Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions
Abstract
:1. Introduction
2. Quantum Billiards
3. Square Billiard
4. Equilateral Triangular Billiard
5. Circular Billiard
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haus, H.A. Waves and Fields in Optoelectronics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Boyd, G.D.; Kogelnik, H. Generalized confocal resonator theory. Bell Syst. Tech. J. 1962, 41, 1347–1369. [Google Scholar] [CrossRef]
- Laabs, H.; Ozygus, B. Excitation of Hermite Gaussian modes in end-pumped solid-state laser via off axis pumping. Opt. Laser Technol. 1996, 28, 213–214. [Google Scholar] [CrossRef]
- Flood, C.J.; Giuliani, G.; van Driel, H.M. Preferential operation of an end-pumped Nd:YAG laser in high-order Laguerre–Gauss modes. Opt. Lett. 1990, 15, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Bisson, J.F.; Senatsky, Y.; Ueda, K.I. Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping. Laser Phys. Lett. 2005, 2, 327–333. [Google Scholar] [CrossRef]
- Kim, J.W.; Clarkson, W.A. Selective generation of Laguerre–Gaussian (LG0n) mode output in a diode-laser pumped Nd:YAG laser. Optics Commun. 2013, 296, 109–112. [Google Scholar] [CrossRef]
- Lee, A.J.; Omatsu, T.; Pask, H.M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser. Opt. Express 2013, 21, 12401–12409. [Google Scholar] [CrossRef]
- Dingjan, J.; van Exter, M.P.; Woerdman, J.P. Geometric modes in a single-frequency Nd:YVO4 laser. Opt. Commun. 2001, 188, 345–351. [Google Scholar] [CrossRef]
- Barré, N.; Romanelli, M.; Lebental, M.; Brunel, M. Waves and rays in plano-concave laser cavities: I. Geometric modes in the paraxial approximation. Eur. J. Phys. 2017, 38, 034010. [Google Scholar] [CrossRef]
- Courtois, J.; Mohamed, A.; Romanini, D. Degenerate astigmatic cavities. Phys. Rev. A 2013, 88, 043844. [Google Scholar] [CrossRef]
- Brack, M.; Bhaduri, R.K. Semiclassical Physics; Addison-Wesley: Reading, MA, USA, 1997. [Google Scholar]
- Habraken, S.J.M.; Nienhuis, G. Modes of a twisted optical cavity. Phys. Rev. A 2007, 75, 033819. [Google Scholar] [CrossRef]
- Mcdonald, S.W.; Kaufman, A.N. Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories. Phys. Rev. Lett. 1979, 42, 1189–1191. [Google Scholar] [CrossRef]
- Tomsovic, S.; Heller, E.J. Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy. Phys. Rev. Lett. 1991, 67, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Zaslavsky, G.M. Chaos in Dynamic Systems; Harwood: Reading, MA, USA, 1985. [Google Scholar]
- Gutzwiller, M.C. Chaos in Classical and Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Müller, S.; Heusler, S.; Braun, P.; Haake, F.; Altland, A. Periodic-orbit theory of universality in quantum chaos. Phys. Rev. E 2005, 72, 046207. [Google Scholar] [CrossRef] [PubMed]
- Tomsovic, S.; Heller, E.J. Long-time semiclassical dynamics of chaos: The stadium billiard. Phys. Rev. E 1993, 47, 282–299. [Google Scholar] [CrossRef] [PubMed]
- Tomsovic, S.; Heller, E.J. Semiclassical construction of chaotic eigenstates. Phys. Rev. Lett. 1993, 70, 1405–1408. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.V. Regular and irregular semiclassical wavefunctions. J. Phys. A Math. Gen. 1997, 10, 2083. [Google Scholar] [CrossRef]
- Heller, E.J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems—Scars of periodic-orbits. Phys. Rev. Lett. 1984, 53, 1515–1518. [Google Scholar] [CrossRef]
- Stöckmann, H.J. Quantum Chaos: An Introduction; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Haake, F. Quantum Signatures of Chaos; Springer: New York, NY, USA, 2010. [Google Scholar]
- Fromhold, T.M.; Wilkinson, P.B.; Sheard, F.W.; Eaves, L.; Miao, J.; Edwards, G. Manifestations of classical chaos in the energy level spectrum of a quantum well. Phys. Rev. Lett. 1995, 75, 1142–1145. [Google Scholar] [CrossRef]
- Wilkinson, P.B.; Fromhold, T.M.; Eaves, L.; Sheard, F.W.; Miura, N.; Takamasu, T. Observation of ‘scarred’ wavefunctions in a quantum well with chaotic electron dynamics. Nature 1996, 380, 608–610. [Google Scholar] [CrossRef]
- Monteiro, T.S.; Delande, D.; Connerade, J.P. Have quantum scars been observed? Nature 1997, 387, 863–864. [Google Scholar] [CrossRef]
- Akis, R.; Ferry, D.K.; Bird, J.P. Wave function scarring effects in open stadium shaped quantum dots. Phys. Rev. Lett. 1997, 79, 123–126. [Google Scholar] [CrossRef]
- Narimanov, E.E.; Stone, A.D. Origin of strong scarring of wave functions in quantum wells in a tilted magnetic field. Phys. Rev. Lett. 1998, 80, 49–52. [Google Scholar] [CrossRef]
- Bird, J.P.; Akis, R.; Ferry, D.K.; Vasileska, D.; Cooper, J.; Aoyagi, Y.; Sugano, T. Lead-orientation-dependent wave function scarring in open quantum dots. Phys. Rev. Lett. 1999, 82, 4691–4694. [Google Scholar] [CrossRef]
- Crook, R.; Smith, C.G.; Graham, A.C.; Farrer, I.; Beere, H.E.; Ritchie, D.A. Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard. Phys. Rev. Lett. 2003, 91, 246803. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, B.J.; Bleszynski, A.C.; Aidala, K.E.; Westervelt, R.M.; Kalben, A.; Heller, E.J.; Shaw, S.E.J.; Maranowski, K.D.; Gossard, A.C. Imaging electron interferometer. Phys. Rev. Lett. 2005, 94, 126801. [Google Scholar] [CrossRef] [PubMed]
- Brunner, R.; Akis, R.; Ferry, D.K.; Kuchar, F.; Meisels, R. Coupling-induced bipartite pointer states in arrays of electron billiards: Quantum Darwinism in action? Phys. Rev. Lett. 2008, 101, 024102. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.M.; Akis, R.; Day, T.E.; Speyer, G.; Ferry, D.K.; Bennett, B.R. Periodic scarred states in open quantum dots as evidence of quantum Darwinism. Phys. Rev. Lett. 2010, 104, 176801. [Google Scholar] [CrossRef]
- Aoki, N.; Brunner, R.; Burke, A.M.; Akis, R.; Meisels, R.; Ferry, D.K.; Ochiai, Y. Direct imaging of electron states in open quantum dots. Phys. Rev. Lett. 2012, 108, 136804. [Google Scholar] [CrossRef]
- Sridhar, S. Experimental observation of scarred eigenfunctions of chaotic microwave cavities. Phys. Rev. Lett. 1991, 67, 785–788. [Google Scholar] [CrossRef]
- Sridhar, S.; Hogenboom, D.O.; Willemsen, B.A. Microwave experiments on chaotic billiards. J. Stat. Phys. 1992, 68, 239–258. [Google Scholar] [CrossRef]
- Jensen, R.V. Quantum chaos. Nature 1992, 355, 311–318. [Google Scholar] [CrossRef]
- Jensen, R.V. Quantum mechanics—Bringing order out of chaos. Nature 1992, 355, 591–592. [Google Scholar] [CrossRef]
- Stein, J.; Stöckmann, H.J. Experimental determination of billiard wave functions. Phys. Rev. Lett. 1992, 68, 2867–2870. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, S.; Heller, E.J. Physical and numerical experiments on the wave mechanics of classically chaotic systems. Phys. Rev. A 1992, 46, R1728–R1731. [Google Scholar] [CrossRef] [PubMed]
- Kudrolli, A.; Kidambi, V.; Sridhar, S. Experimental studies of chaos and localization in quantum wave functions. Phys. Rev. Lett. 1995, 75, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.; Anderson, B.M.; Altland, A. Chaos-driven dynamics in spin–orbit-coupled atomic gases. Phys. Rev. A 2013, 87, 013624. [Google Scholar] [CrossRef]
- Luukko, P.J.J.; Drury, B.; Klales, A.; Kaplan, L.; Heller, E.J.; Räsänen, E. Strong quantum scarring by local impurities. Sci. Rep. 2016, 6, 37656. [Google Scholar] [CrossRef]
- Keski-Rahkonen, J.; Luukko, P.J.J.; Kaplan, L.; Heller, E.J.; Räsänen, E. Controllable quantum scars in semiconductor quantum dots. Phys. Rev. B 2017, 96, 094204. [Google Scholar] [CrossRef]
- Keski-Rahkonen, J.; Ruhanen, A.; Heller, E.J.; Räsänen, E. Quantum Lissajous scars. Phys. Rev. Lett. 2019, 123, 214101. [Google Scholar] [CrossRef]
- Turner, C.J.; Michailidis, A.A.; Abanin, D.A.; Serbyn, M.; Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 2018, 14, 1. [Google Scholar] [CrossRef]
- Turner, C.J.; Michailidis, A.A.; Abanin, D.A.; Serbyn, M.; Papić, Z. Quantum scarred eigenstates in a Rydberg atom chain: Entanglement, breakdown of thermalization, and stability to perturbations. Phys. Rev. B 2018, 98, 155134. [Google Scholar] [CrossRef]
- Moudgalya, S.; Regnault, N.; Bernevig, B.A. Entanglement of exact excited states of Affleck–Kennedy–Lieb–Tasaki models: Exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis. Phys. Rev. B 2018, 98, 235156. [Google Scholar] [CrossRef]
- Ho, W.W.; Choi, S.; Pichler, H.; Lukin, M.D. Periodic orbits, entanglement, and quantum many-body scars in constrained models: Matrix product state approach. Phys. Rev. Lett. 2019, 122, 040603. [Google Scholar] [CrossRef]
- Choi, S.; Turner, C.J.; Pichler, H.; Ho, W.W.; Michailidis, A.A.; Papić, Z.; Serbyn, M.; Lukin, M.D.; Abanin, D.A. Emergent SU(2) dynamics and perfect quantum many-body scars. Phys. Rev. Lett. 2019, 122, 220603. [Google Scholar] [CrossRef]
- Lin, C.J.; Motrunich, O.I. Exact quantum many-body scar states in the Rydberg-blockaded atom chain. Phys. Rev. Lett. 2019, 122, 173401. [Google Scholar] [CrossRef] [PubMed]
- Mamaev, M.; Kimchi, I.; Perlin, M.A.; Nandkishore, R.M.; Rey, A.M. Quantum entropic self-localization with ultracold fermions. Phys. Rev. Lett. 2019, 123, 130402. [Google Scholar] [CrossRef]
- Schecter, M.; Iadecola, T. Weak ergodicity breaking and quantum many-body scars in spin-1 xy magnets. Phys. Rev. Lett. 2019, 123, 147201. [Google Scholar] [CrossRef]
- Wilming, H.; Goihl, M.; Roth, I.; Eisert, J. Entanglement ergodic quantum systems equilibrate exponentially well. Phys. Rev. Lett. 2019, 123, 200604. [Google Scholar] [CrossRef]
- Iadecola, T.; Schecter, M.; Xu, S. Quantum many-body scars from magnon condensation. Phys. Rev. 2019, 100, 184312. [Google Scholar] [CrossRef]
- Pai, S.; Pretko, M. Dynamical scar states in driven fraction systems. Phys. Rev. Lett. 2019, 123, 136401. [Google Scholar] [CrossRef]
- O’Connor, P.; Gehlen, J.; Heller, E.J. Properties of random superpositions of plane waves. Phys. Rev. Lett. 1987, 58, 1296–1298. [Google Scholar] [CrossRef] [PubMed]
- Robinett, R.W. Isolated versus non-isolated periodic orbits in variants of the two-dimensional square and circular wells. J. Math. Phys. 1999, 40, 101–122. [Google Scholar] [CrossRef]
- Robinett, R.W.; Heppelmann, S. Quantum wave packet revivals in circular billiards. Phys. Rev. A 2002, 65, 062103–062113. [Google Scholar] [CrossRef]
- Robinett, R.W. Energy eigenvalues and periodic orbits for the circular disk or annular infinite well. Surf. Rev. Lett. 1998, 5, 519–526. [Google Scholar] [CrossRef]
- Doncheski, M.A.; Heppelmann, S.; Robinett, R.W.; Tussey, D.C. Wave packet construction in two-dimensional quantum billiards: Blueprints for the square, equilateral triangle, and circular cases. Am. J. Phys. 2003, 71, 541–557. [Google Scholar] [CrossRef]
- Doncheski, M.A.; Robinett, R.W. Quantum mechanical analysis of the equilateral triangle billiard: Periodic orbit theory and wave packet revivals. Ann. Phys. 2002, 299, 208–227. [Google Scholar] [CrossRef]
- Lin, S.L.; Gao, F.Z.; Hong, P.; Du, M.L. Quantum spectra and classical orbits in two-dimensional equilateral triangle billiards. Chin. Phys. Lett. 2005, 22, 9–11. [Google Scholar]
- Styer, D.F. Quantum revivals versus classical periodicity in the infinite square well. Am. J. Phys. 2001, 69, 56–62. [Google Scholar] [CrossRef]
- Robinett, R.W. Visualizing classical periodic orbits from the quantum energy spectrum via the Fourier transform: Simple infinite well examples. Am. J. Phys. 1997, 65, 1167–1175. [Google Scholar] [CrossRef]
- Robinett, R.W. Quantum mechanics of the two-dimensional circular billiard plus baffle system and half-integral angular momentum. Eur. J. Phys. 2003, 24, 231–243. [Google Scholar] [CrossRef]
- Wright, M.C.M.; Ham, C.J. Periodic orbit theory in acoustics: Spectral fluctuations in circular and annular waveguides. J. Acoust. Soc. Am. 2007, 121, 1865–1872. [Google Scholar] [CrossRef] [PubMed]
- Robinett, R.W. Periodic orbit theory of a continuous family of quasi-circular billiards. J. Math. Phys. 1998, 39, 278–298. [Google Scholar] [CrossRef]
- Lu, J. From quantum spectra to classical orbits: Varying rectangular billiards. Prog. Nat. Sci. 2008, 18, 927–930. [Google Scholar] [CrossRef]
- Matzkin, A. Bohmian mechanics, the quantum-classical correspondence and the classical limit: The case of the square billiard. Found. Phys. 2009, 39, 903–920. [Google Scholar] [CrossRef]
- Fonte, G.; Zerbo, B. Classical billiards and double-slit quantum interference. Eur. Phys. J. Plus 2012, 127, 8–19. [Google Scholar] [CrossRef]
- Robinett, R.W. Periodic orbit theory analysis of the circular disk or annular billiard: Non-classical effects and the distribution of energy eigenvalues. Am. J. Phys. 1999, 67, 67–78. [Google Scholar] [CrossRef]
- Macek, M.; Cejnar, P.; Jolie, J.; Heinze, S. Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. II. Classical trajectories. Phys. Rev. C 2006, 73, 014307. [Google Scholar] [CrossRef]
- Lee, W.K. Degeneracy in the particle-in-a-square problem. Am. J. Phys. 1982, 50, 666. [Google Scholar]
- Robinett, R.W. Quantum wave packet revivals. Phys. Rep. 2004, 392, 1–119. [Google Scholar] [CrossRef]
- Marcus, C.M.; Rimberg, A.J.; Westervelt, R.M.; Hopkins, P.F.; Gossard, A.C. Conductance fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett. 1992, 69, 506–509. [Google Scholar] [CrossRef]
- Marcus, C.M.; Westervelt, R.M.; Hopkins, P.F.; Gossard, A.C. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures. Chaos 1993, 3, 643–653. [Google Scholar] [CrossRef]
- Taylor, R.P.; Newbury, R.; Sachrajda, A.S.; Feng, Y.; Coleridge, P.T.; Dettmann, C.; Zhu, N.; Guo, H.; Delage, A.; Kelly, P.J.; et al. Self-similar magnetoresistance of a semiconductor Sinai billiard. Phys. Rev. Lett. 1997, 78, 1952–1955. [Google Scholar] [CrossRef]
- Sachrajda, A.S.; Ketzmerick, R.; Gould, C.; Feng, Y.; Kelly, P.J.; Delage, A.; Wasilewski, Z. Fractal conductance fluctuations in a soft-wall stadium and a Sinai billiard. Phys. Rev. Lett. 1998, 80, 1948–1951. [Google Scholar] [CrossRef]
- Blanchard, P.; Olkiewicz, R. Decoherence-induced continuous pointer states. Phys. Rev. Lett. 2003, 90, 010403. [Google Scholar] [CrossRef]
- Ferry, D.K.; Akis, R.; Bird, J.P. Einselection in action: Decoherence and pointer states in open quantum dots. Phys. Rev. Lett. 2004, 93, 026803. [Google Scholar] [CrossRef]
- Ferry, D.K.; Huang, L.; Yang, R.; Lai, Y.C.; Akis, R. Open quantum dots in graphene: Scaling relativistic pointer states. J. Phys. Conf. Ser. 2010, 220, 012015. [Google Scholar] [CrossRef]
- Wang, W.G.; He, L.; Gong, J. Preferred states of decoherence under intermediate system-environment coupling. Phys. Rev. Lett. 2012, 108, 070403. [Google Scholar] [CrossRef]
- Yang, Y.B.; Wang, W.G. A phenomenon of decoherence induced by chaotic environment. Chin. Phys. Lett. 2015, 32, 030301. [Google Scholar] [CrossRef]
- Lee, P.A.; Stone, A.D. Universal conductance fluctuations in metals. Phys. Rev. Lett. 1985, 55, 1622–1625. [Google Scholar] [CrossRef]
- Kaplan, S.B.; Hartstein, A. Universal conductance fluctuations in narrow Si accumulation layers. Phys. Rev. Lett. 1986, 56, 2403–2406. [Google Scholar] [CrossRef]
- Skocpol, W.J.; Mankiewich, P.M.; Howard, R.E.; Jackel, L.D.; Tennant, D.M.; Stone, A.D. Universal conductance fluctuations in silicon inversion-layer nanostructures. Phys. Rev. Lett. 1986, 56, 2865–2868. [Google Scholar] [CrossRef] [PubMed]
- Iida, S.; Weidenmüller, H.A.; Zuk, J.A. Wave propagation through disordered media and universal conductance fluctuations. Phys. Rev. Lett. 1990, 64, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Kharitonov, M.Y.; Efetov, K.B. Universal conductance fluctuations in graphene. Phys. Rev. B 2008, 78, 033404. [Google Scholar] [CrossRef]
- Tomsovic, S.; Ullmo, D. Chaos-assisted tunneling. Phys. Rev. E 1994, 50, 145–162. [Google Scholar] [CrossRef]
- Dembowski, C.; Gräf, H.D.; Heine, A.; Hofferbert, R.; Rehfeld, H.; Richter, A. First experimental evidence for chaos-assisted tunneling in a microwave annular billiard. Phys. Rev. Lett. 2000, 84, 867–870. [Google Scholar] [CrossRef]
- Steck, D.A.; Oskay, W.H.; Raizen, M.G. Observation of chaos-assisted tunneling between islands of stability. Science 2001, 293, 274–878. [Google Scholar] [CrossRef]
- Tomsovic, S. Tunneling and chaos. Phys. Scr. T 2001, 90, 162–165. [Google Scholar] [CrossRef]
- de Moura, A.P.S.; Lai, Y.C.; Akis, R.; Bird, J.; Ferry, D.K. Tunneling and nonhyperbolicity in quantum dots. Phys. Rev. Lett. 2002, 88, 236804. [Google Scholar] [CrossRef]
- Bäcker, A.; Ketzmerick, R.; Monastra, A.G. Flooding of chaotic eigenstates into regular phase space islands. Phys. Rev. Lett. 2005, 94, 054102. [Google Scholar] [CrossRef]
- Bäcker, A.; Ketzmerick, R.; Löck, S.; Robnik, M.; Vidmar, G.; Höhmann, R.; Kuhl, U.; Stöckmann, H.J. Dynamical tunneling in mushroom billiards. Phys. Rev. Lett. 2008, 100, 174103. [Google Scholar] [CrossRef]
- Bäcker, A.; Ketzmerick, R.; Löck, S.; Schilling, L. Regular-to-chaotic tunneling rates using a fictitious integrable system. Phys. Rev. Lett. 2008, 100, 104101. [Google Scholar] [CrossRef]
- Rong, S.; Hai, W.; Xie, Q.; Zhu, Q. Chaos enhancing tunneling in a coupled Bose–Einstein condensate with a double driving. Chaos 2009, 19, 033129. [Google Scholar] [CrossRef] [PubMed]
- Löck, S.; Bäcker, A.; Ketzmerick, R.; Schlagheck, P. Regular-to-chaotic tunneling rates: From the quantum to the semiclassical regime. Phys. Rev. Lett. 2010, 104, 114101. [Google Scholar] [CrossRef] [PubMed]
- Pecora, L.M.; Lee, H.; Wu, D.H.; Antonsen, T.; Lee, M.J.; Ott, E. Chaos regularization of quantum tunneling rates. Phys. Rev. E 2011, 83, 065201. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Antonsen, T.M.; Ott, E.; Pecora, L.M. Theory of chaos regularization of tunneling in chaotic quantum dots. Phys. Rev. E 2012, 86, 056212. [Google Scholar] [CrossRef]
- Ni, X.; Huang, L.; Lai, Y.C.; Pecora, L.M. Effect of chaos on relativistic quantum tunneling. Europhys. Lett. 2012, 98, 50007. [Google Scholar] [CrossRef]
- Ni, X.; Huang, L.; Ying, L.; Lai, Y.C. Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems. Phys. Rev. B 2013, 87, 224304. [Google Scholar] [CrossRef]
- Ying, L.; Wang, G.; Huang, L.; Lai, Y.C. Quantum chaotic tunneling in graphene systems with electron-electron interactions. Phys. Rev. B 2014, 90, 224301. [Google Scholar] [CrossRef]
- Doya, V.; Legrand, O.; Mortessagne, F.; Miniatura, C. Light scarring in an optical fiber. Phys. Rev. Lett. 2001, 88, 014102. [Google Scholar] [CrossRef]
- Michel, C.; Doya, V.; Legrand, O.; Mortessagne, F. Selective amplification of scars in a chaotic optical fiber. Phys. Rev. Lett. 2007, 99, 224101. [Google Scholar] [CrossRef]
- Slusher, R.; Weisbuch, C. Optical microcavities in condensed matter systems. Solid State Commun. 1994, 92, 149–158. [Google Scholar] [CrossRef]
- Gmachl, C.; Capasso, F.; Narimanov, E.E.; Nockel, J.U.; Stone, A.D.; Faist, J.; Sivco, D.L.; Cho, A.Y. Highpower directional emission from microlasers with chaotic resonators. Science 1998, 280, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Vahala, K.J. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Yang, J.; Moon, S.; Lee, S.Y.; Shim, J.B.; Kim, S.W.; Lee, J.H.; An, K. Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 2009, 103, 134101. [Google Scholar] [CrossRef]
- Song, Q.; Fang, W.; Liu, B.; Ho, S.T.; Solomon, G.S.; Cao, H. Chaotic microcavity laser with high quality factor and unidirectional output. Phys. Rev. A 2009, 80, 041807. [Google Scholar] [CrossRef]
- Peng, B.; Oezdemir, S.K.; Lei, F.; Monifi, F.; Gianfreda, M.; Long, G.L.; Fan, S.; Nori, F.; Bender, C.M.; Yang, L. Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 2014, 10, 394–398. [Google Scholar]
- Wang, L.; Lippolis, D.; Li, Z.; Jiang, X.; Gong, Q.; Xiao, Y. Statistics of chaotic resonances in an optical microcavity. Phys. Rev. E 2016, 93, 040201. [Google Scholar] [CrossRef]
- Jiang, X.; Shao, L.; Zhang, S.; Yi, X.; Wiersig, J.; Wang, L.; Gong, Q.; Loncar, M.; Yang, L.; Xiao, Y. Chaos-assisted broadband momentum transformation in optical microresonators. Science 2017, 358, 344–347. [Google Scholar] [CrossRef]
- Bittner, S.; Guazzotti, S.; Zeng, Y.; Hu, X.; Yilmaz, H.; Kim, K.; Oh, S.S.; Wang, Q.J.; Hess, O.; Cao, H. Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities. Science 2018, 361, 1225–1231. [Google Scholar] [CrossRef]
- Guidry, M.A.; Song, Y.; Lafargue, C.; Sobczyk, R.; Decanini, D.; Bittner, S.; Dietz, B.; Huang, L.; Zyss, J.; Grigis, A.; et al. Three-dimensional micro-billiard lasers: The square pyramid. Europhys. Lett. 2019, 126, 64004. [Google Scholar] [CrossRef]
- Chinnery, P.A.; Humphrey, V.F. Experimental visualization of acoustic resonances within a stadium-shaped cavity. Phys. Rev. E 1996, 53, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Legrand, O.; Schmit, C.; Sornette, D. Quantum chaos methods applied to high-frequency plate vibrations. Europhys. Lett. 1992, 18, 101–106. [Google Scholar] [CrossRef]
- Mortessagne, F.; Legrand, O.; Sornette, D. Transient chaos in room acoustics. Chaos 1993, 3, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Ellegaard, C.; Guhr, T.; Lindemann, K.; Lorensen, H.Q.; Nygård, J.; Oxborrow, M. Spectral statistics of acoustic resonances in aluminum blocks. Phys. Rev. Lett. 1995, 75, 1546–1549. [Google Scholar] [CrossRef]
- Ellegaard, C.; Guhr, T.; Lindemann, K.; Nygård, J.; Oxborrow, M. Symmetry breaking and spectral statistics of acoustic resonances in quartz blocks. Phys. Rev. Lett. 1996, 77, 4918–4921. [Google Scholar] [CrossRef]
- Leitner, D.M. Effects of symmetry breaking on statistical properties of near-lying acoustic resonances. Phys. Rev. E 1997, 56, 4890–4891. [Google Scholar] [CrossRef]
- Bogomolny, E.; Hugues, E. Semiclassical theory of flexural vibrations of plates. Phys. Rev. E 1998, 57, 5404–5424. [Google Scholar] [CrossRef]
- Blümel, R.; Davidson, I.H.; Reinhardt, W.P.; Lin, H.; Sharnoff, M. Quasilinear ridge structures in water surface waves. Phys. Rev. A 1992, 45, 2641–2644. [Google Scholar] [CrossRef]
- Kudrolli, A.; Abraham, M.C.; Gollub, J.P. Scarred patterns in surface waves. Phys. Rev. E 2001, 63, 026208. [Google Scholar] [CrossRef]
- Agam, O.; Altshuler, B.L. Scars in parametrically excited surface waves. Phys. A 2001, 302, 310–317. [Google Scholar] [CrossRef]
- Lindelof, P.E.; Norregaard, J.; Hanberg, J. New light on the scattering mechanisms in Si inversion layers by weak localization experiments. Phys. Scr. T 1986, 14, 17–26. [Google Scholar] [CrossRef]
- Nunez-Fernandez, Y.; Trallero-Giner, C.; Buchleitner, A. Liquid surface waves in parabolic tanks. Phys. Fluids 2008, 20, 117106. [Google Scholar] [CrossRef]
- Zakrzewski, J. Quantum Chaos and level dynamics. Entropy 2023, 25, 491. [Google Scholar] [CrossRef] [PubMed]
- Práger, M. Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle. Appl. Math. 1998, 43, 311–320. [Google Scholar] [CrossRef]
- Nye, J.F.; Berry, M.V. Dislocations in wave trains. Proc. R Soc. A Math. Phys. Eng. Sci. 1974, 336, 165–190. [Google Scholar]
- Bazhenov, V.Y.; Soskin, M.S.; Vasnetsov, M.V. Screw dislocations in light wavefronts. J. Mod. Opt. 1992, 39, 985–990. [Google Scholar] [CrossRef]
- Durnin, J.; Miceli, J.J.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499–1502. [Google Scholar] [CrossRef]
- Mair, A.; Vaziri, A.; Weihs, G.; Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 2001, 412, 313–316. [Google Scholar] [CrossRef]
- Molina-Terriza, G.; Torres, J.P.; Torner, L. Twisted photons. Nat. Phys. 2007, 3, 305–310. [Google Scholar] [CrossRef]
- Paterson, L.; MacDonald, M.P.; Arlt, J.; Sibbett, W.; Bryant, P.E.; Dholakia, K. Controlled rotation of optically trapped microscopic particles. Science 2001, 292, 912–914. [Google Scholar] [CrossRef]
- MacDonald, M.P.; Paterson, L.; Volke-Sepulveda, K.; Arlt, J.; Sibbett, W.; Dholakia, K. Creation and manipulation of three-dimensional optically trapped structures. Science 2002, 296, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Grier, D.G. A revolution in optical manipulation. Nature 2003, 424, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Harwit, M. Photon orbital angular momentum in astrophysics. Astrophys. J. 2003, 597, 1266–1270. [Google Scholar] [CrossRef]
- Zhuang, X.W. Unraveling DNA condensation with optical tweezers. Science 2004, 305, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Fürhapter, S.; Jesacher, A.; Bernet, S.; Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 2005, 13, 689–694. [Google Scholar] [CrossRef]
- Tamburini, F.; Anzolin, G.; Umbriaco, G.; Bianchini, A.; Barbieri, C. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 2006, 97, 163903. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Wei, T.C.; Kwiat, P.G. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 2008, 4, 282–286. [Google Scholar] [CrossRef]
- Friedrich, H.; Trost, J. Accurate WKB wave functions for weakly attractive inverse-square potential. Phys. Rev. A 1999, 59, 1683–1686. [Google Scholar] [CrossRef]
- De Heer, W.A. The physics of simple metal clusters: Experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611. [Google Scholar] [CrossRef]
- Lebedev, N.N. Special Functions & Their Applications; Dover: New York, NY, USA, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-F.; Lin, S.-Q.; Chang, R.-W.; Yu, Y.-T.; Liang, H.-C. Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions. Symmetry 2023, 15, 1809. https://doi.org/10.3390/sym15101809
Chen Y-F, Lin S-Q, Chang R-W, Yu Y-T, Liang H-C. Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions. Symmetry. 2023; 15(10):1809. https://doi.org/10.3390/sym15101809
Chicago/Turabian StyleChen, Yung-Fu, Song-Qing Lin, Ru-Wei Chang, Yan-Ting Yu, and Hsing-Chih Liang. 2023. "Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions" Symmetry 15, no. 10: 1809. https://doi.org/10.3390/sym15101809
APA StyleChen, Y.-F., Lin, S.-Q., Chang, R.-W., Yu, Y.-T., & Liang, H.-C. (2023). Systematically Constructing Mesoscopic Quantum States Relevant to Periodic Orbits in Integrable Billiards from Directionally Resolved Level Distributions. Symmetry, 15(10), 1809. https://doi.org/10.3390/sym15101809