Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,809)

Search Parameters:
Keywords = physical Internet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6269 KiB  
Article
Miniaturized EBG Antenna for Efficient 5.8 GHz RF Energy Harvesting in Self-Powered IoT and Medical Sensors
by Yahya Albaihani, Rizwan Akram, Abdullah. M. Almohaimeed, Ziyad M. Almohaimeed, Lukman O. Buhari and Mahmoud Shaban
Sensors 2025, 25(15), 4777; https://doi.org/10.3390/s25154777 (registering DOI) - 3 Aug 2025
Abstract
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. [...] Read more.
This study presents a compact and high-efficiency microstrip antenna integrated with a square electromagnetic band-gap (EBG) structure for radio frequency energy harvesting to power battery-less Internet of Things (IoT) sensors and medical devices in the 5.8 GHz Industrial, Scientific, and Medical (ISM) band. The proposed antenna features a compact design with reduced physical dimensions of 36 × 40 mm2 (0.69λo × 0.76λo) while providing high-performance parameters such as a reflection coefficient of −27.9 dB, a voltage standing wave ratio (VSWR) of 1.08, a gain of 7.91 dBi, directivity of 8.1 dBi, a bandwidth of 188 MHz, and radiation efficiency of 95.5%. Incorporating EBG cells suppresses surface waves, enhances gain, and optimizes impedance matching through 50 Ω inset feeding. The simulated and measured results of the designed antenna show a high correlation. This study demonstrates a robust and promising solution for high-performance wireless systems requiring a compact size and energy-efficient operation. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

37 pages, 6916 KiB  
Review
The Role of IoT in Enhancing Sports Analytics: A Bibliometric Perspective
by Yuvanshankar Azhagumurugan, Jawahar Sundaram, Zenith Dewamuni, Pritika, Yakub Sebastian and Bharanidharan Shanmugam
IoT 2025, 6(3), 43; https://doi.org/10.3390/iot6030043 (registering DOI) - 31 Jul 2025
Viewed by 205
Abstract
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. [...] Read more.
The use of Internet of Things (IoT) for sports innovation has transformed the way athletes train, compete, and recover in any sports activity. This study performs a bibliometric analysis to examine research trends, collaborations, and publications in the realm of IoT and Sports. Our analysis included 780 Scopus articles and 150 WoS articles published during 2012–2025, and duplicates were removed. We analyzed and visualized the bibliometric data using R version 3.6.1, VOSviewer version 1.6.20, and the bibliometrix library. The study provides insights from a bibliometric analysis, showcasing the allocation of topics, scientific contributions, patterns of co-authorship, prominent authors and their productivity over time, notable terms, key sources, publications with citations, analysis of citations, source-specific citation analysis, yearly publication patterns, and the distribution of research papers. The results indicate that China and India have the leading scientific production in the development of IoT and Sports research, with prominent authors like Anton Umek, Anton Kos, and Emiliano Schena making significant contributions. Wearable technology and wearable sensors are the most trending topics in IoT and Sports, followed by medical sciences and artificial intelligence paradigms. The analysis also emphasizes the importance of open-access journals like ‘Journal of Physics: Conference Series’ and ‘IEEE Access’ for their contributions to IoT and Sports research. Future research directions focus on enhancing effective, lightweight, and efficient wearable devices while implementing technologies like edge computing and lightweight AI in wearable technologies. Full article
Show Figures

Figure 1

26 pages, 5549 KiB  
Article
Intrusion Detection and Real-Time Adaptive Security in Medical IoT Using a Cyber-Physical System Design
by Faeiz Alserhani
Sensors 2025, 25(15), 4720; https://doi.org/10.3390/s25154720 (registering DOI) - 31 Jul 2025
Viewed by 187
Abstract
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical [...] Read more.
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical aspects of patient security. In this paper, we introduce a machine learning-enabled Cognitive Cyber-Physical System (ML-CCPS), which is designed to identify and respond to cyber threats in MIoT environments through a layered cognitive architecture. The system is constructed on a feedback-looped architecture integrating hybrid feature modeling, physical behavioral analysis, and Extreme Learning Machine (ELM)-based classification to provide adaptive access control, continuous monitoring, and reliable intrusion detection. ML-CCPS is capable of outperforming benchmark classifiers with an acceptable computational cost, as evidenced by its macro F1-score of 97.8% and an AUC of 99.1% when evaluated with the ToN-IoT dataset. Alongside classification accuracy, the framework has demonstrated reliable behaviour under noisy telemetry, maintained strong efficiency in resource-constrained settings, and scaled effectively with larger numbers of connected devices. Comparative evaluations, radar-style synthesis, and ablation studies further validate its effectiveness in real-time MIoT environments and its ability to detect novel attack types with high reliability. Full article
Show Figures

Figure 1

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Viewed by 178
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

20 pages, 857 KiB  
Article
Prevalence and Determinants of Depressive Symptoms in Older Adults Across Europe: Evidence from SHARE Wave 9
by Daniela Melo, Luís Midão, Inês Mimoso, Leovaldo Alcântara, Teodora Figueiredo, Joana Carrilho and Elísio Costa
J. Clin. Med. 2025, 14(15), 5340; https://doi.org/10.3390/jcm14155340 - 29 Jul 2025
Viewed by 199
Abstract
Background/Objectives: The rapid ageing of the European population presents growing challenges for mental health, highlighting the need to identify factors that can prevent or delay psychological decline and promote a higher quality of life in later life. This study aims to provide [...] Read more.
Background/Objectives: The rapid ageing of the European population presents growing challenges for mental health, highlighting the need to identify factors that can prevent or delay psychological decline and promote a higher quality of life in later life. This study aims to provide an updated and comprehensive overview of mental health among older adults in Europe by examining the prevalence of depressive symptoms and identifying key associated factors. Methods: We analysed data from individuals (n = 45,601) aged 65 years and older across 27 European countries and Israel who participated in Wave 9 of the Survey of Health, Ageing and Retirement in Europe (SHARE). This study assessed the prevalence of depressive symptoms, which were evaluated using the EURO-D scale (score range: 0–12), with a cut-off of ≥4 indicating clinically relevant symptoms. It also explored associations with sociodemographic characteristics, physical health, behavioural factors, social participation, internet skills and living conditions. Results: Our findings confirm that depressive symptoms remain highly prevalent among older adults in Europe, with 35.1% of women and 21.5% of men affected, reflecting persistent gender disparities in mental health. Depression in later life was significantly associated with poor physical health, loneliness and lower quality of life. Conversely, moderate involvement in grandchild care and in social participation emerged as potential protective factors. Conclusions: Late-life depression has substantial implications for both mental and physical well-being. Our findings suggest that social integration, gender related factors and physical health are closely associated with depressive symptoms in older adults. These associations highlight the importance of considering these domains when designing interventions and policies aimed at promoting mental health in ageing populations. Full article
(This article belongs to the Section Geriatric Medicine)
Show Figures

Figure 1

37 pages, 1895 KiB  
Review
A Review of Artificial Intelligence and Deep Learning Approaches for Resource Management in Smart Buildings
by Bibars Amangeldy, Timur Imankulov, Nurdaulet Tasmurzayev, Gulmira Dikhanbayeva and Yedil Nurakhov
Buildings 2025, 15(15), 2631; https://doi.org/10.3390/buildings15152631 - 25 Jul 2025
Viewed by 500
Abstract
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying [...] Read more.
This comprehensive review maps the fast-evolving landscape in which artificial intelligence (AI) and deep-learning (DL) techniques converge with the Internet of Things (IoT) to manage energy, comfort, and sustainability across smart environments. A PRISMA-guided search of four databases retrieved 1358 records; after applying inclusion criteria, 143 peer-reviewed studies published between January 2019 and April 2025 were analyzed. This review shows that AI-driven controllers—especially deep-reinforcement-learning agents—deliver median energy savings of 18–35% for HVAC and other major loads, consistently outperforming rule-based and model-predictive baselines. The evidence further reveals a rapid diversification of methods: graph-neural-network models now capture spatial interdependencies in dense sensor grids, federated-learning pilots address data-privacy constraints, and early integrations of large language models hint at natural-language analytics and control interfaces for heterogeneous IoT devices. Yet large-scale deployment remains hindered by fragmented and proprietary datasets, unresolved privacy and cybersecurity risks associated with continuous IoT telemetry, the growing carbon and compute footprints of ever-larger models, and poor interoperability among legacy equipment and modern edge nodes. The authors of researches therefore converges on several priorities: open, high-fidelity benchmarks that marry multivariate IoT sensor data with standardized metadata and occupant feedback; energy-aware, edge-optimized architectures that lower latency and power draw; privacy-centric learning frameworks that satisfy tightening regulations; hybrid physics-informed and explainable models that shorten commissioning time; and digital-twin platforms enriched by language-model reasoning to translate raw telemetry into actionable insights for facility managers and end users. Addressing these gaps will be pivotal to transforming isolated pilots into ubiquitous, trustworthy, and human-centered IoT ecosystems capable of delivering measurable gains in efficiency, resilience, and occupant wellbeing at scale. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

51 pages, 5654 KiB  
Review
Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing
by Arslan Zahid, Aniello Ferraro, Antonella Petrillo and Fabio De Felice
Appl. Sci. 2025, 15(15), 8268; https://doi.org/10.3390/app15158268 - 25 Jul 2025
Viewed by 368
Abstract
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and [...] Read more.
The evolution of Industry 4.0 and the emerging paradigm of Industry 5.0 have introduced disruptive technologies that are reshaping modern manufacturing environments. Among these, Digital Twin (DT) and Industrial Metaverse (IM) technologies are increasingly recognized for their potential to enhance Occupational Health and Safety (OHS). However, a comprehensive understanding of how these technologies integrate to support OHS in manufacturing remains limited. This study systematically explores the transformative role of DT and IM in creating immersive, intelligent, and human-centric safety ecosystems. Following the PRISMA guidelines, a Systematic Literature Review (SLR) of 75 peer-reviewed studies from the SCOPUS and Web of Science databases was conducted. The review identifies key enabling technologies such as Virtual Reality (VR), Augmented Reality (AR), Extended Reality (XR), Internet of Things (IoT), Artificial Intelligence (AI), Cyber-Physical Systems (CPS), and Collaborative Robots (COBOTS), and highlights their applications in real-time monitoring, immersive safety training, and predictive hazard mitigation. A conceptual framework is proposed, illustrating a synergistic digital ecosystem that integrates predictive analytics, real-time monitoring, and immersive training to enhance the OHS. The findings highlight both the transformative benefits and the key adoption challenges of these technologies, including technical complexities, data security, privacy, ethical concerns, and organizational resistance. This study provides a foundational framework for future research and practical implementation in Industry 5.0. Full article
Show Figures

Figure 1

36 pages, 9902 KiB  
Article
Digital-Twin-Enabled Process Monitoring for a Robotic Additive Manufacturing Cell Using Wire-Based Laser Metal Deposition
by Alberto José Alvares, Efrain Rodriguez and Brayan Figueroa
Processes 2025, 13(8), 2335; https://doi.org/10.3390/pr13082335 - 23 Jul 2025
Viewed by 330
Abstract
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs [...] Read more.
Digital Twins (DTs) are transforming manufacturing by bridging the physical and digital worlds, enabling real-time insights, predictive analytics, and enhanced decision making. In Industry 4.0, DTs facilitate automation and data integration, while Industry 5.0 emphasizes human-centric, resilient, and sustainable production. However, implementing DTs in robotic metal additive manufacturing (AM) remains challenging because of the complexity of the wire-based laser metal deposition (LMD) process, the need for real-time monitoring, and the demand for advanced defect detection to ensure high-quality prints. This work proposes a structured DT architecture for a robotic wire-based LMD cell, following a standard framework. Three DT implementations were developed. First, a real-time 3D simulation in RoboDK, integrated with a 2D Node-RED dashboard, enabled motion validation and live process monitoring via MQTT (message queuing telemetry transport) telemetry, minimizing toolpath errors and collisions. Second, an Industrial IoT-based system using KUKA iiQoT (Industrial Internet of Things Quality of Things) facilitated predictive maintenance by analyzing motor loads, joint temperatures, and energy consumption, allowing early anomaly detection and reducing unplanned downtime. Third, the Meltio dashboard provided real-time insights into the laser temperature, wire tension, and deposition accuracy, ensuring adaptive control based on live telemetry. Additionally, a prescriptive analytics layer leveraging historical data in FireStore was integrated to optimize the process performance, enabling data-driven decision making. Full article
Show Figures

Graphical abstract

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 326
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

10 pages, 637 KiB  
Proceeding Paper
Improving Industrial Control System Cybersecurity with Time-Series Prediction Models
by Velizar Varbanov and Tatiana Atanasova
Eng. Proc. 2025, 101(1), 4; https://doi.org/10.3390/engproc2025101004 - 22 Jul 2025
Viewed by 221
Abstract
Traditional security detection methods struggle to identify zero-day attacks in Industrial Control Systems (ICSs), particularly within critical infrastructures (CIs) integrated with the Industrial Internet of Things (IIoT). These attacks exploit unknown vulnerabilities, leveraging the complexity of physical and digital system interconnections, making them [...] Read more.
Traditional security detection methods struggle to identify zero-day attacks in Industrial Control Systems (ICSs), particularly within critical infrastructures (CIs) integrated with the Industrial Internet of Things (IIoT). These attacks exploit unknown vulnerabilities, leveraging the complexity of physical and digital system interconnections, making them difficult to detect. The integration of legacy ICS networks with modern computing and networking technologies has expanded the attack surface, increasing susceptibility to cyber threats. Anomaly detection systems play a crucial role in safeguarding these infrastructures by identifying deviations from normal operations. This study investigates the effectiveness of deep learning-based anomaly detection models in revealing operational anomalies that could indicate potential cyber-attacks. We implemented and evaluated a hybrid deep learning architecture combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to analyze ICS telemetry data. The CNN-LSTM model excels in identifying time-dependent anomalies and enables near real-time detection of cyber-attacks, significantly improving security monitoring capabilities for IIoT-integrated critical infrastructures. Full article
Show Figures

Figure 1

25 pages, 22731 KiB  
Article
Scalable and Efficient GCL Scheduling for Time-Aware Shaping in Autonomous and Cyber-Physical Systems
by Chengwei Zhang and Yun Wang
Future Internet 2025, 17(8), 321; https://doi.org/10.3390/fi17080321 - 22 Jul 2025
Viewed by 224
Abstract
The evolution of the internet towards supporting time-critical applications, such as industrial cyber-physical systems (CPSs) and autonomous systems, has created an urgent demand for networks capable of providing deterministic, low-latency communication. Autonomous vehicles represent a particularly challenging use case within this domain, requiring [...] Read more.
The evolution of the internet towards supporting time-critical applications, such as industrial cyber-physical systems (CPSs) and autonomous systems, has created an urgent demand for networks capable of providing deterministic, low-latency communication. Autonomous vehicles represent a particularly challenging use case within this domain, requiring both reliability and determinism for massive data streams—a requirement that traditional Ethernet technologies cannot satisfy. This paper addresses this critical gap by proposing a comprehensive scheduling framework based on Time-Aware Shaping (TAS) within the Time-Sensitive Networking (TSN) standard. The framework features two key contributions: (1) a novel baseline scheduling algorithm that incorporates a sub-flow division mechanism to enhance schedulability for high-bandwidth streams, computing Gate Control Lists (GCLs) via an iterative SMT-based method; (2) a separate heuristic-based computation acceleration algorithm to enable fast, scalable GCL generation for large-scale networks. Through extensive simulations, the proposed baseline algorithm demonstrates a reduction in end-to-end latency of up to 59% compared to standard methods, with jitter controlled at the nanosecond level. The acceleration algorithm is shown to compute schedules for 200 data streams in approximately one second. The framework’s effectiveness is further validated on a real-world TSN hardware testbed, confirming its capability to achieve deterministic transmission with low latency and jitter in a physical environment. This work provides a practical and scalable solution for deploying deterministic communication in complex autonomous and cyber-physical systems. Full article
Show Figures

Figure 1

87 pages, 5171 KiB  
Review
Toward Secure Smart Grid Systems: Risks, Threats, Challenges, and Future Directions
by Jean Paul A. Yaacoub, Hassan N. Noura, Ola Salman and Khaled Chahine
Future Internet 2025, 17(7), 318; https://doi.org/10.3390/fi17070318 - 21 Jul 2025
Viewed by 454
Abstract
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. [...] Read more.
The evolution of electrical power systems into smart grids has brought about significant advancements in electricity generation, transmission, and utilization. These cutting-edge grids have shown potential as an effective way to maximize energy efficiency, manage resources effectively, and enhance overall reliability and sustainability. However, with the integration of complex technologies and interconnected systems inherent to smart grids comes a new set of safety and security challenges that must be addressed. First, this paper provides an in-depth review of the key considerations surrounding safety and security in smart grid environments, identifying potential risks, vulnerabilities, and challenges associated with deploying smart grid infrastructure within the context of the Internet of Things (IoT). In response, we explore both cryptographic and non-cryptographic countermeasures, emphasizing the need for adaptive, lightweight, and proactive security mechanisms. As a key contribution, we introduce a layered classification framework that maps smart grid attacks to affected components and defense types, providing a clearer structure for analyzing the impact of threats and responses. In addition, we identify current gaps in the literature, particularly in real-time anomaly detection, interoperability, and post-quantum cryptographic protocols, thus offering forward-looking recommendations to guide future research. Finally, we present the Multi-Layer Threat-Defense Alignment Framework, a unique addition that provides a methodical and strategic approach to cybersecurity planning by aligning smart grid threats and defenses across architectural layers. Full article
(This article belongs to the Special Issue Secure Integration of IoT and Cloud Computing)
Show Figures

Figure 1

6 pages, 2004 KiB  
Proceeding Paper
Exploring Global Research Trends in Internet of Things and Total Quality Management for Industry 4.0 and Smart Manufacturing
by Chih-Wen Hsiao and Hong-Wun Chen
Eng. Proc. 2025, 98(1), 39; https://doi.org/10.3390/engproc2025098039 - 21 Jul 2025
Viewed by 200
Abstract
Amid the accelerated digital transformation and with the growing demand for smart manufacturing, the applications of the Internet of Things (IoT) and total quality management (TQM) have attracted increasing attention. Using R for bibliometric analysis, we explored research trends in IoT and TQM [...] Read more.
Amid the accelerated digital transformation and with the growing demand for smart manufacturing, the applications of the Internet of Things (IoT) and total quality management (TQM) have attracted increasing attention. Using R for bibliometric analysis, we explored research trends in IoT and TQM in terms of digital transformation and smart manufacturing. Data were gathered from the Web of Science from 1998 to 2025, with a total of 787 publications from 265 sources involving 2326 authors. A total of 31% of the authors collaborated internationally, indicating global interest in this topic. The publications had 33.65 citations on average, totaling 33,599 citations. Wang L.H. and Tao F. were identified as important authors. Keywords of “Industry 4.0”, “cyber-physical systems”, and “big data” underscore the technological significance of IoT and TQM. Major journals such as the Journal of Manufacturing Systems and IEEE Access had notable academic influence. Co-citation analysis results revealed that IoT and TQM played a significant role in driving digital transformation and enhancing production efficiency, offering references for enterprises in strategic planning for smart manufacturing. Full article
Show Figures

Figure 1

23 pages, 951 KiB  
Article
Multi-Objective Evolution and Swarm-Integrated Optimization of Manufacturing Processes in Simulation-Based Environments
by Panagiotis D. Paraschos, Georgios Papadopoulos and Dimitrios E. Koulouriotis
Machines 2025, 13(7), 611; https://doi.org/10.3390/machines13070611 - 16 Jul 2025
Viewed by 345
Abstract
This paper presents a digital twin-driven multi-objective optimization approach for enhancing the performance and productivity of a multi-product manufacturing system under complex operational challenges. More specifically, the concept of digital twin is applied to virtually replicate a physical system that leverages real-time data [...] Read more.
This paper presents a digital twin-driven multi-objective optimization approach for enhancing the performance and productivity of a multi-product manufacturing system under complex operational challenges. More specifically, the concept of digital twin is applied to virtually replicate a physical system that leverages real-time data fusion from Internet of Things devices or sensors. JaamSim serves as the platform for modeling the digital twin, simulating the dynamics of the manufacturing system. The implemented digital twin is a manufacturing system that incorporates a three-stage production line to complete and stockpile two gear types. The production line is subject to unpredictable events, including equipment breakdowns, maintenance, and product returns. The stochasticity of these real-world-like events is modeled using a normal distribution. Manufacturing control strategies, such as CONWIP and Kanban, are implemented to evaluate the impact on the performance of the manufacturing system in a simulation environment. The evaluation is performed based on three key indicators: service level, the amount of work-in-progress items, and overall system profitability. Multiple objective functions are formulated to optimize the behavior of the system by reducing the work-in-progress items and improving both cost-effectiveness and service level. To this end, the proposed approach couples the JaamSim-based digital twins with evolutionary and swarm-based algorithms to carry out the multi-objective optimization under varying conditions. In this sense, the present work offers an early demonstration of an industrial digital twin, implementing an offline simulation-based manufacturing environment that utilizes optimization algorithms. Results demonstrate the trade-offs between the employed strategies and offer insights on the implementation of hybrid production control systems in dynamic environments. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

27 pages, 2260 KiB  
Article
Machine Learning for Industrial Optimization and Predictive Control: A Patent-Based Perspective with a Focus on Taiwan’s High-Tech Manufacturing
by Chien-Chih Wang and Chun-Hua Chien
Processes 2025, 13(7), 2256; https://doi.org/10.3390/pr13072256 - 15 Jul 2025
Viewed by 703
Abstract
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, [...] Read more.
The global trend toward Industry 4.0 has intensified the demand for intelligent, adaptive, and energy-efficient manufacturing systems. Machine learning (ML) has emerged as a crucial enabler of this transformation, particularly in high-mix, high-precision environments. This review examines the integration of machine learning techniques, such as convolutional neural networks (CNNs), reinforcement learning (RL), and federated learning (FL), within Taiwan’s advanced manufacturing sectors, including semiconductor fabrication, smart assembly, and industrial energy optimization. The present study draws on patent data and industrial case studies from leading firms, such as TSMC, Foxconn, and Delta Electronics, to trace the evolution from classical optimization to hybrid, data-driven frameworks. A critical analysis of key challenges is provided, including data heterogeneity, limited model interpretability, and integration with legacy systems. A comprehensive framework is proposed to address these issues, incorporating data-centric learning, explainable artificial intelligence (XAI), and cyber–physical architectures. These components align with industrial standards, including the Reference Architecture Model Industrie 4.0 (RAMI 4.0) and the Industrial Internet Reference Architecture (IIRA). The paper concludes by outlining prospective research directions, with a focus on cross-factory learning, causal inference, and scalable industrial AI deployment. This work provides an in-depth examination of the potential of machine learning to transform manufacturing into a more transparent, resilient, and responsive ecosystem. Additionally, this review highlights Taiwan’s distinctive position in the global high-tech manufacturing landscape and provides an in-depth analysis of patent trends from 2015 to 2025. Notably, this study adopts a patent-centered perspective to capture practical innovation trends and technological maturity specific to Taiwan’s globally competitive high-tech sector. Full article
(This article belongs to the Special Issue Machine Learning for Industrial Optimization and Predictive Control)
Show Figures

Figure 1

Back to TopTop