays) and soybean (Glycine max) is a sustainable practice, but herbicide safety is critical for weed control without crop injury. This study evaluated the safety of pre-emergence (acetochlor and flufenacet) and post-emergence (2,4-D iso-octyl ester, sulfentrazone, and thifensulfuron-methyl) herbicides on seven maize and eight soybean varieties under greenhouse conditions. Greenhouse results showed that flufenacet had lower growth inhibition rates (~32% maize and ~4% soybean) compared to acetochlor (~35% maize and ~24% soybean). Among the post-emergence herbicides, thifensulfuron-methyl caused minimal inhibition (~4% maize and ~25% soybean), while 2,4-D and sulfentrazone showed higher phytotoxicity (up to 74% soybean). For thifensulfuron-methyl, soybean exhibited increased antioxidant enzyme activity (SOD, CAT, APX, and POD) at the highest concentration, reaching 35–40% above control levels. In contrast, maize had higher enzyme activity (SOD, CAT, APX, and POD) at the highest herbicide dose for flufenacet. This suggests that maize’s antioxidant induction was insufficient to fully counteract flufenacet’s phytotoxicity at elevated doses. In conclusion, flufenacet demonstrated superior crop safety and weed control compared to post-emergence herbicides, making it more suitable for maize–soybean intercropping systems. Full article
(This article belongs to the Special Issue Effects of Herbicides on Crop Growth and Development)
Show Figures

Figure 1

37 pages, 5097 KB  
Systematic Review
Zeolites and Activated Carbons in Hydroponics: A Systematic Review of Mechanisms, Performance Metrics, Techno-Economic Analysis and Life-Cycle Assessment
by Dana Akhmetzhanova, Aitugan Sabitov, Yerlan Doszhanov, Meiram Atamanov, Karina Saurykova, Arman Zhumazhanov, Tolganay Atamanova, Almagul Kerimkulova, Leticia F. Velasco, Assem Zhumagalieva, Jakpar Jandosov and Ospan Doszhanov
Sustainability 2025, 17(24), 10977; https://doi.org/10.3390/su172410977 - 8 Dec 2025
Cited by 1 | Viewed by 492
Abstract
The sustainable operation of hydroponic systems depends on maintaining the chemical stability of circulating nutrient solutions and preventing the accumulation of toxic compounds. The accumulation of phytotoxic ammonium, heavy metals, and organic metabolites in recirculating nutrient solutions remains one of the key challenges [...] Read more.
The sustainable operation of hydroponic systems depends on maintaining the chemical stability of circulating nutrient solutions and preventing the accumulation of toxic compounds. The accumulation of phytotoxic ammonium, heavy metals, and organic metabolites in recirculating nutrient solutions remains one of the key challenges limiting the efficiency, sustainability, and scalability of hydroponic cultivation. This review provides a comprehensive comparative analysis of zeolites, activated carbons (ACs), and their functionalized and composite forms as key sorbents for nutrient management, contaminant removal, and environmental safety in hydroponic cultivation. Natural zeolites, with their well-defined crystalline structure and high ion-exchange selectivity toward ammonium and heavy metal cations, enable effective NH4+/K+ balance regulation and phytotoxicity mitigation. ACs, characterized by high specific surface area and tunable surface chemistry, complement zeolites by offering extensive adsorption capacity for organic compounds, root exudates, and pesticide residues, thereby extending the operational lifespan of nutrient solutions and improving overall system performance. Further advancements include the integration of zeolites and ACs with two-dimensional (graphene, g-C3N4) and three-dimensional (MOF, COF) frameworks, yielding multifunctional materials that combine adsorption, ion exchange, photocatalysis, and nutrient regulation. Transition-metal modification, particularly with Fe, Mn, Cu, Ni, and Co, introduces redox-active centers that enhance sorption, catalysis, and phosphate stabilization. The comparative synthesis reveals that the combined application of zeolite- and carbon-based composites offers a synergistic strategy for developing adaptive and low-waste hydroponic systems. From a techno-economic and environmental standpoint, the judicious application of these materials paves the way for more resilient, efficient, and circular hydroponic systems, reducing fertilizer and water consumption, lowering contaminant discharge, and enhancing food security. This systematic review was conducted according to the PRISMA 2020 guidelines. Relevant studies were identified through Scopus, Web of Science, and Google Scholar databases using specific inclusion and exclusion criteria. Full article
Show Figures

Figure 1

17 pages, 1949 KB  
Article
Allelopathic Effect of the Invasive Species Acacia dealbata Link and Hakea decurrens R.Br., subsp. physocarpa on Native Mediterranean Scrub Species
by Laura Nogales, Natividad Chaves, José Blanco-Salas, Laura Mateos, Luz Victoria Rubio and Juan Carlos Alías
Plants 2025, 14(23), 3685; https://doi.org/10.3390/plants14233685 - 3 Dec 2025
Viewed by 646
Abstract
Invasive species can profoundly alter ecosystems through mechanisms such as allelopathy. This study evaluates the allelopathic effects of Acacia dealbata and Hakea decurrens subsp. physocarpa on two dominant Mediterranean native species, Cistus ladanifer and Lavandula stoechas. Germination bioassays using aqueous extracts (1:10 [...] Read more.
Invasive species can profoundly alter ecosystems through mechanisms such as allelopathy. This study evaluates the allelopathic effects of Acacia dealbata and Hakea decurrens subsp. physocarpa on two dominant Mediterranean native species, Cistus ladanifer and Lavandula stoechas. Germination bioassays using aqueous extracts (1:10 w/v) at concentrations of 1, 1/2, and 1/4 of leaves collected in March and September were used to evaluate germination, hypocotyl emergence, and root development compared to control values (water) and between treatments. The phenolic composition of the solutions used was also analyzed. Significant inhibitory effects were observed across all parameters, especially at high concentrations, with responses modulated by the invasive species, the native target, and seasonal variation. A. dealbata showed stronger phytotoxicity in March, while H. decurrens subsp. physocarpa was more active in September. Phytochemical analysis revealed a higher load of phenolic compounds in A. dealbata, which may be related to the greater allelopathic activity of this species. These findings confirm the allelopathic potential of both invasive species and their ability to interfere with the establishment of native plants while facilitating their own, potentially impacting the colonization success of invasive species and altering vegetation succession in Mediterranean ecosystems. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

8 pages, 1711 KB  
Proceeding Paper
Biological Response of Plants to Thermally Active Coal Mine Spoil Heap Substrates Toxicity: Upper Silesian Region in Czech Republic and Poland, Examples Comparison
by Oto Novák, Katarzyna Larysz, Wiktoria Sitarz, Ewa Szwajczak, Anna Abramowicz, Justyna Ciesielczuk, Hana Vojtková, Michał Ludynia and Edyta Sierka
Eng. Proc. 2025, 116(1), 20; https://doi.org/10.3390/engproc2025116020 - 1 Dec 2025
Viewed by 309
Abstract
This study assessed the ecotoxicity of substrates from two hard coal heaps originating from the currently thermally active Ema heap in the Czech Republic and Czerwionka heap in Poland. Semi-chronic and contact tests were used to determine the ecotoxicity of the substrates, with [...] Read more.
This study assessed the ecotoxicity of substrates from two hard coal heaps originating from the currently thermally active Ema heap in the Czech Republic and Czerwionka heap in Poland. Semi-chronic and contact tests were used to determine the ecotoxicity of the substrates, with germination and root inhibition of five plant species (Avena sativa L., Sinapis alba L., Brassica napus L., Lepidium sativum L. and Lactuca sativa L.). Acute toxicity occurred in thermally active areas, and similar risks were observed in both heaps. The results of the ecotoxicological assessments indicate the possibility of ecological remediation of brownfields after the cessation of thermal activity. Full article
Show Figures

Figure 1

14 pages, 2126 KB  
Article
Biological Assessment of Soils Following Waste Tyre Fires and Potential Remediation—A Case Study
by Markéta Škrabalová, Dana Adamcová and Milada Šťastná
Environments 2025, 12(12), 464; https://doi.org/10.3390/environments12120464 - 1 Dec 2025
Viewed by 789
Abstract
Waste tyre fires are a significant environmental issue that leads to the release of toxic substances into the soil, particularly polycyclic aromatic hydrocarbons and heavy metals. These contaminants can adversely affect the physicochemical properties of the soil, its microbial activity, and plant growth. [...] Read more.
Waste tyre fires are a significant environmental issue that leads to the release of toxic substances into the soil, particularly polycyclic aromatic hydrocarbons and heavy metals. These contaminants can adversely affect the physicochemical properties of the soil, its microbial activity, and plant growth. The aim of this study is to assess the degree of phytotoxicity in soils affected by tyre waste fires using acute and biological tests, while simultaneously measuring microbial respiration as an indicator of soil biological activity. Furthermore, the effectiveness of the application of a 5% dose of biochar as a remediation measure was evaluated. The results showed that leachates from contaminated soils exhibited phytotoxic effects, with growth inhibition of 26.94–28.12% and reduced seed germination of 55.6–55.9%. The application of biochar to the soil under study significantly reduced phytotoxicity-induced growth inhibition (20–23.11%) and improved seed germination rates (79.76–83.71%). Microbial respiration gradually increased following the application of biochar; after 28 days it was over 30% higher compared to soils without biochar amendment. This study confirms that biochar can be an effective amendment that improves the biological quality of soils impacted by tyre waste fires. Full article
Show Figures

Figure 1

Back to TopTop