Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (234)

Search Parameters:
Keywords = physical entrapment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 687 KiB  
Brief Report
Multicomponent-Type High-Intensity Interval Training Improves Vitamin D Status in Adults with Overweight/Obesity
by Maria Protopapa, Dimitrios Draganidis, Alexandra Avloniti, Ioannis G. Fatouros, Theodoros Stampoulis, Dimitrios Pantazis, Dimitrios Balampanos, Nikolaos Orestis Retzepis, Athanasios Poulios, Nikolaos Zaras, Maria Bampali, Ioannis Karakasiliotis, George Mastorakos, Theodore J. Angelopoulos, Maria Michalopoulou, Antonis Kambas, Athanasios Z. Jamurtas and Athanasios Chatzinikolaou
Obesities 2025, 5(3), 51; https://doi.org/10.3390/obesities5030051 - 4 Jul 2025
Viewed by 328
Abstract
Vitamin D deficiency is highly prevalent in individuals with overweight/obesity and this can be largely attributed to the entrapment of VitD in adipose tissue due to impaired lipolytic stimulation. Considering the well-described role of exercise in stimulating lipolysis, the present study investigated the [...] Read more.
Vitamin D deficiency is highly prevalent in individuals with overweight/obesity and this can be largely attributed to the entrapment of VitD in adipose tissue due to impaired lipolytic stimulation. Considering the well-described role of exercise in stimulating lipolysis, the present study investigated the efficacy of multicomponent-type high-intensity interval training (m-HIIT) in increasing 25-hydroxyvitamin D [25(OH)D] levels in males with overweight/obesity. Twenty middle-aged males (43.5 ± 5 years, BMI: 30.7 ± 3.3 kg/m2) participated in three weekly supervised m-HIIT sessions over a 12-week period and underwent assessments at baseline, 6, and 12 weeks. Primary outcomes were total body fat mass, android fat, hepatorenal index, and serum 25(OH)D. Participants’ daily physical activity and dietary intake habits remained unaltered throughout the 12-week training period. The m-HIIT intervention reduced fat mass (by 3% at 12 weeks), android fat (by 3.7% at 6 weeks and 4.4% at 12 weeks), and hepatorenal index (by 8% at 12 weeks). Serum 25(OH)D levels increased by ~14% (+3.21 ng/mL, p = 0.002) and ~31% (+7.24 ng/mL, p < 0.001) at 6 and 12 weeks, respectively. The elevation of 25(OH)D levels at 12 weeks was inversely related to fat mass loss (R = 0.53, p = 0.016). Plasma SGPT, SGOT, ALP, γ-GT, fetuin-A, and calcium levels remained unaltered after the 12-week training period. In conclusion, m-HIIT may be useful as a non-pharmacological intervention to increase circulating VitD levels in adults with overweight/obesity. Full article
Show Figures

Figure 1

15 pages, 2464 KiB  
Article
Constitutive Modeling of Rheological Behavior of Cement Paste Based on Material Composition
by Chunming Lian, Xiong Zhang, Lu Han, Wenbiao Lin and Weijun Wen
Materials 2025, 18(13), 2983; https://doi.org/10.3390/ma18132983 - 24 Jun 2025
Viewed by 382
Abstract
The rheological behavior of cementitious paste plays a pivotal role in determining the workability, pumpability, and uniformity of fresh concrete. Classical rheological models often struggle to capture the complex flocculation and hydration effects inherent in cement-based systems, and they typically depend on parameters [...] Read more.
The rheological behavior of cementitious paste plays a pivotal role in determining the workability, pumpability, and uniformity of fresh concrete. Classical rheological models often struggle to capture the complex flocculation and hydration effects inherent in cement-based systems, and they typically depend on parameters that are difficult to measure directly, limiting their practical utility. This study presents a novel composition-based constitutive model that introduces a virtual maximum packing fraction (ϕmax) to account for interparticle flocculation and entrapped water effects. By establishing quantitative relationships between powder characteristics—such as particle size and specific surface area—and rheological parameters, the model enables physically interpretable and measurable predictions of yield stress and plastic viscosity. Our validation against 65 paste formulations with varying water-to-binder ratios, mineral admixture types and dosages, and superplasticizer contents demonstrates strong predictive accuracy (R2 > 0.98 for plain pastes and >0.85 for blended systems). The influence of superplasticizers is effectively captured through modifications to ϕmax, allowing the model to remain both robust and parameter efficient. This framework supports forward prediction of paste rheology from raw material properties, offering a valuable tool for intelligent mix design in high-performance concrete applications such as self-consolidating and 3D-printed concrete. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 6070 KiB  
Article
A Non-Vacuum Coating Process That Fully Achieves Technical Goals of Bipolar Plates via Synergistic Control of Multiple Layer-by-Layer Strategy
by Qiaoling Liu, Xiaole Chen, Menghan Wu, Weihao Wang, Yinru Lin, Zilong Chen, Shuhan Yang, Yuhui Zheng and Qianming Wang
Molecules 2025, 30(12), 2543; https://doi.org/10.3390/molecules30122543 - 11 Jun 2025
Viewed by 435
Abstract
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used [...] Read more.
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used traditional techniques such as physical vapor deposition (PVD), or cathode arc ion plating. However, the above sputtering and evaporation ways require a high-vacuum condition, complicated experimental setups, higher costs, and an elevated temperature. Therefore, herein the achievement for uniform coatings over a large surface area has been realized by using a cost-effective strategy through a complete wet chemical process. The synergistic regulation of two conductive components and a plastic additive has been employed together with the entrapment of a surfactant to optimize the microstructure of the coating surface. The assembly of layered graphite and a polystyrene sphere could maintain both the high corrosion resistance feature and excellent electrical conductivity. In particular, the intrinsic vacant space in the above physical barriers has been filled with fine powders of indium tin oxide (ITO) due to its small size, and the interconnected conductive network with vertical/horizontal directions would be formed. All the key technical targets based on the U.S. Department of Energy (DOE) have been achieved under the simulated operating environments of a proton exchange membrane fuel cell. The corrosion current density has been measured as low as 0.52 μA/cm2 (for the sample of graphite/mixed layer) over the applied potentials from −0.6 V to 1.2 V and its protective efficiency is evaluated to be 99.8%. The interfacial contact resistance between the sample and the carbon paper is much less than 10 mΩ·cm2 (3.4 mΩ·cm2) under a contact pressure of 165 N/cm2. The wettability has been investigated and its contact angle has been evolved from 48° (uncoated sample) to even 110°, providing superior hydrophobicity to prevent water penetration. Such an innovative approach opens up new possibilities for improving the durability and reducing the costs of carbon-based coatings. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

18 pages, 583 KiB  
Article
An Analytical Model for the Prediction of Emptying Processes in Single Water Pipelines
by Carlos R. Payares Guevara, Alberto Patiño-Vanegas, Enrique Pereira-Batista, Oscar E. Coronado-Hernández and Vicente S. Fuertes-Miquel
Appl. Sci. 2025, 15(11), 6000; https://doi.org/10.3390/app15116000 - 26 May 2025
Viewed by 409
Abstract
Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air [...] Read more.
Air pockets in water distribution networks can cause various operational issues, as their expansion during drainage operations leads to sub-atmospheric conditions that may result in pipeline collapse depending on soil conditions and pipe stiffness. This study presents an analytical solution for calculating air pocket pressure, water column length, and water velocity during drainage operations in a pipeline with an entrapped air pocket and a closed upstream end. The existing system of three differential equations is reduced to two first-order nonlinear differential equations, enabling a rigorous analysis of the existence and uniqueness of solutions. The system is then further reduced to a single secondorder nonlinear ordinary differential equation (ODE), providing an intuitive framework for examining the physical behaviour of the hydraulic and thermodynamic variables. Furthermore, through a change of variables, the second-order ODE is transformed into a first-order linear ODE, facilitating the derivation of an analytical solution. The analytical solution is validated by comparing it with a numerical solution. Additionally, a practical application demonstrates the effectiveness of the developed tool in predicting the extreme pressure values in the air pocket during the water drainage process in a pipe, within a controlled environment. Full article
(This article belongs to the Special Issue Advances in Fluid Mechanics Analysis)
Show Figures

Figure 1

13 pages, 5748 KiB  
Article
Recovery of Palladium and Silver from Copper Sludge and Spent Petrochemical Catalysts via Effective Pyrometallurgical Processing
by Hyunju Kim, Hyunsik Park and Joohyun Park
Metals 2025, 15(4), 466; https://doi.org/10.3390/met15040466 - 21 Apr 2025
Viewed by 480
Abstract
Copper-containing sludge and spent petrochemical catalyst (SPC) were investigated for recovering palladium (Pd) and silver (Ag). Increasing the mixing ratio of alumina-based SPC leads to reduced recovery rates at 1500 °C. Specifically, as the SPC mixing ratio increases from 10% to 30%, the [...] Read more.
Copper-containing sludge and spent petrochemical catalyst (SPC) were investigated for recovering palladium (Pd) and silver (Ag). Increasing the mixing ratio of alumina-based SPC leads to reduced recovery rates at 1500 °C. Specifically, as the SPC mixing ratio increases from 10% to 30%, the recovery rate of Pd and Ag sharply decreases to 62.1% and 91.0%, respectively. This is attributed to an increase in the slag viscosity as well as to the higher sulfur content in the metal phase by decreasing the CaO/Al2O3 ratio of the slag. An increase in the slag viscosity causes a decrease in the metal recovery, as it lowers the settling velocity of metal droplets, resulting in imperfect metal separation, i.e., an increase in physical loss. Additionally, the presence of sulfur at the slag–metal interface was found to reduce interfacial tension, facilitating the entrapment of copper droplets within the slag. This further hindered phase separation and contributed to an increase in physical loss. This study highlights that physical loss is more serious in metal recovery rather than chemical loss, which is dependent on the thermochemical solubility of the target metals in the slag. The results emphasize the need for the precise control of slag properties to maximize the metal recovery processes in conjunction with a mitigation of CO2 emissions. Full article
Show Figures

Graphical abstract

46 pages, 10314 KiB  
Review
Recent Advances in Enzymatic Biofuel Cells to Power Up Wearable and Implantable Biosensors
by Zina Fredj, Guoguang Rong and Mohamad Sawan
Biosensors 2025, 15(4), 218; https://doi.org/10.3390/bios15040218 - 28 Mar 2025
Cited by 1 | Viewed by 1958
Abstract
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation [...] Read more.
Enzymatic biofuel cells (EBFCs) have emerged as a transformative solution in the quest for sustainable energy, offering a biocatalyst-driven alternative for powering wearable and implantable self-powered biosensors. These systems harness renewable enzyme activity under mild conditions, positioning them as ideal candidates for next-generation biosensing applications. Despite their promise, their practical deployment is limited by challenges such as low power density, restricted operational lifespan, and miniaturization complexities. This review provides an in-depth exploration of the evolving landscape of EBFC technology, beginning with fundamental principles and the latest developments in electron transfer mechanisms. A critical assessment of enzyme immobilization techniques, including physical adsorption, covalent binding, entrapment, and cross-linking, underscores the importance of optimizing enzyme stability and catalytic activity for enhanced bioelectrode performance. Additionally, we examine advanced bioelectrode materials, focusing on the role of nanostructures such as carbon-based nanomaterials, noble metals, conducting polymers, and metal–organic frameworks in improving electron transfer and boosting biosensor efficiency. Also, this review includes case studies of EBFCs in wearable self-powered biosensors, with particular attention to the real-time monitoring of neurotransmitters, glucose, lactate, and ethanol through sweat analysis, as well as their integration into implantable devices for continuous healthcare monitoring. Moreover, a dedicated discussion on challenges and trends highlights key limitations, including durability, power management, and scalability, while presenting innovative approaches to address these barriers. By addressing both technical and biological constraints, EBFCs hold the potential to revolutionize biomedical diagnostics and environmental monitoring, paving the way for highly efficient, autonomous biosensing platforms. Full article
Show Figures

Graphical abstract

25 pages, 1830 KiB  
Article
Development and Evaluation of Azithromycin-Loaded Transethosomes for Enhanced Dermal Delivery and Antibacterial Efficacy
by Meriem Rezigue, Hadeia Mashaqbeh, Alaa A. A. Aljabali, Randa SH. Mansour and Iyad Hamzeh
Pharmaceutics 2025, 17(4), 400; https://doi.org/10.3390/pharmaceutics17040400 - 21 Mar 2025
Viewed by 758
Abstract
Background/Objectives: The topical delivery of antibiotics through transethosomes shows promise for enhancing its dermal delivery for the treatment of skin infections. This study aimed to develop and characterize azithromycin-loaded transethosomes to enhance topical drug delivery and improve the antibacterial activity of azithromycin. [...] Read more.
Background/Objectives: The topical delivery of antibiotics through transethosomes shows promise for enhancing its dermal delivery for the treatment of skin infections. This study aimed to develop and characterize azithromycin-loaded transethosomes to enhance topical drug delivery and improve the antibacterial activity of azithromycin. Methods: The prepared azithromycin formulations underwent assessment for various characteristics, including their vesicle dimensions, size distribution, zeta potential, encapsulation efficiency, and morphological features (via TEM analysis). Additionally, their thermal properties were examined through DSC analysis, and their stability was monitored over six months under refrigerated storage conditions. The sequential tape-stripping technique was employed to conduct ex vivo penetration studies on human skin. Interactions between transethosomes and stratum corneum lipids were examined using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Additionally, the formulations were tested for their in vitro antibacterial efficacy against Staphylococcus aureus. Results: The findings revealed that AZ 1 and AZ 2 had vesicle sizes of 108.44 ± 5.72 nm and 70.42 ± 6.02 nm, zeta potential measurements of −11.897 ± 1.820 mV and −34.575 ± 4.535 mV, and high entrapment efficiencies of 99.259 ± 0.086% and 99.560 ± 0.014%, respectively. Transmission electron microscopy (TEM) analysis confirmed the spherical nature of the vesicles, whereas differential scanning calorimetry (DSC) confirmed the successful encapsulation of azithromycin in transethosomes. The formulations exhibited acceptable physical stability at 4 °C for six months. Ex vivo studies revealed a significantly higher deposition of azithromycin in the skin by both transethosome formulations than by the drug solution (p < 0.05), with low systemic absorption. Among the formulations, AZ 2 resulted in much deeper skin penetration, with deeper dermal and epidermal layer deposition (1.388 ± 0.242 µg/cm2) compared to AZ 1 (four-fold higher, p < 0.05) and to the control drug solution (12 times more, p < 0.05). Analysis using ATR-FTIR suggested that azithromycin-loaded transethosomes improve the drug penetration by increasing the lipid fluidity and extracting lipids from the stratum corneum. Moreover, the transethosomes loaded with azithromycin demonstrated enhanced antibacterial efficacy against Staphylococcus aureus, with minimum inhibitory concentration (MIC) values that were lower than those of the free drug solution. Conclusion: The results highlight the promising potential of transethosomes as a novel topical drug delivery system for azithromycin that offers improved therapeutic effects against skin infections Full article
Show Figures

Graphical abstract

39 pages, 5229 KiB  
Review
Lipid Nanoparticles: Formulation, Production Methods and Characterization Protocols
by Fernanda L. Lüdtke, Thaís Jordânia Silva, Mayanny Gomes da Silva, Juliana Campos Hashimoto and Ana Paula B. Ribeiro
Foods 2025, 14(6), 973; https://doi.org/10.3390/foods14060973 - 12 Mar 2025
Cited by 5 | Viewed by 3506
Abstract
Lipid nanoparticles (LNs) have emerged as advanced lipid-based delivery systems, offering an effective approach for encapsulating and protecting lipid-soluble bioactive compounds, increasing their bioavailability. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) are particularly promising for bioactive compound entrapment. However, to fully [...] Read more.
Lipid nanoparticles (LNs) have emerged as advanced lipid-based delivery systems, offering an effective approach for encapsulating and protecting lipid-soluble bioactive compounds, increasing their bioavailability. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) are particularly promising for bioactive compound entrapment. However, to fully exploit their potential, it is crucial to carefully select the appropriate lipid matrices and emulsifiers. This review offers a comprehensive, up-to-date examination, considering studies published in the last 15 years, of the chemical, physical, and structural characteristics of lipids employed in LN production, focusing on the key components of the formulations: lipid matrices, emulsifiers, and bioactive compounds. In addition, it provides an in-depth analysis of production methods, drawing on insights from the latest scientific literature, and emphasizes the most important characterization techniques for LNs. Key parameters, including particle size (PS), zeta potential (ZP), crystallinity, thermal behavior, morphology, entrapment efficiency (EE), load capacity (LC), and physical stability, are discussed. Ultimately, this review aims to identify critical factors for the successful production of stable LNs that efficiently encapsulate and deliver bioactive compounds, highlighting their significant potential for applications in food systems. Full article
Show Figures

Figure 1

31 pages, 12584 KiB  
Article
Potential of Encapsulated Bovine Colostrum in Powder-Based Formulations for Facial Clay, Peel-Off Gel, and Sleeping Gel Masks
by Pornpansa Chuesomboon, Thomas Rades and Wantida Chaiyana
Gels 2025, 11(2), 111; https://doi.org/10.3390/gels11020111 - 4 Feb 2025
Viewed by 2398
Abstract
Bovine colostrum is a bioactive compound with potential in cosmetic applications but has a limited shelf life. This study aimed to develop an effective encapsulation system for bovine colostrum using the complex coacervation method and incorporate it into powder formulations for facial masks. [...] Read more.
Bovine colostrum is a bioactive compound with potential in cosmetic applications but has a limited shelf life. This study aimed to develop an effective encapsulation system for bovine colostrum using the complex coacervation method and incorporate it into powder formulations for facial masks. The research explored various gelatin-to-gum Arabic ratios to optimize the physical and chemical stability, encapsulation efficiency, and loading capacity of the encapsulated bovine colostrum (EBC). The EBC was further incorporated into powder formulations for clay masks, peel-off gel masks, and sleeping gel masks. The optimal gelatin-to-gum Arabic ratio was found to be 2:1, yielding the highest entrapment efficiency (66.6 ± 3.3% w/w) and loading capacity (67.6 ± 3.4% w/w) of bovine colostrum. For clay masks, the most effective powder blend incorporating EBC enhanced the moisture content, water solubility, and hygroscopicity, without affecting the drying time (9.7 ± 0.6 min). Additionally, peel-off gel masks incorporating EBC significantly reduced water activity and improved moisture content and hygroscopicity, while the drying time decreased from 44.3 ± 0.6 to 25.0 ± 1.7 min. For sleeping gel masks, the formulation with EBC increased water activity, while other parameters remained stable. In conclusion, the EBC with enhanced stability was effectively integrated into various powders for facial mask formulations. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds and Gels)
Show Figures

Graphical abstract

15 pages, 3426 KiB  
Article
Eco-Friendly Biosorbents from Biopolymers and Food Waste for Efficient Dye Removal from Wastewater
by Alexandra Cristina Blaga, Ramona Cimpoesu, Ramona-Elena Tataru-Farmus and Daniela Suteu
Polymers 2025, 17(3), 291; https://doi.org/10.3390/polym17030291 - 23 Jan 2025
Viewed by 1226
Abstract
Chitosan-based biosorbents are particularly valuable in environmental applications, such as wastewater treatment for contaminant removal. However, several challenges remain in optimizing their production and performance related to improving adsorption efficiency, stability, scalability, cost, and sustainable sourcing for large-scale applications. The removal of Methylene [...] Read more.
Chitosan-based biosorbents are particularly valuable in environmental applications, such as wastewater treatment for contaminant removal. However, several challenges remain in optimizing their production and performance related to improving adsorption efficiency, stability, scalability, cost, and sustainable sourcing for large-scale applications. The removal of Methylene Blue (MB) and Orange 16 (O16) from aqueous solutions was studied using a biosorbent derived from the waste biomass of the brewing industry, specifically Saccharomyces pastorianus immobilized into chitosan. The biosorbent (obtained by a straightforward entrapment technique) was characterized using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDAX) to evaluate its structural properties. The biosorption behavior toward organic contaminants, specifically a cationic and an anionic dye, was investigated. Key operational factors that influenced the biosorbent’s efficiency were examined, including the initial dye concentration, dye type, pH of the aqueous solution, and the amount of biosorbent used. These factors were evaluated during the initial stage of the biosorption studies to assess their impact on the overall performance and effectiveness of the biosorbent in removing the dyes from aqueous solutions. Using this eco-friendly biosorbent, the biosorption capacities obtained using the Langmuir isotherm model were 212.77 mg/g in the case of MB dye and 285.71 mg/g in the case of O16 mg/g, and the results confirmed that the biosorption process is based on a physical mechanism as suggested by the energy values of the process, E, obtained using the DR model: the obtained values of 6.09 kJ/mol (MB dye) and 7.07 kJ/mol (O16 dye) suggest a process based on electrostatic interaction bonds. These results indicate that residual biomass of Saccharomyces pastorianus, as a byproduct of a biotechnological process, can be exploited as a biosorbent by immobilization in an organic matrix (chitosan) for the retention of polluting organic species from the aqueous environment present in aqueous solutions in moderate concentrations. Full article
Show Figures

Figure 1

24 pages, 2851 KiB  
Article
Unlocking the Potential of Bacillus subtilis: A Comprehensive Study on Mycotoxin Decontamination, Mechanistic Insights, and Efficacy Assessment in a Liquid Food Model
by Donato Greco, Vito D’Ascanio, Elisa Santovito, Mariagrazia Abbasciano, Laura Quintieri, Clarisse Techer and Giuseppina Avantaggiato
Foods 2025, 14(3), 360; https://doi.org/10.3390/foods14030360 - 22 Jan 2025
Viewed by 2082
Abstract
Mycotoxin detoxification by microorganisms offers a specific, economical, and environmentally sustainable alternative to physical/chemical methods. Three strains of B. subtilis, isolated from poultry farm environments and recognized by EFSA as safe in animal nutrition for all animal species, consumers, and the environment, [...] Read more.
Mycotoxin detoxification by microorganisms offers a specific, economical, and environmentally sustainable alternative to physical/chemical methods. Three strains of B. subtilis, isolated from poultry farm environments and recognized by EFSA as safe in animal nutrition for all animal species, consumers, and the environment, were screened for their ability to remove mycotoxins. All of them demonstrated mycotoxin-dependent removal efficacy, being very effective against ZEA and its analogues (α- and β-ZOL, α- and β-ZAL, and ZAL) achieving up to 100% removal within 24 h under aerobic, anaerobic, and restrictive growth conditions with toxins as the sole carbon source. ZEA removal remained effective across a wide range of pH values (5–8), temperatures (20–40 °C), and at high toxin concentrations (up to 10 µg/mL). Additionally, up to 87% ZEA removal was achieved after 48 h of incubation (30 °C) of the strains in a contaminated liquid food model containing 1 µg/mL of the toxin. Mechanistic studies suggest that ZEA detoxification involves metabolic processes rather than physical adsorption or entrapment into bacterial cells. Enzymatic activities within the bacterial cells or associated with their cell walls likely play a role in the metabolization of the toxin. Interestingly, it has been observed that growth conditions and culture media can influence the metabolization and/or conjugation of the toxin, which can result in the production of various metabolites. Further investigation is needed to identify these metabolites and assess their safety. Full article
(This article belongs to the Special Issue Mycotoxins in Foods: Occurrence, Detection, and Control)
Show Figures

Figure 1

22 pages, 4845 KiB  
Article
Batch Adsorption of Orange II Dye on a New Green Hydrogel—Study on Working Parameters and Process Enhancement
by Andrei-Ionuț Simion, Cristina-Gabriela Grigoraș and Lidia Favier
Gels 2025, 11(1), 79; https://doi.org/10.3390/gels11010079 - 20 Jan 2025
Cited by 6 | Viewed by 1312
Abstract
A new green hydrogel consisting of cherry stone (CS) powder and sodium alginate (SA) was synthesized through physical crosslinking. The product had a mean diameter of 3.95 mm, a moisture content of 92.28%, a bulk density of 0.58 g/cm3, and a [...] Read more.
A new green hydrogel consisting of cherry stone (CS) powder and sodium alginate (SA) was synthesized through physical crosslinking. The product had a mean diameter of 3.95 mm, a moisture content of 92.28%, a bulk density of 0.58 g/cm3, and a swelling ratio of 45.10%. The analyses of its morphological structure and functional groups by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) showed the successful entrapping of the CS in the SA polymeric matrix. The viability of the prepared hydrogel as adsorbent was tested towards Orange II (OII) anionic dye. The influence of the pH, adsorbent amount, contact time, and initial dye concentration was evaluated. Then, the impact of three accelerating factors (stirring speed, ultrasound exposure duration, and temperature) on the OII retention was investigated. The highest recorded removal efficiency and adsorption capacity were 82.20% and 6.84 mg/g, respectively. The adsorption followed Elovich and pseudo-second-order kinetics, was adequately described by Freundlich and Khan isotherms, and can be defined as spontaneous, endothermic, and random. The experiments confirmed that the obtained hydrogel can be used acceptably for at least two consecutive cycles, sustaining its effectiveness in water decontamination. Full article
Show Figures

Graphical abstract

21 pages, 6661 KiB  
Review
Doxorubicin-Conjugated Nanoparticles for Potential Use as Drug Delivery Systems
by Alua Imantay, Nariman Mashurov, Balnur A. Zhaisanbayeva and Ellina A. Mun
Nanomaterials 2025, 15(2), 133; https://doi.org/10.3390/nano15020133 - 17 Jan 2025
Cited by 10 | Viewed by 2590
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer [...] Read more.
Doxorubicin (DOX) is one of the most widely used chemotherapy drugs in the treatment of both solid and liquid tumors in patients of all age groups. However, it is likely to produce several side effects that include doxorubicin cardiomyopathy. Nanoparticles (NPs) can offer targeted delivery and release of the drug, potentially increasing treatment efficiency and alleviating side effects. This makes them a viable vector for novel drug delivery systems. Currently, DOX is commonly conjugated to NPs by non-covalent conjugation–physical entrapping of the drug using electrostatic interactions, van der Waals forces, or hydrogen bonding. The reported downside of these methods is that they provide a low drug loading capacity and a higher drug leakage possibility. In comparison to this, the covalent conjugation of DOX via amide (typically formed by coupling carboxyl groups on DOX with amine groups on the nanoparticle or a linker, often facilitated by carbodiimide reagents), hydrazone (which results from the reaction between hydrazines and carbonyl groups, offering pH-sensitive cleavage for controlled release), or disulfide bonds (formed through the oxidation of thiol groups and cleavable by intracellular reducing agents such as glutathione) is more promising as it offers greater bonding strength. This review covers the covalent conjugation of DOX to three different types of NPs—metallic, silica/organosilica, and polymeric—including their corresponding release rates and mechanisms. Full article
Show Figures

Figure 1

26 pages, 1316 KiB  
Review
Characteristics and Functional Properties of Bioactive Oleogels: A Current Review
by Md. Jannatul Ferdaus, Niaz Mahmud, Sudipta Talukder and Roberta Claro da Silva
Gels 2025, 11(1), 69; https://doi.org/10.3390/gels11010069 - 16 Jan 2025
Cited by 5 | Viewed by 2824
Abstract
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory [...] Read more.
Oleogels have been a revolutionary innovation in food science in terms of their health benefits and unique structural properties. They provide a healthier alternative to traditional solid or animal fats. They have improved oxidative stability and nutritional value to maintain the desirable sensory qualities of lipid-based foods. Moreover, oleogels offer an ideal carrier for poorly water-soluble bioactive compounds. The three-dimensional structure of oleogels can protect and deliver bioactive compounds in functional food products. Bioactive compounds also affect the crystalline behavior of oleogelators, the physical properties of oleogels, and storage stability. Generally, different incorporation techniques are applied to entrap bioactive compounds in the oleogel matrix depending on their characteristics. These approaches enhance the bioavailability, controlled release, stability of bioactive compounds, and the shelf life of oleogels. The multifunctionality of oleogels extends their applications beyond fat replacements, e.g., food preservation, nutraceutical delivery, and even novel innovations like 3D food printing. Despite their potential, challenges such as large-scale production, cost efficiency, and consumer acceptance remain areas for further exploration. This review emphasizes the understanding of the relationship between the structure of oleogels and their functional properties to optimize their design in different food applications. It also highlights the latest advancements in bioactive oleogels, focusing on how they incorporate bioactive compounds such as polyphenols, essential oils, and flavonoids into oleogels. The impact of these compounds on the gelation process, storage stability, and overall functionality of oleogels is also critically examined. Full article
(This article belongs to the Special Issue Design, Fabrication, and Applications of Food Composite Gels)
Show Figures

Graphical abstract

15 pages, 2045 KiB  
Article
Tamarind (Tamarindus indica L.) Components as a Sustainable Replacement for Pork Meat in Frankfurter Sausages
by Rafael Sepúlveda F. Trevisan Passos, Camila Cristina A. de Sousa, Mauricio C. A. da Silva, Ana M. Herrero, Claudia Ruiz-Capillas and Carlos Pasqualin Cavalheiro
Foods 2025, 14(2), 197; https://doi.org/10.3390/foods14020197 - 10 Jan 2025
Cited by 1 | Viewed by 1528
Abstract
Five types of frankfurters were formulated: a control without tamarind (T0) and four samples using 5% tamarind pulp paste (PT5), seeds (ST5), peel (CT5), and a blend of all of them (PSCT5), replacing the same portion of meat. The inclusion of tamarind components [...] Read more.
Five types of frankfurters were formulated: a control without tamarind (T0) and four samples using 5% tamarind pulp paste (PT5), seeds (ST5), peel (CT5), and a blend of all of them (PSCT5), replacing the same portion of meat. The inclusion of tamarind components led to a reduction in the moisture and protein content of the reformulated frankfurters. In terms of mineral composition, CT5 showed the highest (p < 0.05) calcium content. Additionally, ST5 and CT5 treatments demonstrated the lowest processing loss values. The pH was lower in the PT5 treatment (p < 0.05). Incorporating tamarind components reduced the lightness (L*) of the frankfurters, resulting in darker sausages. However, ST5 exhibited greater redness (a*), while higher yellowness (b*) values were observed in PT5 and CT5 treatments (p < 0.05). Texture analysis revealed no differences (p > 0.05) in hardness and chewiness between T0 and PT5; however, ST5 exhibited the highest values for these parameters (p < 0.05). No variation in the conformational order of the lipid acyl chains due to the incorporation of tamarind compounds was observed related to physical entrapment of these compounds in the frankfurter matrix. Both T0 and PT5 were well accepted by consumers, and scores higher than 7 were observed for overall acceptability and purchase intention. The study demonstrated that incorporating tamarind components, especially pulp paste (PT), is a viable alternative for replacing lean pork meat in frankfurters, improving the sustainable aspects of frankfurter production. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

Back to TopTop