Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data
3.1.1. Ground-Based Remote Sensing Measurements
AERONET
SAVER-Net Network
CO Total Column from TROPOMI Instrument
FIRMS and True Color from MODIS Instrument
LULC Map Derived from ESA Sentinel-2 Satellite
VFM from CALIOP Instrument
3.1.2. HYSPLIT Model
3.2. Methods
4. Results
4.1. Characterization of the South American Distribution of Fires and the Daily Properties of Aerosols at the PO Site
4.2. Overall Characteristics of the 23–30 September 2019 BB Aerosol Event
4.3. Two Case Studies of Short and Long BB Aerosol Transport Events: 27 and 30 September 2019
4.4. Summary of BB Aerosol Events Characteristics
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD-Net | Asian dust and aerosol lidar network |
AERONET | Aerosol Robotic Network |
AGL | Above ground level |
AOD | Aerosol optical depth |
AOD(440nm) | Aerosol optical depth at 440 nm |
ASL | Above sea level |
BB | Biomass burning |
CALIOP | Cloud–Aerosol lidar with Orthogonal Polarization |
CALIPSO | Cloud–Aerosol lidar and Infrared Pathfinder Satellite Observations |
CGSS | Crop, grass, and scrub/shrub |
CO | Carbon monoxide |
ESA | European Space Agency |
FIRMS | Fire Information for Resource Management System |
FMF | Fine-mode fraction |
FMF(500nm) | Fine-mode fraction of aerosol optical depth at 500 nm |
GDAS | Global Data Assimilation System |
HYSPLIT | HYbrid Single-Particle Lagrangian Integrated Trajectory |
lidar | Light detection and ranging |
LULC | Land use and land cover |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NCA | Northern and central Argentina |
PBL | Planetary boundary layer |
PO | Pilar Observatory |
RF | Rainforest |
SALLJ | South American low-level jet |
SAVER-Net | South American Environmental Risk Management Network |
SESA | Southeastern South America |
SSA | Single-scattering albedo |
SSA(440nm) | Single-scattering albedo at 440 nm |
TF | Tropical forest |
TROPOMI | TROPOspheric Monitoring Instrument |
VFM | Vertical feature mask |
α | Ängstrom exponent |
α(440–870nm) | Ängstrom exponent at 440–870 nm |
References
- Martin, S.T.; Andreae, M.O.; Artaxo, P.; Baumgardner, D.; Chen, Q.; Goldstein, A.H.; Guenther, A.; Heald, C.L.; Mayol-Bracero, O.L.; McMurry, P.H.; et al. Sources and Properties of Amazonian Aerosol Particles. Rev. Geophys. 2010, 48, RG2002. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change 2007; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. (Eds.) Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 33–144. [Google Scholar]
- Ackerman, A.; Toon, O.; Stevens, D.; Heymsfield, A.; Ramanathan, V.; Welton, E. Reduction of Tropical Cloudiness by Soot. Science 2000, 288, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Artaxo, P.; Oliveira, P.H.; Lara, L.L.; Pauliquevis, T.M.; Rizzo, L.V.; Junior, C.P.; Paixão, M.A.; Longo, K.M.; Freitas, S.; Correia, A.L. Efeitos Climáticos de Partículas de Aerossóis Biogênicos e Emitidos Em Queimadas Na Amazônia. Rev. Bras. Meteorol. 2006, 21, 122–168. [Google Scholar]
- Procopio, A.S.; Artaxo, P.; Kaufman, Y.J.; Remer, L.A.; Schafer, J.S.; Holben, B.N. Multiyear Analysis of Amazonian Biomass Burning Smoke Radiative Forcing of Climate. Geophys. Res. Lett. 2004, 31, L03108. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D.; Artaxo, P.; Costa, A.A.; Frank, G.P.; Longo, K.M.; Silva-Dias, M.A.F. Smoking Rain Clouds over the Amazon. Science 2004, 303, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Koren, I.; Kaufman, Y.J.; Remer, L.A.; Martins, J.V. Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation. Science 2004, 303, 1342–1345. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Effects of Biomass Burning on Climate, Accounting for Heat and Moisture Fluxes, Black and Brown Carbon, and Cloud Absorption Effects. J. Geophys. Res. Atmos. 2014, 119, 8980–9002. [Google Scholar] [CrossRef]
- Videla, F.C.; Barnaba, F.; Angelini, F.; Cremades, P.; Gobbi, G.P. The Relative Role of Amazonian and Non-Amazonian Fires in Building up the Aerosol Optical Depth in South America: A Five Year Study (2005–2009). Atmos. Res. 2013, 122, 298–309. [Google Scholar] [CrossRef]
- Cardil, A.; De-Miguel, S.; Silva, C.A.; Reich, P.B.; Calkin, D.; Brancalion, P.H.S.; Vibrans, A.C.; Gamarra, J.G.P.; Zhou, M.; Pijanowski, B.C.; et al. Recent Deforestation Drove the Spike in Amazonian Fires. Environ. Res. Lett. 2020, 15, 121003. [Google Scholar] [CrossRef]
- Ristori, P.; Otero, L.; Jin, Y.; Barja, B.; Shimizu, A.; Barbero, A.; Salvador, J.; Bali, J.L.; Herrera, M.; Etala, P.; et al. SAVER-Net lidar Network in Southern South America. In Proceedings of the EPJ Web of Conferences, The 28th International Laser Radar Conference (ILRC 28), Bucharest, Romania, 25–30 June 2017; Volume 176, p. 9011. [Google Scholar] [CrossRef]
- Puliafito, S.E.; Bolaño-Ortiz, T.; Berná, L.; Flores, R.P. High Resolution Inventory of Atmospheric Emissions from Livestock Production, Agriculture, and Biomass Burning Sectors of Argentina. Atmos. Environ. 2020, 223, 117248. [Google Scholar] [CrossRef]
- Ulke, A.G. Influence of Regional Transport Mechanisms on the Fingerprint of Biomass-Burning Aerosols in Buenos Aires. Adv. Meteorol. 2019, 2019, 6792161. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Silva Dias, M.A.F.; Silva Dias, P.L.; Chatfield, R.; Prins, E.; Artaxo, P.; Grell, G.A.; Recuero, F.S. Monitoring the Transport of Biomass Burning Emissions in South America. Environ. Fluid Mech. 2005, 5, 135–167. [Google Scholar] [CrossRef]
- Silva Dias, M.A.F. da Meteorologia, Desmatamento e Queimadas Na Amazônia: Uma Síntese de Resultados No LBA. Rev. Bras. Meteorol. 2006, 21, 190–199. [Google Scholar]
- do Rosário, N.E.; Longo, K.M.; de Freitas, S.R.; Yamasoe, M.A.; Fonseca, R.M. da Modeling the South American Regional Smoke Plume: Aerosol Optical Depth Variability and Surface Shortwave Flux Perturbation. Atmos. Chem. Phys. 2013, 13, 2923–2938. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Mariano, G.L.; Alonso, M.F.; Mariano, E.V.C. Analysis of Incoming Biomass Burning Aerosol Plumes over Southern Brazil. Atmos. Sci. Lett. 2016, 17, 577–585. [Google Scholar] [CrossRef]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, T.; Garreaud, R.; Gochis, D.; Gutzler, D.; Lettenmaier, D.; Marengo, J.; Mechoso, C.R.; et al. Toward a Unified View of the American Monsoon Systems. J. Clim. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Baars, H.; Ansmann, A.; Althausen, D.; Engelmann, R.; Heese, B.; Müller, D.; Artaxo, P.; Paixao, M.; Pauliquevis, T.; Souza, R. Aerosol Profiling with Lidar in the Amazon Basin during the Wet and Dry Season. J. Geophys. Res. Atmos. 2012, 117, D21201. [Google Scholar] [CrossRef]
- Andreae, M.O.; Artaxo, P.; Beck, V.; Bela, M.; Freitas, S.; Gerbig, C.; Longo, K.; Munger, J.W.; Wiedemann, K.T.; Wofsy, S.C. Carbon Monoxide and Related Trace Gases and Aerosols over the Amazon Basin during the Wet and Dry Seasons. Atmos. Chem. Phys. 2012, 12, 6041–6065. [Google Scholar] [CrossRef]
- Huang, J.; Guo, J.; Wang, F.; Liu, Z.; Jeong, M.-J.; Yu, H.; Zhang, Z. CALIPSO Inferred Most Probable Heights of Global Dust and Smoke Layers. J. Geophys. Res. Atmos. 2015, 120, 5085–5100. [Google Scholar] [CrossRef]
- Bourgeois, Q.; Ekman, A.M.L.; Krejci, R. Aerosol Transport over the Andes from the Amazon Basin to the Remote Pacific Ocean: A Multiyear CALIOP Assessment. J. Geophys. Res. Atmos. 2015, 120, 8411–8425. [Google Scholar] [CrossRef]
- Marenco, F.; Johnson, B.; Langridge, J.M.; Mulcahy, J.; Benedetti, A.; Remy, S.; Jones, L.; Szpek, K.; Haywood, J.; Longo, K.; et al. On the Vertical Distribution of Smoke in the Amazonian Atmosphere during the Dry Season. Atmos. Chem. Phys. 2016, 16, 2155–2174. [Google Scholar] [CrossRef]
- Gonzalez-Alonso, L.; Val Martin, M.; Kahn, R.A. Biomass-Burning Smoke Heights over the Amazon Observed from Space. Atmos. Chem. Phys. 2019, 19, 1685–1702. [Google Scholar] [CrossRef]
- Koch, D.; Bond, T.C.; Streets, D.; Unger, N.; der Werf, G.R. Global Impacts of Aerosols from Particular Source Regions and Sectors. J. Geophys. Res. Atmos. 2007, 112, D02205. [Google Scholar] [CrossRef]
- Romero-Ruiz, M.; Etter, A.; Sarmiento, A.; Tansey, K. Spatial and Temporal Variability of Fires in Relation to Ecosystems, Land Tenure and Rainfall in Savannas of Northern South America. Glob. Chang. Biol. 2010, 16, 2013–2023. [Google Scholar] [CrossRef]
- Pereira, G.; Shimabukuro, Y.E.; Moraes, E.C.; Freitas, S.R.; Cardozo, F.S.; Longo, K.M. Monitoring the Transport of Biomass Burning Emission in South America. Atmos. Pollut. Res. 2011, 2, 247–254. [Google Scholar] [CrossRef]
- Hamburger, T.; Matisāns, M.; Tunved, P.; Ström, J.; Calderon, S.; Hoffmann, P.; Hochschild, G.; Gross, J.; Schmeissner, T.; Wiedensohler, A.; et al. Long-Term in Situ Observations of Biomass Burning Aerosol at a High Altitude Station in Venezuela--Sources, Impacts and Interannual Variability. Atmos. Chem. Phys. 2013, 13, 9837–9853. [Google Scholar] [CrossRef]
- Gonçalves, C.; Figueiredo, B.R.; Alves, C.A.; Cardoso, A.A.; da Silva, R.; Kanzawa, S.H.; Vicente, A.M. Chemical Characterisation of Total Suspended Particulate Matter from a Remote Area in Amazonia. Atmos. Res. 2016, 182, 102–113. [Google Scholar] [CrossRef]
- Mendez-Espinosa, J.F.; Belalcazar, L.C.; Betancourt, R.M. Regional Air Quality Impact of Northern South America Biomass Burning Emissions. Atmos. Environ. 2019, 203, 131–140. [Google Scholar] [CrossRef]
- Pérez-Ramírez, D.; Andrade-Flores, M.; Eck, T.F.; Stein, A.F.; O’Neill, N.T.; Lyamani, H.; Gassó, S.; Whiteman, D.N.; Veselovskii, I.; Velarde, F.; et al. Multi Year Aerosol Characterization in the Tropical Andes and in Adjacent Amazonia Using AERONET Measurements. Atmos. Environ. 2017, 166, 412–432. [Google Scholar] [CrossRef]
- Ulke, A.G.; Freitas, S.R.; Longo, K.M. Aerosol Load and Characteristics in Buenos Aires: Relationships with Dispersion Mechanisms and Sources in South America. In Proceedings of the Air Pollution Modeling and Its Application XXI; Steyn, D.G., Trini Castelli, S., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 251–255. [Google Scholar] [CrossRef]
- Otero, L.A.; Ristori, P.R.; Holben, B.; Quel, E. Espesor óptico de aerosoles durante el año 2002 para diez estaciones pertenecientes a la Red AERONET NASA. Óptica Pura Y Apl. 2006, 39, 355–364. [Google Scholar]
- Otero, L.A.; Ristori, P.R.; García Ferreyra, M.F.; Herrera, M.E.; Bali, J.L.; Pereyra, A.F.; Martorrella, E.; Brusca, S.; D’Elia, R.L.; Fierro, V.E.; et al. Siete Fotómetros de la Red AERONET instalados en Territorio Argentino: Análisis estadísticos de los datos y caracterización de los aerosoles. Anales (Asoc. Física Argent.) 2018, 29, 78–82. [Google Scholar] [CrossRef]
- Casasola, F.; Pereyra, C.; Prieto, M.; Martonella, E.; Brusca, S.; Raponi, M.; Ristori, P.; Otero, L. Clasificación de Los Aerosoles En La Estación AERONET de Tucumán, Argentina. Anales (Asoc. Física Argent.) 2020, 31, 39–45. [Google Scholar] [CrossRef]
- García, M.E.; Della Ceca, L.S.; Micheletti, M.I.; Piacentini, R.D.N.; Ordano, M.A.; Reyes, N.J.F.; Buedo, S.; González, J.A. Satellite and Ground Atmospheric Particulate Matter Detection over Tucumán City, Argentina, Space-Time Distribution, Climatic and Seasonal Variability. AIMS Environ. Sci. 2018, 5, 173–194. [Google Scholar] [CrossRef]
- Della Ceca, L.S.; Ferreyra, M.F.G.; Lyapustin, A.; Chudnovsky, A.; Otero, L.; Carreras, H.; Barnaba, F. Satellite-Based View of the Aerosol Spatial and Temporal Variability in the Córdoba Region (Argentina) Using over Ten Years of High-Resolution Data. ISPRS J. Photogramm. Remote Sens. 2018, 145, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Olcese, L.E.; Palancar, G.G.; Toselli, B.M. Aerosol Optical Properties in Central Argentina. J. Aerosol Sci. 2014, 68, 25–37. [Google Scholar] [CrossRef]
- Li, J.; Pósfai, M.; Hobbs, P.V.; Buseck, P.R. Individual Aerosol Particles from Biomass Burning in Southern Africa: 2, Compositions and Aging of Inorganic Particles. J. Geophys. Res. Atmos. 2003, 108, 2310. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’neill, N.T.; Slutsker, I.; Kinne, S. Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Müller, D.; Ansmann, A.; Mattis, I.; Tesche, M.; Wandinger, U.; Althausen, D.; Pisani, G. Aerosol-Type-Dependent Lidar Ratios Observed with Raman Lidar. J. Geophys. Res. Atmos. 2007, 112, D16202. [Google Scholar] [CrossRef]
- Nepomuceno Pereira, S.; Preißler, J.; Guerrero-Rascado, J.L.; Silva, A.M.; Wagner, F. Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties. Sci. World J. 2014, 2014, 421838. [Google Scholar] [CrossRef]
- Reid, J.S.; Lagrosas, N.D.; Jonsson, H.H.; Reid, E.A.; Sessions, W.R.; Simpas, J.B.; Uy, S.N.; Boyd, T.J.; Atwood, S.A.; Blake, D.R.; et al. Observations of the Temporal Variability in Aerosol Properties and Their Relationships to Meteorology in the Summer Monsoonal South China Sea/East Sea: The Scale-Dependent Role of Monsoonal Flows, the Madden–Julian Oscillation, Tropical Cyclones, Squall. Atmos. Chem. Phys. 2015, 15, 1745–1768. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Ward, D.E.; Mukelabai, M.M.; Dubovik, O.; Smirnov, A.; Schafer, J.S.; Hsu, N.C.; Piketh, S.J.; Queface, A.; et al. Variability of Biomass Burning Aerosol Optical Characteristics in Southern Africa during the SAFARI 2000 Dry Season Campaign and a Comparison of Single Scattering Albedo Estimates from Radiometric Measurements. J. Geophys. Res. Atmos. 2003, 108, D13. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of Spheroid Models to Account for Aerosol Particle Nonsphericity in Remote Sensing of Desert Dust. J. Geophys. Res. Atmos. 2006, 111, D11208. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.M.; Brumby, S.P. Global Land Use/Land Cover with Sentinel 2 and Deep Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2021, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. [Google Scholar] [CrossRef]
- Holben, B.N.; Slutsker, T.I.E.I.; Tar, D.; Buis, J.P.; Setxerj, I.I.A.; Reagan, A.; Kaufman, Y.J.; Nakajima, T.; Lavenu, F.; Vemte, E.; et al. AERONET-A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 16, 1–16. [Google Scholar] [CrossRef]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Dubovik, O.; Smirnov, A.; Goloub, P.; Chen, H.B.; Chatenet, B.; Gomes, L.; Zhang, X.-Y.; Tsay, S.-C.; et al. Columnar Aerosol Optical Properties at AERONET Sites in Central Eastern Asia and Aerosol Transport to the Tropical Mid-Pacific. J. Geophys. Res. Atmos. 2005, 110, D06202. [Google Scholar] [CrossRef]
- Boselli, A.; Caggiano, R.; Cornacchia, C.; Madonna, F.; Mona, L.; Macchiato, M.; Pappalardo, G.; Trippetta, S. Multi Year Sun-Photometer Measurements for Aerosol Characterization in a Central Mediterranean Site. Atmos. Res. 2012, 104, 98–110. [Google Scholar] [CrossRef]
- Papandrea, S. Red SAVER-Net: Descripción General, Instrumental Involucrado y Productos Generados, Technical Note on National Meteorological Service of Argentina 2020-70. Available online: http://repositorio.smn.gob.ar/handle/20.500.12160/1362 (accessed on 5 February 2023).
- Papandrea, S.; Pallotta, J.V. Introducción Al Procesamiento de Señales Lidar: Telemetría de Nubes y Altura de Capa Límite Atmosférica, Technical Note on National Meteorological Service of Argentina 2020-73. Available online: http://repositorio.smn.gob.ar/handle/20.500.12160/1375 (accessed on 5 February 2023).
- Fernald, F.G. Analysis of Atmospheric Lidar Observations: Some Comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Shimizu, A.; Nishizawa, T.; Jin, Y.; Kim, S.-W.; Wang, Z.; Batdorj, D.; Sugimoto, N. Evolution of a Lidar Network for Tropospheric Aerosol Detection in East Asia. Opt. Eng. 2017, 56, 31219. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. Evaluation of the Transfer Coefficient Matrix (TCM) Approach to Model the Atmospheric Radionuclide Air Concentrations from Fukushima. J. Geophys. Res. Atmos. 2012, 117, 1–10. [Google Scholar] [CrossRef]
- Draxler, R.R. Evaluation of an Ensemble Dispersion Calculation. J. Appl. Meteorol. Climatol. 2003, 42, 308–317. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Adam, M.; Fragkos, K.; Solomos, S.; Belegante, L.; Andrei, S.; Talianu, C.; Mărmureanu, L.; Antonescu, B.; Ene, D.; Nicolae, V.; et al. Methodology for Lidar Monitoring of Biomass Burning Smoke in Connection with the Land Cover. Remote Sens. 2022, 14, 4734. [Google Scholar] [CrossRef]
Characteristics | Case 1 | Case 2 | Case 3 |
---|---|---|---|
Date | 2019-08-26 | 2019-09- 23/24/-/26/ 27/28/29/30 | 2019-10-13 |
Period of detection of BB aerosols UTC Time [h] | 11 to 20 | 16 (09-23) to 12 (09-30) | 15 to 20 |
Transport mechanism | Remote | Local/Local/-/Local/ Local/Local/Local/Remote | Local |
Mean daily α(440–870nm) (σ) | 1.70 (±0.06) | 1.10 */1.36/-/1.41 1.43/1.53/1.60/1.54 * (~±0.22) | 1.64 (±0.06) |
Mean daily SSA(440nm) (σ) | 0.91 (±0.02) | 0.92/0.80/-/0.80 0.80/0.83/0.84/N/D (~±0.03) | N/D |
Mean daily FMF(500nm) (σ) | 0.88 (±0.02) | 0.67 */0.73/-/0.77 0.76/0.78/0.81/0.84 * (~±0.05) | 0.86 (±0.02) |
Mean daily AOD(440nm) (σ) | 0.25 * (±0.04) | 0.3 */0.30/-/0.23 0.32/0.33/0.40/0.54 * (~±0.08) | 0.39 (±0.06) |
Vegetation type | RF+CGSS | CGSS/CGSS/-/CGSS/ CGSS/TF+CGSS/TF+CGSS/TF+RF+CGSS | CGSS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulena, G.C.; Asmi, E.M.; Ruiz, J.J.; Pallotta, J.V.; Jin, Y. Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study. Remote Sens. 2024, 16, 1780. https://doi.org/10.3390/rs16101780
Mulena GC, Asmi EM, Ruiz JJ, Pallotta JV, Jin Y. Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study. Remote Sensing. 2024; 16(10):1780. https://doi.org/10.3390/rs16101780
Chicago/Turabian StyleMulena, Gabriela Celeste, Eija Maria Asmi, Juan José Ruiz, Juan Vicente Pallotta, and Yoshitaka Jin. 2024. "Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study" Remote Sensing 16, no. 10: 1780. https://doi.org/10.3390/rs16101780
APA StyleMulena, G. C., Asmi, E. M., Ruiz, J. J., Pallotta, J. V., & Jin, Y. (2024). Biomass Burning Aerosol Observations and Transport over Northern and Central Argentina: A Case Study. Remote Sensing, 16(10), 1780. https://doi.org/10.3390/rs16101780