Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = physics optics (PO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11585 KiB  
Article
Marine Radar Target Ship Echo Generation Algorithm and Simulation Based on Radar Cross-Section
by Chang Li, Xiao Yang, Hongxiang Ren, Shihao Li and Xiaoyu Feng
J. Mar. Sci. Eng. 2025, 13(2), 348; https://doi.org/10.3390/jmse13020348 - 14 Feb 2025
Viewed by 928
Abstract
In this study, a simplified radar echo signal model suitable for radar simulators and a Radar Cross-Section (RCS) calculation model based on the Physical Optics (PO) method was developed. A comprehensive radar target ship echo generation algorithm was designed, and the omnidirectional radar [...] Read more.
In this study, a simplified radar echo signal model suitable for radar simulators and a Radar Cross-Section (RCS) calculation model based on the Physical Optics (PO) method was developed. A comprehensive radar target ship echo generation algorithm was designed, and the omnidirectional radar RCS values of three typical ships were calculated. The simulation generates radar target ship echo images under varying incident angles (0–360°), detection distances (0–24 nautical miles), and three common target material properties. The simulation results, compared with those from existing radar simulators and real radar systems, show that the method proposed in this study, based on RCS values, generates highly realistic radar target ship echoes. It accurately simulates radar echoes under different target ship headings, distances, and material influences, fully meeting the technical requirements of the STCW international convention for radar simulators. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 16414 KiB  
Article
Application of Near-Far Field Conversion to Measurement of Scattering on Bessel Vortex Electromagnetic Wave
by Zhe Wu, Yu Yun, Nengwu Liu, Jiaji Wu, Zhensen Wu, Lingkun Ma and Agostino Monorchio
Appl. Sci. 2025, 15(3), 1029; https://doi.org/10.3390/app15031029 - 21 Jan 2025
Cited by 1 | Viewed by 853
Abstract
The measurement and analysis of the interaction between Bessel vortex electromagnetic (EM) and several standard targets are presented in this paper. With the aid of the angular spectrum expansion (ASE) method and physics optics (PO) theorem, scattering results on the plates (metal and [...] Read more.
The measurement and analysis of the interaction between Bessel vortex electromagnetic (EM) and several standard targets are presented in this paper. With the aid of the angular spectrum expansion (ASE) method and physics optics (PO) theorem, scattering results on the plates (metal and dielectric) and a sphere could be derived. Furthermore, plane near-field scanning and near-far field conversion methods were implemented to compare the theoretical radar cross section (RCS). In the experiment, the quasi Bessel vortex wave was generated by a holographic metasurface antenna, and the whole measurement was performed in an anechoic chamber. The results of both the theory and measurement show that the scattered fields of the plate and sphere still had characteristics of the vortex EM wave, and the scientificity and accuracy of the measured RCS were verified. Our work involved a vortex scattering experiment in the microwave frequency band, which provides strong support for the application of vortex waves in radar detection and target recognition. Full article
Show Figures

Figure 1

19 pages, 11359 KiB  
Article
Simplified Target Strength Analysis Procedure of an Underwater Vehicle Considering Target Strength Absorbing Materials
by Jangwoo Kim, Jaeman Kim, Joo-Yeob Lee, Dae-Seung Cho, Sung-Ju Park, Kyungjun Song, Yun-ho Shin and Kookhyun Kim
J. Mar. Sci. Eng. 2025, 13(1), 62; https://doi.org/10.3390/jmse13010062 - 1 Jan 2025
Viewed by 1456
Abstract
Target strength (TS) is an important design factor for improving the survivability of an underwater vehicle, and various efforts are ongoing to enhance it. Among the design techniques to improve TS, absorbing materials attached to the surface of an underwater vehicle can play [...] Read more.
Target strength (TS) is an important design factor for improving the survivability of an underwater vehicle, and various efforts are ongoing to enhance it. Among the design techniques to improve TS, absorbing materials attached to the surface of an underwater vehicle can play a key role by reducing the reflected and scattered acoustic waves. In this study, the acoustic performance of target strength absorbing materials (TSAMs) is first analyzed, and then the simplified procedure of TS analysis considering TSAMs is suggested. The 4-microphone method and transfer matrix method evaluating equivalent material properties of TSAMs are derived, and their effectiveness is cross-validated through a series of analyses for a multi-layer acoustic absorbing structure. From the observed results, it is concluded that the transfer matrix method is more suitable for practical TS analysis than the 4-microphone method because of the relatively low calculation and time costs required for the acoustic performance evaluations of TSAMs. In addition, a simplified TS analysis procedure considering the echo reduction (ER) and transmission loss (TL) is proposed based on the combining method of physical optics and geometric optics (PO/GO combined method) and equivalent material properties. Using the suggested procedure, a series of TS analyses are performed using the Benchmark Target Strength Simulation (BeTSSi) to validate its applicability and effectiveness. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Mechanical and Naval Engineering)
Show Figures

Figure 1

25 pages, 11298 KiB  
Article
A Synthetic Aperture Radar Imaging Simulation Method for Sea Surface Scenes Combined with Electromagnetic Scattering Characteristics
by Yao He, Le Xu, Jincong Huo, Huaji Zhou and Xiaowei Shi
Remote Sens. 2024, 16(17), 3335; https://doi.org/10.3390/rs16173335 - 8 Sep 2024
Cited by 4 | Viewed by 2065
Abstract
Synthetic aperture radar (SAR) simulation is a vital tool for planning SAR missions, interpreting SAR images, and extracting valuable information. SAR imaging is essential for analyzing sea scenes, and the accuracy of sea surface and scattering models is crucial for effective SAR simulations. [...] Read more.
Synthetic aperture radar (SAR) simulation is a vital tool for planning SAR missions, interpreting SAR images, and extracting valuable information. SAR imaging is essential for analyzing sea scenes, and the accuracy of sea surface and scattering models is crucial for effective SAR simulations. Traditional methods typically employ empirical formulas to fit sea surface scattering, which are not closely aligned with the principles of electromagnetic scattering. This paper introduces a novel approach by constructing multiple sea surface models based on the Pierson–Moskowitz (P-M) sea spectrum, integrated with the stereo wave observation projection (SWOP) expansion function to thoroughly account for the influence of wave fluctuation characteristics on radar scattering. Utilizing the shooting and bouncing ray-physical optics (SBR-PO) method, which adheres to the principles of electromagnetic scattering, this study not only analyzes sea surface scattering characteristics under various sea conditions but also facilitates the computation of scattering coupling between multiple targets. By constructing detailed scattering distribution data, the method achieves high-precision SAR simulation results. The scattering model developed using the SBR-PO method provides a more nuanced description of sea surface scenes compared to traditional methods, achieving an optimal balance between efficiency and accuracy, thus significantly enhancing sea surface SAR imaging simulations. Full article
Show Figures

Figure 1

25 pages, 10567 KiB  
Article
Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study
by Gabriela Celeste Mulena, Eija Maria Asmi, Juan José Ruiz, Juan Vicente Pallotta and Yoshitaka Jin
Remote Sens. 2024, 16(10), 1780; https://doi.org/10.3390/rs16101780 - 17 May 2024
Cited by 4 | Viewed by 1821
Abstract
The characteristics of South American biomass burning (BB) aerosols transported over northern and central Argentina were investigated from July to December 2019. This period was chosen due to the high aerosol optical depth values found in the region and because simultaneously intensive biomass [...] Read more.
The characteristics of South American biomass burning (BB) aerosols transported over northern and central Argentina were investigated from July to December 2019. This period was chosen due to the high aerosol optical depth values found in the region and because simultaneously intensive biomass burning took place over the Amazon. More specifically, a combination of remote sensing observations with simulated air parcel back trajectories was used to link the optical and physical properties of three BB aerosol events that affected Pilar Observatory (PO, Argentina, 31°41′S, 63°53′W, 338 m above sea level), with low-level atmospheric circulation patterns and with types of vegetation burned in specific fire regions. The lidar observations at the PO site were used for the first time to characterize the vertical extent and structure of BB aerosol plumes as well as their connection with the planetary boundary layer, and dust particles. Based mainly on the air-parcel trajectories, a local transport regime and a long transport regime were identified. We found that in all the BB aerosol event cases studied in this paper, light-absorbing fine-mode aerosols were detected, resulting mainly from a mixture of aging smoke and dust particles. In the remote transport regime, the main sources of the BB aerosols reaching PO were associated with Amazonian rainforest wildfires. These aerosols were transported into northern and central Argentina within a strong low-level jet circulation. During the local transport regime, the BB aerosols were linked with closer fires related to tropical forests, cropland, grassland, and scrub/shrubland vegetation types in southeastern South America. Moreover, aerosols carried by the remote transport regime were associated with a high aerosol loading and enhanced aging and relatively smaller particle sizes, while aerosols associated with the local transport pattern were consistently less affected by the aging effect and showed larger sizes and low aerosol loading. Full article
(This article belongs to the Special Issue Observation of Atmospheric Boundary-Layer Based on Remote Sensing)
Show Figures

Graphical abstract

12 pages, 3497 KiB  
Article
Hybrid Density Functional Theory Calculations for the Crystal Structure and Electronic Properties of Al3+ Doped KDP Crystals
by Yang Li, Zhenshi Li, Baoan Liu, Xun Sun, Mingxia Xu, Lisong Zhang, Xian Zhao and Guodong Lei
Crystals 2024, 14(5), 410; https://doi.org/10.3390/cryst14050410 - 27 Apr 2024
Cited by 4 | Viewed by 1498
Abstract
Intentionally adding select ions such as Al3+ could be helpful in controlling the crystal habit of KDP crystal for high yield of optics. The study of how Al3+ ions affect crystal quality can provide a basis for selecting an appropriate doping [...] Read more.
Intentionally adding select ions such as Al3+ could be helpful in controlling the crystal habit of KDP crystal for high yield of optics. The study of how Al3+ ions affect crystal quality can provide a basis for selecting an appropriate doping level without negatively affecting the optical properties of crystals. Here, the influence of Al3+ ions on the crystal structure and properties of KDP crystals have been investigated by using first-principles calculations. Theoretical calculations show that Al3+ ions mainly replace K sites in KDP crystals and could complex with intrinsic VH point defects to form AlK2+ + 2VH cluster defects. The linear absorption spectra indicate that the presence of Al3+ ions has minimal impact on the linear absorption of KDP crystals, aligning well with the experimental findings. And Al3+ ions could cause a slight shortening of the band gap of KDP crystals. However, these ions could bring significant deformations of O-H bonds. As the concentration of Al3+ ions increase, more O-H bonds linking to PO4 groups are distorted in KDP crystals. As a result, the structural instability could be fast enhanced with increasing the defect concentration. Therefore, high concentrations of Al3+ ions could cause the instability of the crystal structure, which finally affects the laser-induced damage resistance of the KDP crystals. This manuscript contributes to a more comprehensive understanding of the physical mechanisms by which different impurity ions affect the optical properties of KDP crystals. Full article
(This article belongs to the Special Issue First Principles Calculation for Crystalline Materials)
Show Figures

Figure 1

21 pages, 22942 KiB  
Article
Efficient EM Scattering Modeling from Metal Targets Coated with Anisotropic Thin Layers
by Mengbo Hua and Siyuan He
Electronics 2024, 13(3), 536; https://doi.org/10.3390/electronics13030536 - 29 Jan 2024
Cited by 2 | Viewed by 1113
Abstract
To address the challenges posed by composite targets composed of an anisotropic medium and metal in electromagnetic (EM) scattering calculations, this paper introduces an innovative hybrid algorithm tailored for simulating the EM scattering characteristics of such complex targets. Utilizing impedance boundary condition (IBC), [...] Read more.
To address the challenges posed by composite targets composed of an anisotropic medium and metal in electromagnetic (EM) scattering calculations, this paper introduces an innovative hybrid algorithm tailored for simulating the EM scattering characteristics of such complex targets. Utilizing impedance boundary condition (IBC), the method employs surface impedance vectors to precisely depict the EM properties of the medium. By harnessing the distinct advantages of the Method of Moments (MoMs) at low frequency and Physical Optics (POs) at high frequency, the algorithm ensures both accuracy and efficiency in the EM simulation of composite targets. By transforming the EM scattering problem of targets coated with a thin-layered medium into an equivalent radiation problem of EM currents on impedance surfaces, this research has achieved rapid and high-precision calculations of the Radar Cross Section (RCS) for complex targets with anisotropic medium coatings. To assess the performance of the algorithm, three target models—square plates, simplified aircraft, and complex satellites—are selected as test cases. The dual metrics of RCS and surface current distribution are utilized as evaluation benchmarks, and comparisons are made against the Method of Moments–Finite Element Method (MoM-FEM) hybrid numerical method. The comparative results demonstrate that the proposed method meets the engineering standards in terms of both the root mean square error (RMSE) of RCS and the relative error in surface current distribution, while also achieving a significant improvement of over 50% in computational efficiency, thereby validating its superior accuracy and practical utility. Full article
Show Figures

Figure 1

28 pages, 4379 KiB  
Article
Estimation of the Biogeochemical and Physical Properties of Lakes Based on Remote Sensing and Artificial Intelligence Applications
by Kaire Toming, Hui Liu, Tuuli Soomets, Evelyn Uuemaa, Tiina Nõges and Tiit Kutser
Remote Sens. 2024, 16(3), 464; https://doi.org/10.3390/rs16030464 - 25 Jan 2024
Cited by 13 | Viewed by 2627
Abstract
Lakes play a crucial role in the global biogeochemical cycles through the transport, storage, and transformation of different biogeochemical compounds. Their regulatory service appears to be disproportionately important relative to their small areal extent, necessitating continuous monitoring. This study leverages the potential of [...] Read more.
Lakes play a crucial role in the global biogeochemical cycles through the transport, storage, and transformation of different biogeochemical compounds. Their regulatory service appears to be disproportionately important relative to their small areal extent, necessitating continuous monitoring. This study leverages the potential of optical remote sensing sensors, specifically Sentinel-2 Multispectral Imagery (MSI), to monitor and predict water quality parameters in lakes. Optically active parameters, such as chlorophyll a (CHL), total suspended matter (TSM), and colored dissolved matter (CDOM), can be directly detected using optical remote sensing sensors. However, the challenge lies in detecting non-optically active substances, which lack direct spectral characteristics. The capabilities of artificial intelligence applications can be used in the identification of optically non-active compounds from remote sensing data. This study aims to employ a machine learning approach (combining the Genetic Algorithm (GA) and Extreme Gradient Boost (XGBoost)) and in situ and Sentinel-2 Multispectral Imagery data to construct inversion models for 16 physical and biogeochemical water quality parameters including CHL, CDOM, TSM, total nitrogen (TN), total phosphorus (TP), phosphate (PO4), sulphate, ammonium nitrogen, 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and the biomasses of phytoplankton and cyanobacteria, pH, dissolved oxygen (O2), water temperature (WT) and transparency (SD). GA_XGBoost exhibited strong predictive capabilities and it was able to accurately predict 10 biogeochemical and 2 physical water quality parameters. Additionally, this study provides a practical demonstration of the developed inversion models, illustrating their applicability in estimating various water quality parameters simultaneously across multiple lakes on five different dates. The study highlights the need for ongoing research and refinement of machine learning methodologies in environmental monitoring, particularly in remote sensing applications for water quality assessment. Results emphasize the need for broader temporal scopes, longer-term datasets, and enhanced model selection strategies to improve the robustness and generalizability of these models. In general, the outcomes of this study provide the basis for a better understanding of the role of lakes in the biogeochemical cycle and will allow the formulation of reliable recommendations for various applications used in the studies of ecology, water quality, the climate, and the carbon cycle. Full article
Show Figures

Figure 1

21 pages, 3106 KiB  
Article
The Long-Term Detection of Suspended Particulate Matter Concentration and Water Colour in Gravel and Sand Pit Lakes through Landsat and Sentinel-2 Imagery
by Nicola Ghirardi, Monica Pinardi, Daniele Nizzoli, Pierluigi Viaroli and Mariano Bresciani
Remote Sens. 2023, 15(23), 5564; https://doi.org/10.3390/rs15235564 - 29 Nov 2023
Cited by 5 | Viewed by 2461
Abstract
Over the past half century, the demand for sand and gravel has led to extensive quarrying activities, creating many pit lakes (PLs) which now dot floodplains and urbanized regions globally. Despite the potential importance of these environments, systematic data on their location, morphology [...] Read more.
Over the past half century, the demand for sand and gravel has led to extensive quarrying activities, creating many pit lakes (PLs) which now dot floodplains and urbanized regions globally. Despite the potential importance of these environments, systematic data on their location, morphology and water quality remain limited. In this study, we present an extensive assessment of the physical and optical properties in a large sample of PLs located in the Po River basin (Italy) from 1990 to 2021, utilizing a combined approach of remote sensing (Landsat constellation and Sentinel-2) and traditional limnological techniques. Specifically, we focused on the concentration of Suspended Particulate Matter (SPM) and the dominant wavelength (λdom, i.e., water colour). This study aims to contribute to the analysis of PLs at a basin scale as an opportunity for environmental rehabilitation and river floodplain management. ACOLITE v.2022, a neural network particularly suitable for the analysis of turbid waters and small inland water bodies, was used to atmospherically correct satellite images and to obtain SPM concentration maps and the λdom. The results show a very strong correlation between SPM concentrations obtained in situ and those obtained from satellite images, both for data derived from Landsat (R2 = 0.85) and Sentinel-2 images (R2 = 0.82). A strong correlation also emerged from the comparison of spectral signatures obtained in situ via WISP-3 and those derived from ACOLITE, especially in the visible spectrum (443–705 nm, SA = 10.8°). In general, it appeared that PLs with the highest mean SPM concentrations and the highest mean λdom are located along the main Po River, and more generally near rivers. The results also show that active PLs exhibit a poor water quality status, especially those of small sizes (<5 ha) and directly connected to a river. Seasonal comparison shows the same trend for both SPM concentration and λdom: higher values in winter gradually decreasing until spring–summer, then increasing again. Finally, it emerged that the end of quarrying activity led to a reduction in SPM concentration from a minimum of 43% to a maximum of 72%. In this context, the combined use of Landsat and Sentinel-2 imagery allowed for the evaluation of the temporal evolution of the physical and optical properties of the PLs in a vast area such as the Po River basin (74,000 km2). In particular, the Sentinel-2 images consistently proved to be a reliable resource for capturing episodic and recurring quarrying events and portraying the ever-changing dynamics of these ecosystems. Full article
Show Figures

Figure 1

15 pages, 1686 KiB  
Communication
Designing Advanced Multistatic Imaging Systems with Optimal 2D Sparse Arrays
by Lorena Perez-Eijo, Marcos Arias, Borja Gonzalez-Valdes, Yolanda Rodriguez-Vaqueiro, Oscar Rubiños, Antonio Pino, Ignacio Sardinero-Meirás and Jesús Grajal
Appl. Sci. 2023, 13(22), 12138; https://doi.org/10.3390/app132212138 - 8 Nov 2023
Cited by 5 | Viewed by 1509
Abstract
This study introduces an innovative optimization method to identify the optimal configuration of a sparse symmetric 2D array for applications in security, particularly multistatic imaging. Utilizing genetic algorithms (GAs) in a sophisticated optimization process, the research focuses on achieving the most favorable antenna [...] Read more.
This study introduces an innovative optimization method to identify the optimal configuration of a sparse symmetric 2D array for applications in security, particularly multistatic imaging. Utilizing genetic algorithms (GAs) in a sophisticated optimization process, the research focuses on achieving the most favorable antenna distribution while mitigating the common issue of secondary lobes in sparse arrays. The main objective is to determine the ideal configuration from specific design parameters, including hardware specifications such as number of radiating elements, minimum spacing, operating frequency range, and image separation distance. The study employed a cost function based on the the point spread function (PSF), the system response to a point source, with the goal of minimizing the secondary lobe levels and maximizing their separation from the main lobe. Advanced simulation algorithms based on physical optics (PO) were used to validate the presented methodology and results. Full article
Show Figures

Figure 1

18 pages, 6159 KiB  
Review
Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions
by Yung-Fu Chen, Song-Qing Lin, Ru-Wei Chang, Yan-Ting Yu and Hsing-Chih Liang
Symmetry 2023, 15(10), 1809; https://doi.org/10.3390/sym15101809 - 22 Sep 2023
Cited by 2 | Viewed by 1890
Abstract
Two-dimensional quantum billiards are one of the most important paradigms for exploring the connection between quantum and classical worlds. Researchers are mainly focused on nonintegrable and irregular shapes to understand the quantum characteristics of chaotic billiards. The emergence of the scarred modes relevant [...] Read more.
Two-dimensional quantum billiards are one of the most important paradigms for exploring the connection between quantum and classical worlds. Researchers are mainly focused on nonintegrable and irregular shapes to understand the quantum characteristics of chaotic billiards. The emergence of the scarred modes relevant to unstable periodic orbits (POs) is one intriguing finding in nonintegrable quantum billiards. On the other hand, stable POs are abundant in integrable billiards. The quantum wavefunctions associated with stable POs have been shown to play a key role in ballistic transport. A variety of physical systems, such as microwave cavities, optical fibers, optical resonators, vibrating plates, acoustic waves, and liquid surface waves, are used to analogously simulate the wave properties of quantum billiards. This article gives a comprehensive review for the subtle connection between the quantum level clustering and the classical POs for three integrable billiards including square, equilateral triangle, and circular billiards. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2023)
Show Figures

Figure 1

13 pages, 3191 KiB  
Article
Exploring the Validity of Plane and Spherical Millimeter-Wave Incidences for Multiple-Diffraction Calculations in Wireless Communication Systems
by Alba López-Segovia, Ignacio Rodríguez-Rodríguez, José-Víctor Rodríguez, Leandro Juan-Llácer, María Campo-Valera and Wai Lok Woo
Electronics 2023, 12(9), 2020; https://doi.org/10.3390/electronics12092020 - 27 Apr 2023
Cited by 1 | Viewed by 1378
Abstract
The focus of this work is to determine at which threshold can the results for both plane and spherical wave incidence assumptions either converge or deviate when performing multiple diffraction attenuation calculations. The analysis has been carried out—for various millimeter-wave frequencies, inter-obstacle spacings, [...] Read more.
The focus of this work is to determine at which threshold can the results for both plane and spherical wave incidence assumptions either converge or deviate when performing multiple diffraction attenuation calculations. The analysis has been carried out—for various millimeter-wave frequencies, inter-obstacle spacings, and angles of incidence—by employing a pair of two-dimensional (2D) hybrid formulations based on both the uniform theory of diffraction and physical optics (UTD-PO). This way, we seek to demonstrate under which circumstances each wave incidence assumption can be valid in environments that entail millimeter-wave bands. Based on this, we may ensure the minimum necessary distance from the transmitter to the first diffracting obstacle for the convergence of the spherical wave incidence solution onto that of the plane wave with a relative error below 0.1%. Our results demonstrate that for less than four diffracting elements, the minimum necessary distance engages in quasi-linear behavior under variations in both the angle of incidence and obstacle spacing. Notably, the considered frequencies (60–100 GHz) have almost no bearing on the results. Our findings will facilitate the simplified, more accurate and realistic planning of millimeter-wave radio communication systems, with multiple diffractions across various obstacles. Full article
Show Figures

Figure 1

26 pages, 10723 KiB  
Article
RETRACTED: Polymeric Solar Cell with 19.69% Efficiency Based on Poly(o-phenylene diamine)/TiO2 Composites
by M. Sh. Zoromba, M. H. Abdel-Aziz, A. R. Ghazy, N. Salah and A. F. Al-Hossainy
Polymers 2023, 15(5), 1111; https://doi.org/10.3390/polym15051111 - 23 Feb 2023
Cited by 12 | Viewed by 3177 | Retraction
Abstract
Conducting poly orthophenylene diamine polymer (PoPDA) was synthesized via the oxidative polymerization route. A poly(o-phenylene diamine) (PoPDA)/titanium dioxide nanoparticle mono nanocomposite [PoPDA/TiO2]MNC was synthesized using the sol–gel method. The physical vapor deposition (PVD) technique was successfully used to deposit the [...] Read more.
Conducting poly orthophenylene diamine polymer (PoPDA) was synthesized via the oxidative polymerization route. A poly(o-phenylene diamine) (PoPDA)/titanium dioxide nanoparticle mono nanocomposite [PoPDA/TiO2]MNC was synthesized using the sol–gel method. The physical vapor deposition (PVD) technique was successfully used to deposit the mono nanocomposite thin film with good adhesion and film thickness ≅ 100 ± 3 nm. The structural and morphological properties of the [PoPDA/TiO2]MNC thin films were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The measured optical properties of the [PoPDA/TiO2]MNC thin films such as reflectance (R) in the UV–Vis-NIR spectrum, absorbance (Abs), and transmittance (T) were employed to probe the optical characteristics at room temperatures. As well as the calculations of TD-DFT (time-dependent density functional theory), optimization through the TD-DFTD/Mol3 and Cambridge Serial Total Energy Bundle (TD-DFT/CASTEP) was employed to study the geometrical characteristics. The dispersion of the refractive index was examined by the single oscillator Wemple–DiDomenico (WD) model. Moreover, the single oscillator energy (Eo), and the dispersion energy (Ed) were estimated. The obtained results show that thin films based on [PoPDA/TiO2]MNC can be utilized as a decent candidate material for solar cells and optoelectronic devices. The efficiency of the considered composites reached 19.69%. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

10 pages, 1284 KiB  
Communication
UTD-PO Solutions for the Analysis of Multiple Diffraction by Trees and Buildings When Assuming Spherical-Wave Incidence
by José-Víctor Rodríguez, María-Teresa Martínez-Inglés, Jose-Maria Molina Garcia-Pardo, Leandro Juan-Llácer and Ignacio Rodríguez-Rodríguez
Electronics 2023, 12(4), 899; https://doi.org/10.3390/electronics12040899 - 10 Feb 2023
Cited by 1 | Viewed by 1481
Abstract
This paper presents two uniform theories of diffraction–physical optics (UTD-PO) formulations to undertake analysis of radiowave multiple diffraction resulting from the presence of both buildings and trees in vegetated urban areas, with the assumption of spherical-wave incidence. The solutions presented consider buildings modeled [...] Read more.
This paper presents two uniform theories of diffraction–physical optics (UTD-PO) formulations to undertake analysis of radiowave multiple diffraction resulting from the presence of both buildings and trees in vegetated urban areas, with the assumption of spherical-wave incidence. The solutions presented consider buildings modeled as knife-edges and rectangular sections (the latter being more complex and realistic) and the effect of the tree canopy (the assumption is that this exceeds the height of the average rooftop) is taken into account by adding proper attenuation factors/phasors to building diffraction phenomena. The validation of these formulations has been undertaken by comparing with other methods and measurements performed at 39 GHz on a scaled-model of the environment under analysis, consisting of an array of bricks and bonsai trees. The chief advantage of the solutions put forward is that because of recursion, the calculations only include single diffractions. This avoids any requirement for higher-order diffraction terms in the diffraction coefficients, which means less computer time/power is demanded. The results of this work may be useful when planning future mobile communication systems, including 6G networks and beyond. Full article
Show Figures

Figure 1

16 pages, 12349 KiB  
Article
HERAS: A Modular Matlab Tool Using Physical Optics for the Analysis of Reflector Antennas
by Alejandro Baldominos, Salvador Mercader-Pellicer, George Goussetis, Alberto Mengali and Nelson J. G. Fonseca
Sensors 2023, 23(3), 1425; https://doi.org/10.3390/s23031425 - 27 Jan 2023
Cited by 4 | Viewed by 3588
Abstract
HERAS is a tool developed in Matlab for the analysis of reflector antennas using physical optics (PO) theory. Its graphical user interface (GUI) and source code are freely available for educational and research purposes. It has the necessity of being a flexible tool [...] Read more.
HERAS is a tool developed in Matlab for the analysis of reflector antennas using physical optics (PO) theory. Its graphical user interface (GUI) and source code are freely available for educational and research purposes. It has the necessity of being a flexible tool to provide adaptability to system engineering requirements and can also be of interest to antenna engineers working on the design of reflector antennas. Due to the increasing demand of broadband services, satellite communications systems are becoming highly complex in order to meet connectivity requirements. To fully exploit the benefits of these systems, multidimensional optimisations are crucial, which call for an efficient estimation of the coverage characteristics. Reflector-based solutions are one of the preferred architectures for very high-throughput satellite (VHTS) systems. A detailed description of HERAS is presented in this paper which has been validated with available commercial software packages. In addition, some examples are described in which the tool has been used for the efficient estimation of VHTS systems performance. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop