Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,660)

Search Parameters:
Keywords = physical change

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 849 KiB  
Article
Morphofunctional Profile Focusing on Strength and Ultrasound of the Upper Limbs in Female Breast Cancer Survivors: A Comparative Cross-Sectional Study Between Groups with and Without Lymphoedema and Between Ipsilateral and Contralateral Limbs
by Ana Rafaela Cardozo Da Silva, Juliana Netto Maia, Vanessa Maria Da Silva Alves Gomes, Naiany Tenório, Juliana Fernandes de Souza Barbosa, Ana Claudia Souza da Silva, Vanessa Patrícia Soares de Sousa, Leila Maria Alvares Barbosa, Armèle de Fátima Dornelas de Andrade and Diego Dantas
Biomedicines 2025, 13(8), 1884; https://doi.org/10.3390/biomedicines13081884 (registering DOI) - 2 Aug 2025
Abstract
Background: Breast cancer is the most common neoplasm in women. Despite effective treatments, sequelae such as decreased muscle strength, upper limb dysfunction, and tissue changes are common, highlighting the need for functional assessments during rehabilitation. This study analysed the morphofunctional profile of [...] Read more.
Background: Breast cancer is the most common neoplasm in women. Despite effective treatments, sequelae such as decreased muscle strength, upper limb dysfunction, and tissue changes are common, highlighting the need for functional assessments during rehabilitation. This study analysed the morphofunctional profile of the upper limbs in breast cancer survivors, comparing muscle strength and ultrasound findings between groups with and without lymphoedema, as well as between ipsilateral and contralateral limbs. Methods: This cross-sectional study included female breast cancer survivors treated at an oncology physical therapy clinic. Muscle strength was measured using dynamometry (handgrip and arm flexor strength), and ultrasound assessed the thickness of the dermal–epidermal complex (DEC), subcutaneous tissue (SUB), and muscle (MT). Results: The upper limbs of 41 women were evaluated. No significant differences were observed between those with and without breast cancer-related lymphoedema (BCRL). When comparing the ipsilateral and contralateral limbs, significant reductions were observed in arm flexor strength (p < 0.001; 95% CI: −9.77 to −2.50), handgrip strength (p < 0.001; 95% CI: −4.10 to −1.22), and tissue thickness, with increased DEC thickness on the forearm (0.20 mm; p = 0.022) and arm flexors (0.25 mm; p < 0.001) of the ipsilateral limb. Conclusion: Significant differences in muscle strength and tissue structure between ipsilateral and contralateral limbs may reflect surgical and local pathophysiological effects. A trend toward reduced values for these parameters was also noted in limbs with BCRL, reinforcing the importance of future research to elucidate underlying mechanisms and guide more effective therapeutic strategies. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

13 pages, 680 KiB  
Article
Anthropometric Characteristics and Somatotype of Young Slovenian Tennis Players
by Ales Germic, Tjasa Filipcic and Ales Filipcic
Appl. Sci. 2025, 15(15), 8584; https://doi.org/10.3390/app15158584 (registering DOI) - 1 Aug 2025
Abstract
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 [...] Read more.
Tennis is a demanding sport that requires physical abilities and optimal body composition. The aim of this study was to investigate the anthropometric characteristics, body composition, and somatotype development of young Slovenian tennis players (754 boys and 514 girls aged 12 to 18 years) over the last two decades. Using standardised anthropometric measurements and the Heath-Carter method, somatotypes were calculated and analysed by age and gender. The results showed clear age- and gender-specific trends and differences in both somatotype profiles and detailed anthropometric characteristics. Significant differences were found in height, body mass, BMI, skinfolds, girths, and limb lengths, with gender differences becoming more pronounced in the older age groups. In boys, mesomorphy increased with age, reflecting an increase in musculature, while in girls, a shift from ectomorphic to endomorphic profiles was observed during adolescence, probably influenced by pubertal and hormonal changes. Significant sex-specific differences were observed in all three somatotype components in most age groups, especially in fat mass and muscle. The longitudinal design provides valuable data and insights into the evolving physical profiles of adolescent tennis players that support more effective talent identification and training. Despite the changes that have taken place in tennis over time, standardised measurement protocols ensured comparability, making the results relevant for practitioners working with adolescents in tennis development. Full article
(This article belongs to the Special Issue Human Performance and Health in Sport and Exercise—2nd Edition)
Show Figures

Figure 1

18 pages, 941 KiB  
Article
Effects of a 16-Week Green Exercise Program on Body Composition, Sleep, and Nature Connection in Postmenopausal Women
by Helena Moreira, Chiara Tuccella, Emília Alves, Andreia Teixeira, Carlos Moreira, Irene Oliveira, Valerio Bonavolontà and Catarina Abrantes
Int. J. Environ. Res. Public Health 2025, 22(8), 1216; https://doi.org/10.3390/ijerph22081216 (registering DOI) - 1 Aug 2025
Abstract
Physical activity, particularly when practiced in natural settings, has well-established benefits for overall health, sleep, and body composition. These effects are especially important for postmenopausal women, although research specifically targeting this population remains limited. The study evaluated a 16-week multicomponent outdoor exercise program [...] Read more.
Physical activity, particularly when practiced in natural settings, has well-established benefits for overall health, sleep, and body composition. These effects are especially important for postmenopausal women, although research specifically targeting this population remains limited. The study evaluated a 16-week multicomponent outdoor exercise program (cardiorespiratory, strength, balance, coordination, and flexibility training) in postmenopausal women, consisting of three 60 min sessions per week. Participants were non-randomly assigned to an experimental group (EG, n = 55) and a control group (CG, n = 20). Measurements were taken at baseline and after 16 weeks, including body composition, sleep (duration and quality), and connection with nature. No significant differences were observed between groups at baseline. After the intervention, the EG and CG presented significant differences (p ≤ 0.01) in the rates of change in body mass, fat mass (FM; −9.26% and −1.21%, respectively), and visceral fat level (VFL; −13.46 points and −3.80 points). These differences were also observed for the sleep fragmentation index (p ≤ 0.01), but not for connection with nature. A significant interaction effect (p < 0.01) of time × group was observed for %FM, VFL, and appendicular skeletal muscle mass. Exercise duration had an effect (p = 0.043) on participants’ personal and affective identification with nature, and the time × group × medication interaction significantly influenced sleep efficiency (p = 0.034). The exercise program proved effective in reducing total and central adiposity levels; however, it did not lead to improvements in sleep duration, sleep quality, or connection with nature. Full article
18 pages, 3271 KiB  
Article
Mobile App–Induced Mental Fatigue Affects Strength Asymmetry and Neuromuscular Performance Across Upper and Lower Limbs
by Andreas Stafylidis, Walter Staiano, Athanasios Mandroukas, Yiannis Michailidis, Lluis Raimon Salazar Bonet, Marco Romagnoli and Thomas I. Metaxas
Sensors 2025, 25(15), 4758; https://doi.org/10.3390/s25154758 (registering DOI) - 1 Aug 2025
Abstract
This study aimed to investigate the effects of mental fatigue on physical and cognitive performance (lower-limb power, isometric and handgrip strength, and psychomotor vigilance). Twenty-two physically active young adults (12 males, 10 females; Mage = 20.82 ± 1.47) were randomly assigned to [...] Read more.
This study aimed to investigate the effects of mental fatigue on physical and cognitive performance (lower-limb power, isometric and handgrip strength, and psychomotor vigilance). Twenty-two physically active young adults (12 males, 10 females; Mage = 20.82 ± 1.47) were randomly assigned to either a Mental Fatigue (MF) or Control group (CON). The MF group showed a statistically significant (p = 0.019) reduction in non-dominant handgrip strength, declining by approximately 2.3 kg (about 5%), while no such change was observed in the CON group or in dominant handgrip strength across groups. Reaction time (RT) was significantly impaired following the mental fatigue protocol: RT increased by 117.82 ms, representing an approximate 46% longer response time in the MF group (p < 0.001), whereas the CON group showed a smaller, non-significant increase of 32.82 ms (~12% longer). No significant differences were found in squat jump performance, indicating that lower-limb explosive power may be less affected by acute mental fatigue. These findings demonstrate that mental fatigue selectively impairs fine motor strength and cognitive processing speed, particularly reaction time, while gross motor power remains resilient. Understanding these effects is critical for optimizing performance in contexts requiring fine motor control and sustained attention under cognitive load. Full article
(This article belongs to the Special Issue Sensing Human Cognitive Factors)
Show Figures

Figure 1

14 pages, 1436 KiB  
Article
Secoisolariciresinol Diglucoside with Antioxidant Capacity from Flaxseed: A Study on Microwave-Assisted Germination Optimization
by Jinling Hu, Qingyi Zhang, Yaning Li, Qiqi Zhang, Caihua Jia, Fenghong Huang, Qianchun Deng and Cuie Tang
Foods 2025, 14(15), 2716; https://doi.org/10.3390/foods14152716 (registering DOI) - 1 Aug 2025
Abstract
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and [...] Read more.
Germination and physical field treatments are processing techniques that have been successfully used to change the amount of active ingredients in flaxseed. However, it is unknown if they work synergistically. This study investigated the effect of microwave-assisted germination on the lignan concentration and antioxidant activity of several flaxseed tissue components. Lignans were primarily dispersed in the flaxseed seed coat. Microwave treatment and germination significantly affected the levels of lignans in various flaxseed sections. Flaxseed hulls’ lignan content and antioxidant activity could be increased by microwave treatment (130 W for 14 s) after germination of 0, 48, or 96 h. Flaxseed kernels lignan content and antioxidant activity could be increased by microwave treatment (130 W for 10 s) before germination. Whole flaxseeds could be improved by microwave treatment (130 W for 10 s) after germination for 72 h. The findings provided a theoretical basis for reducing the loss of lignan resources in flaxseed, enhancing its use as a functional food ingredient, and clarifying the targeted utilization of various lignan sources. Full article
(This article belongs to the Special Issue Oils and Fats: Structure and Stability)
Show Figures

Figure 1

28 pages, 820 KiB  
Systematic Review
The Effects of Nutritional Education and School-Based Exercise Intervention Programs on Preschool and Primary School Children’s Cardiometabolic Biomarkers: A Systematic Review of Randomized Controlled Trials
by Markel Rico-González, Daniel González-Devesa, Carlos D. Gómez-Carmona and Adrián Moreno-Villanueva
Appl. Sci. 2025, 15(15), 8564; https://doi.org/10.3390/app15158564 (registering DOI) - 1 Aug 2025
Abstract
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines [...] Read more.
Childhood obesity increases chronic disease risk, but no comprehensive synthesis has evaluated the impact of school-based combined nutrition education and physical activity interventions on cardiometabolic biomarkers in children aged 3 to 12 years. This systematic review was conducted in accordance with PRISMA guidelines and registered in PROSPERO (CRD420251085194). Five databases were systematically searched through June 2025. Twelve randomized controlled trials involving 18,231 children were included and assessed using the PEDro scale. Ten trials demonstrated significant improvements in at least one cardiometabolic biomarker. Blood pressure (8 studies) outcomes showed systolic reductions of 1.41–6.0 mmHg in six studies. Glucose metabolism (5 studies) improved in two studies with reductions of 0.20–0.22 mmol/L. Lipid profiles (7 studies) improved in three studies, including total cholesterol (−0.32 mmol/L). Insulin levels (5 studies) decreased significantly in two investigations. Anthropometric improvements included BMI and body fat. Physical activity increased by >45 min/week and dietary habits improved significantly. Programs with daily implementation (90-min sessions 4x/week), longer duration (≥12 months), family involvement (parent education), and curriculum integration (classroom lessons) showed superior effectiveness. Interventions targeting children with overweight/obesity demonstrated higher changes compared to the general population. However, methodological limitations included a lack of assessor blinding, absence of subject/therapist blinding, and inadequate retention rates. School-based interventions combining nutrition and physical activity can produce significant improvements in cardiometabolic biomarkers, supporting comprehensive, sustained multicomponent programs for early chronic disease prevention. Full article
(This article belongs to the Special Issue Research of Sports Medicine and Health Care: Second Edition)
Show Figures

Figure 1

20 pages, 3582 KiB  
Article
Design and Development of a Real-Time Pressure-Driven Monitoring System for In Vitro Microvasculature Formation
by Gayathri Suresh, Bradley E. Pearson, Ryan Schreiner, Yang Lin, Shahin Rafii and Sina Y. Rabbany
Biomimetics 2025, 10(8), 501; https://doi.org/10.3390/biomimetics10080501 (registering DOI) - 1 Aug 2025
Abstract
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost [...] Read more.
Microfluidic platforms offer a powerful approach for ultimately replicating vascularization in vitro, enabling precise microscale control and manipulation of physical parameters. Despite these advances, the real-time ability to monitor and quantify mechanical forces—particularly pressure—within microfluidic environments remains constrained by limitations in cost and compatibility across diverse device architectures. Our work presents an advanced experimental module for quantifying pressure within a vascularizing microfluidic platform. Equipped with an integrated Arduino microcontroller and image monitoring, the system facilitates real-time remote monitoring to access temporal pressure and flow dynamics within the device. This setup provides actionable insights into the hemodynamic parameters driving vascularization in vitro. In-line pressure sensors, interfaced through I2C communication, are employed to precisely record inlet and outlet pressures during critical stages of microvasculature tubulogenesis. Flow measurements are obtained by analyzing changes in reservoir volume over time (dV/dt), correlated with the change in pressure over time (dP/dt). This quantitative assessment of various pressure conditions in a microfluidic platform offers insights into their impact on microvasculature perfusion kinetics. Data acquisition can help inform and finetune functional vessel network formation and potentially enhance the durability, stability, and reproducibility of engineered in vitro platforms for organoid vascularization in regenerative medicine. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

22 pages, 1814 KiB  
Systematic Review
The Role of Financial Stability in Mitigating Climate Risk: A Bibliometric and Literature Analysis
by Ranila Suciati
J. Risk Financial Manag. 2025, 18(8), 428; https://doi.org/10.3390/jrfm18080428 (registering DOI) - 1 Aug 2025
Abstract
This study provides a comprehensive synthesis of climate risk and financial stability literature through a systematic review and bibliometric analysis of 174 Scopus-indexed publications from 1988 to 2024. Publications increased by 500% from 1988 to 2019, indicating growing research interest following the 2015 [...] Read more.
This study provides a comprehensive synthesis of climate risk and financial stability literature through a systematic review and bibliometric analysis of 174 Scopus-indexed publications from 1988 to 2024. Publications increased by 500% from 1988 to 2019, indicating growing research interest following the 2015 Paris Agreement. It explores how physical and transition climate risks affect financial markets, asset pricing, financial regulation, and long-term sustainability. Common themes include macroprudential policy, climate disclosures, and environmental risk integration in financial management. Influential authors and key journals are identified, with keyword analysis showing strong links between “climate change”, “financial stability”, and “climate risk”. Various methodologies are used, including econometric modeling, panel data analysis, and policy review. The main finding indicates a shift toward integrated, risk-based financial frameworks and rising concern over systemic climate threats. Policy implications include the need for harmonized disclosures, ESG integration, and strengthened adaptation finance mechanisms. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

16 pages, 3753 KiB  
Article
Elevational Patterns and Seasonal Dynamics of Soil Organic Carbon Fractions and Content in Rice Paddies of Yuanyang Terrace, Southwest China
by Haitao Li, Linxi Chang, Yonglin Wu, Yang Li, Xinran Liang, Fangdong Zhan and Yongmei He
Agronomy 2025, 15(8), 1868; https://doi.org/10.3390/agronomy15081868 - 1 Aug 2025
Abstract
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons [...] Read more.
Soil organic carbon (SOC) is an important part of the global C pool and is sensitive to climate change. The SOC content and fractions of rice paddies along four elevations (250, 1150, 1600 and 1800 m) on the same slope in four seasons (spring, summer, autumn and winter) at Yuanyang Terrace in southwest China were investigated, and their relationship with environmental factors was analyzed. The contents of SOC, unprotected SOC (uPOM), physically protected SOC (pPOM) and biochemically protected SOC (bcPOM) in rice paddies at a low elevation (250 m), were significantly lower by 49–51% than those at relatively high elevations (1600 m and 1800 m). Among the SOC fractions, the highest proportion (33–50%) was uPOM, followed by pPOM and bcPOM (accounting for 17–40%), and the lowest proportion was chemically protected SOC (cPOM). In addition, there were interseasonal differences among the contents of SOC fractions, with a significantly higher content of SOC, uPOM and pPOM at an elevation of 1600 m in summer than in the other three seasons, whereas the cPOM content at an elevation of 250 m in spring was significantly higher than in the other three higher elevations. According to the redundancy analysis (RDA), total nitrogen was the key environmental factor, with an explanatory degree of 56% affecting the contents of SOC and its fractions. Thus, the SOC content increased with increasing elevation, and physical and biochemical protection were potential stabilization mechanisms responsible for their stability in the rice paddy of Yuanyang Terrace. These results provides empirical evidence for the elevational distribution patterns and seasonal dynamics of SOC fractions in rice paddies across Yuanyang Terrace. These findings highlight the importance of physical and biochemical protection mechanisms in stabilizing SOC in rice paddies, which could enhance long-term C sequestration and contribute to climate change mitigation in terraced agroecosystems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

25 pages, 659 KiB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

12 pages, 501 KiB  
Article
Effect of Sarcopenia on the Outcomes of Radiofrequency Ablation of Medial Branch Nerves for Lumbar Facet Arthropathy in Patients Aged 60 Years and Older: A Retrospective Analysis
by Seung Hee Yoo and Won-Joong Kim
J. Pers. Med. 2025, 15(8), 344; https://doi.org/10.3390/jpm15080344 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Sarcopenia is defined by the progressive loss of muscle mass, strength, and/or physical performance associated with aging. Radiofrequency ablation (RFA) of the medial branch nerves is a well-established and effective treatment for lumbar facetogenic pain. While sarcopenia is associated with poor [...] Read more.
Background/Objectives: Sarcopenia is defined by the progressive loss of muscle mass, strength, and/or physical performance associated with aging. Radiofrequency ablation (RFA) of the medial branch nerves is a well-established and effective treatment for lumbar facetogenic pain. While sarcopenia is associated with poor outcomes following epidural steroid injections and lumbar spine surgeries, its impact on clinical outcomes in patients undergoing RFA for facetogenic pain remains unexplored. This study aims to evaluate the influence of sarcopenia on treatment outcomes in this patient cohort. Methods: Patients were classified into sarcopenia (n = 35) and non-sarcopenia groups (n = 67) based on predefined psoas muscle index (PMI) thresholds. The primary outcomes included changes in back pain intensity and the proportion of responders at 1, 3, and 6 months following RFA. The secondary outcome was to identify demographic, clinical, and sarcopenia-related factors predictive of treatment response at each follow-up interval. Results: Both groups demonstrated statistically significant improvements in pain scores compared to baseline at all follow-up points. However, the median pain scores at 3 months post-RFA remained significantly higher in the sarcopenia group. Despite this, the proportion of responders did not differ significantly between the two groups at any time point. At 3 months, the absence of prior spinal surgery was identified as a significant predictor of treatment response. At 6 months, favorable outcomes were significantly associated with the absence of diabetes, no history of spinal surgery, and a higher PMI. Conclusions: Sarcopenia may influence the extent of pain improvement following medial branch nerve RFA. Additionally, patient-specific factors, such as diabetes, prior spinal surgery, and PMI, should be considered when predicting treatment outcomes. Full article
Show Figures

Figure 1

24 pages, 6020 KiB  
Article
Seasonal Patterns of Preterm Birth During the COVID-19 Pandemic: A Retrospective Cohort Study in Romania
by Paula Trif, Cristian Sava, Diana Mudura, Boris W. Kramer, Radu Galiș, Maria Livia Ognean, Alin Iuhas and Claudia Maria Jurca
Medicina 2025, 61(8), 1398; https://doi.org/10.3390/medicina61081398 - 1 Aug 2025
Abstract
Background and Objectives: Preterm birth and stillbirth are primary adverse pregnancy outcomes. Research during the COVID-19 pandemic revealed reductions in preterm birth in some countries, while stillbirth rates increased or remained unchanged. These findings suggest the presence of preventable risk factors associated with [...] Read more.
Background and Objectives: Preterm birth and stillbirth are primary adverse pregnancy outcomes. Research during the COVID-19 pandemic revealed reductions in preterm birth in some countries, while stillbirth rates increased or remained unchanged. These findings suggest the presence of preventable risk factors associated with changes in physical activity and lower exposure to community-acquired infections due to lockdown measures, altered social interaction patterns or reduced access to antenatal care. Assessing seasonal variation may offer insights into whether lifestyle changes during the COVID-19 lockdown period influenced preterm birth rates. Materials and Methods: This retrospective cohort study used data from the electronic medical records of Bihor and Sibiu counties. Preterm deliveries (<37 weeks) and stillbirths during the COVID-19 pandemic (2020 and 2021) were compared with the corresponding pre-pandemic (2018 and 2019) and post-pandemic (2022 and 2023) period. Preterm birth rates during summer and winter in the pre-pandemic, pandemic, and post-pandemic years were analyzed. A comparison with rates during strict lockdown was made. Results: Out of 52,021 newborn infants, 4473 were born preterm. Preterm birth rates remained stable across all three periods (p = 0.13), and no significant seasonal pattern was identified (p = 0.65). In contrast, stillbirth rates increased notably during the strict lockdown period, with the median incidence almost doubling compared to other periods (0.87%, p = 0.05), while remaining unchanged during the rest of the pandemic (p = 0.52). Conclusions: Our study found that preterm birth rates remained unaffected by the pandemic and lockdown periods, while stillbirths increased significantly during the strict lockdown. These findings highlight the importance of maintaining access to timely antenatal care during public health emergencies to prevent adverse perinatal outcomes. Full article
(This article belongs to the Special Issue Advances in Obstetrics and Maternal-Fetal Medicine)
Show Figures

Figure 1

14 pages, 529 KiB  
Article
Nomophobia Levels in Turkish High School Students: Variations by Gender, Physical Activity, Grade Level and Smartphone Use
by Piyami Çakto, İlyas Görgüt, Amayra Tannoubi, Michael Agyei, Medina Srem-Sai, John Elvis Hagan, Oğuzhan Yüksel and Orhan Demir
Youth 2025, 5(3), 78; https://doi.org/10.3390/youth5030078 (registering DOI) - 1 Aug 2025
Abstract
The rapidly changing dynamics of the digital age reshape the addiction relationship that high school students establish with technology. While smartphones remove boundaries in terms of communication and access to information, their usage triggers a source of anxiety and nomophobia. The increase in [...] Read more.
The rapidly changing dynamics of the digital age reshape the addiction relationship that high school students establish with technology. While smartphones remove boundaries in terms of communication and access to information, their usage triggers a source of anxiety and nomophobia. The increase in students’ anxiety levels because of their over-reliance on mobile phone use leads to significant behavioral changes in their mental health, academic performance, social interactions and financial dependency. This study examined the nomophobia levels of high school students according to selected socio-demographic indicators. Using the relational screening model, the multistage sampling technique was used to select a sample of 884 participants: 388 from Science High School and 496 from Anatolian High School (459 female, 425 male, Mage = 16.45 ± 1.14 year). Independent sample test and One-way ANOVA were applied. Depending on the homogeneity assumption of the data, Welch values were considered, and Tukey tests were applied as a second-level test from post hoc analyses. Comprehensive analyses of nomophobia levels revealed that young individuals’ attitudes towards digital technology differ significantly according to their demographic and behavioral characteristics. Variables such as gender, physical activity participation, grade level and duration of smartphone use are among the main factors affecting nomophobia levels. Female individuals and students who do not participate in physical activity exhibit higher nomophobia scores. Full article
Show Figures

Figure A1

19 pages, 4726 KiB  
Article
Modeling and Adaptive Neural Control of a Wheeled Climbing Robot for Obstacle-Crossing
by Hongbo Fan, Shiqiang Zhu, Cheng Wang and Wei Song
Machines 2025, 13(8), 674; https://doi.org/10.3390/machines13080674 (registering DOI) - 1 Aug 2025
Abstract
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of [...] Read more.
The dynamic model of a wheeled wall-climbing robot exhibits stage-specific changes when traversing different types of obstacles and during various stages of obstacle negotiation. Previous studies often employed remote control methods for obstacle-crossing control, which fail to dynamically adjust the torque distribution of magnetic wheels in response to real-time changes in the dynamic model. This limitation makes it challenging to precisely control the robot’s speed and attitude angles during the obstacle-crossing process. To address this issue, this paper first establishes a staged dynamic model for the wall-climbing robot under typical obstacle-crossing scenarios, including steps, 90° concave corners, 90° convex corners, and thin plates. Secondly, an adaptive controller based on a radial basis function neural network (RBFNN) is designed to effectively compensate for variations and uncertainties during the obstacle-crossing process. Finally, comparative simulations and physical experiments demonstrate the effectiveness of the proposed method. The experimental results show that this method can quickly respond to the dynamic changes in the model and accurately track the trajectory, thereby improving the control precision and stability during the obstacle-crossing process. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

14 pages, 10176 KiB  
Article
Recrystallization During Annealing of Low-Density Polyethylene Non-Woven Fabric by Melt Electrospinning
by Yueming Ren, Changjin Li, Minqiao Ren, Dali Gao, Yujing Tang, Changjiang Wu, Liqiu Chu, Qi Zhang and Shijun Zhang
Polymers 2025, 17(15), 2121; https://doi.org/10.3390/polym17152121 - 31 Jul 2025
Abstract
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the [...] Read more.
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the main melting point and crystallinity of LDPE decreased compared to the original sample, as did the tensile strength of the non-woven fabric. Additionally, the lamellar distribution became broader at annealing temperatures above 80 °C. The recrystallization mechanism of molten lamellae (disordered chains) in LDPE was elucidated by fitting the data using a Gaussian function. It was found that secondary crystallization, forming thicker lamellae, and spontaneous crystallization, forming thinner lamellae, occurred simultaneously at rates dependent on the annealing temperature. Secondary crystallization dominated at temperatures ≤80 °C, whereas spontaneous crystallization prevailed at temperatures above 80 °C. These findings explain the observed changes in the microstructure and tensile properties of the LDPE non-woven fabric. Furthermore, a physical model describing the microstructural evolution of the LDPE non-woven fabric during annealing was proposed based on the experimental evidence. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

Back to TopTop