Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = phthalimide derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1995 KiB  
Article
Computational Design and Synthesis of Phthalimide Derivatives as TGF-β Pathway Inhibitors for Cancer Therapeutics
by Héctor M. Heras-Martínez, Blanca Sánchez-Ramírez, Linda-Lucila Landeros-Martínez, Víctor H. Ramos-Sánchez, Alejandro A. Camacho-Dávila, Kostiantyn O. Marichev, Alejandro Bugarin and David Chávez-Flores
Chemistry 2025, 7(2), 31; https://doi.org/10.3390/chemistry7020031 - 26 Feb 2025
Viewed by 1297
Abstract
Background: This study investigates the synthesis and pharmacological potential of N-substituted isoindoline-1,3-dione (phthalimide) derivatives. Using the M06 meta-GGA hybrid functional with a polarized 6-311G(d,p) basis set, computational evaluations assessed their impact on apoptosis modulation in colon cancer cells. Molecular docking studies targeted [...] Read more.
Background: This study investigates the synthesis and pharmacological potential of N-substituted isoindoline-1,3-dione (phthalimide) derivatives. Using the M06 meta-GGA hybrid functional with a polarized 6-311G(d,p) basis set, computational evaluations assessed their impact on apoptosis modulation in colon cancer cells. Molecular docking studies targeted the TGF-β protein (PDB: 1RW8) at the ALK5 binding site. On this study fourteen molecules were evaluated (P1P14) and six (P1, P3, P4, P5, P7, and P13) demonstrated promising binding values. Methods: from the fourteen studied compounds five compounds (P2, P4, P7, P10, and P11) were successfully synthesized and fully characterized. The reactions were monitored via TLC and HPLC confirming high-purity compounds. Functional groups were identified through FTIR and structural characterization was supported by NMR analyses. Results: Density functional theory calculations and docking simulations allowed to classified the compounds as potential ALK5 inhibitors. Synthesized derivatives were developed in yields from 85 to 99% and showed better binding affinities than Capecitabine (−6.95 kcal/mol) used as control compound, with P7 (5-hydroxy-4-oxo-2-phenyl-4H-chromen-7-yl 2-(1,3-dioxoisoindolin-2-yl) acetate) leading the group with a binding energy of −12.28 kcal/mol. Other synthesized compounds also exhibited significant affinities: P4 (−11.42 kcal/mol), P10 (−8.99 kcal/mol), P11 (−7.50 kcal/mol), and P2 (−7.22 kcal/mol). Conclusions: Integrating computational insights with experimental validation highlights the therapeutic potential of phthalimide derivatives, particularly P7. The study underscores a rigorous approach to identifying promising candidates for anticancer therapeutics, warranting further exploration. Full article
(This article belongs to the Special Issue Cutting-Edge Studies of Computational Approaches in Drug Discovery)
Show Figures

Figure 1

15 pages, 6465 KiB  
Article
A Spectroscopic and In Silico Description of the Non-Covalent Interactions of Phthalic Acid Imide Derivatives with Deoxyribonucleic Acid—Insights into Their Binding Characteristics and Potential Applications
by Aleksandra Marciniak, Edward Krzyżak, Dominika Szkatuła, Krystian Mazurkiewicz and Aleksandra Kotynia
Molecules 2024, 29(22), 5422; https://doi.org/10.3390/molecules29225422 - 17 Nov 2024
Viewed by 1365
Abstract
The treatment of cancer represents one of the most significant challenges currently facing modern medicine. The search for new drugs that are effective in the treatment of patients is an ongoing endeavor. It is frequently the case that the molecular target of anticancer [...] Read more.
The treatment of cancer represents one of the most significant challenges currently facing modern medicine. The search for new drugs that are effective in the treatment of patients is an ongoing endeavor. It is frequently the case that the molecular target of anticancer drugs is a DNA molecule. The therapeutic effect of a drug is achieved by influencing the structure of a macromolecule or by inhibiting its function. Among the synthetic substances with potential anticancer effects, particular attention should be paid to phthalic acid imide derivatives. Three phthalimide derivatives are employed in the treatment of multiple myeloma: thalidomide, pomalidomide, and lenalidomide. Nevertheless, the search for new derivatives with a diverse range of biological activities is ongoing. In light of the above, the subject of our investigation is four non-toxic phthalic acid imide derivatives. The objective was to analyze the interaction of these compounds with DNA. The use of spectroscopic and in silico methods has enabled us to demonstrate that all of the tested analogs can act as ligands for deoxyribonucleic acid, forming non-covalent bonds with it. All four compounds tested interact with the ctDNA molecule, binding in its minor groove. The most stable complex is formed here between deoxyribonucleic acid and the C derivative, in which the -CF3 group is attached to the benzene ring. What is interesting and important, the described mechanism of action is analogous to that observed between ctDNA and thalidomide, pomalidomide, and lenalidomide. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

19 pages, 9630 KiB  
Article
A Series of Novel 1-H-isoindole-1,3(2H)-dione Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: In Silico, Synthesis and In Vitro Studies
by Edward Krzyżak, Aleksandra Marciniak, Dominika Szkatuła, Klaudia A. Jankowska, Natalia Dobies and Aleksandra Kotynia
Molecules 2024, 29(15), 3528; https://doi.org/10.3390/molecules29153528 - 26 Jul 2024
Cited by 1 | Viewed by 2227
Abstract
The derivatives of isoindoline-1,3-dione are interesting due to their biological activities, such as anti-inflammatory and antibacterial effects. Several series have been designed and evaluated for Alzheimer’s therapy candidates. They showed promising activity. In this work, six new derivatives were first tested in in [...] Read more.
The derivatives of isoindoline-1,3-dione are interesting due to their biological activities, such as anti-inflammatory and antibacterial effects. Several series have been designed and evaluated for Alzheimer’s therapy candidates. They showed promising activity. In this work, six new derivatives were first tested in in silico studies for their inhibitory ability against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. Molecular docking and molecular dynamic simulation were applied. Next, these compounds were synthesized and characterized by 1H NMR, 13C NMR, FT-IR, and ESI–MS techniques. For all imides, the inhibitory activity against AChE and BuChE was tested using Ellaman’s method. IC50 values were determined. The best results were obtained for the derivative I, with a phenyl substituent at position 4 of piperazine, IC50 = 1.12 μM (AChE) and for the derivative III, with a diphenylmethyl moiety, with IC50 = 21.24 μM (BuChE). The compounds tested in this work provide a solid basis for further structural modifications, leading to the effective design of potential inhibitors of both cholinesterases. Full article
Show Figures

Figure 1

17 pages, 1372 KiB  
Article
Benzothiazole-Phthalimide Hybrids as Anti-Breast Cancer and Antimicrobial Agents
by Alexia Barbarossa, Jessica Ceramella, Alessia Carocci, Domenico Iacopetta, Antonio Rosato, Francesco Limongelli, Antonio Carrieri, Daniela Bonofiglio and Maria Stefania Sinicropi
Antibiotics 2023, 12(12), 1651; https://doi.org/10.3390/antibiotics12121651 - 23 Nov 2023
Cited by 13 | Viewed by 2180
Abstract
The benzothiazole nucleus is a major heterocyclic scaffold whose therapeutic potential has been thoroughly explored due to its structural simplicity and ease of synthesis. In fact, several benzothiazole derivatives have been synthesized over time, demonstrating numerous pharmacological properties such as anticancer, antimicrobial, anti-inflammatory, [...] Read more.
The benzothiazole nucleus is a major heterocyclic scaffold whose therapeutic potential has been thoroughly explored due to its structural simplicity and ease of synthesis. In fact, several benzothiazole derivatives have been synthesized over time, demonstrating numerous pharmacological properties such as anticancer, antimicrobial, anti-inflammatory, and antioxidant activities. Herein, we propose a new series of benzothiazole-phthalimide hybrids obtained by linking the phthalimide moiety to differently substituted benzothiazole nuclei through the N atom. These compounds have been screened for their anticancer properties against two human breast cancer cell lines. Furthermore, we delved into the mechanism of action of the most active hybrid, compound 3h, by assessing its capability to damage the nuclear DNA, trigger the apoptotic process in the high metastatic MDA-MB-231 cells, and prevent cellular migration. Moreover, in view of the documented antimicrobial activities of the two scaffolds involved, we explored the antibacterial and antifungal effects of the studied compounds by means of the broth microdilution method. Among the studied compounds, 3h showed the highest antimicrobial activity, both against gram-positive and gram-negative bacterial strains belonging to the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and against fungal strains of the Candida species with MICs values ranging from 16 to 32 µg/mL. Full article
Show Figures

Graphical abstract

17 pages, 4804 KiB  
Article
Bioactivity-Guided Synthesis: In Silico and In Vitro Studies of β-Glucosidase Inhibitors to Cope with Hepatic Cytotoxicity
by Aneela Khushal, Umar Farooq, Sara Khan, Azhar Rasul, Tanveer A. Wani, Seema Zargar, Sohail Anjum Shahzad, Syed Majid Bukhari and Nazeer Ahmad Khan
Molecules 2023, 28(18), 6548; https://doi.org/10.3390/molecules28186548 - 9 Sep 2023
Cited by 2 | Viewed by 1983
Abstract
The major cause of hyperglycemia can generally be attributed to β-glucosidase as per its involvement in non-alcoholic fatty liver disease. This clinical condition leads to liver carcinoma (HepG2 cancer). The phthalimides and phthalamic acid classes possess inhibitory potential against glucosidase, forming the basis [...] Read more.
The major cause of hyperglycemia can generally be attributed to β-glucosidase as per its involvement in non-alcoholic fatty liver disease. This clinical condition leads to liver carcinoma (HepG2 cancer). The phthalimides and phthalamic acid classes possess inhibitory potential against glucosidase, forming the basis for designing new phthalimide and phthalamic acid analogs to test their ability as potent inhibitors of β-glucosidase. The study also covers in silico (molecular docking and MD simulations) and in vitro (β-glucosidase and HepG2 cancer cell line assays) analyses. The phthalimide and phthalamic acid derivatives were synthesized, followed by spectroscopic characterization. The mechanistic complexities associated with β-glucosidase inhibition were identified via the docking of the synthesized compounds inside the active site of the protein, and the results were analyzed in terms of the best binding energy and appropriate docking pose. The top-ranked compounds were subjected to extensive MD simulation studies to understand the mode of interaction of the synthesized compounds and binding energies, as well as the contribution of individual residues towards binding affinities. Lower RMSD/RMSF values were observed for 2c and 3c, respectively, in the active site, confirming more stabilized, ligand-bound complexes when compared to the free state. An anisotropic network model was used to unravel the role of loop fluctuation in the context of ligand binding and the dynamics that are distinct to the bound and free states, supported by a 3D surface plot. An in vitro study revealed that 1c (IC50 = 1.26 µM) is far better than standard acarbose (2.15 µM), confirming the potential of this compound against the target protein. Given the appreciable potential of the candidate compounds against β-glucosidase, the synthesized compounds were further tested for their cytotoxic activity against hepatic carcinoma on HepG2 cancer cell lines. The cytotoxicity profile of the synthesized compounds was performed against HepG2 cancer cell lines. The resultant IC50 value (0.048 µM) for 3c is better than the standard (thalidomide: IC50 0.053 µM). The results promise the hypothesis that the synthesized compounds might become potential drug candidates, given the fact that the β-glucosidase inhibition of 1c is 40% better than the standard, whereas compound 3c holds more anti-tumor activity (greater than 9%) against the HepG2 cell line than the known drug. Full article
Show Figures

Graphical abstract

13 pages, 1956 KiB  
Article
N-Substituted (Hexahydro)-1H-isoindole-1,3(2H)-dione Derivatives: New Insights into Synthesis and Characterization
by Carmellina Daniela Bădiceanu, Catalina Mares, Diana Camelia Nuță, Speranța Avram, Constantin Drăghici, Ana-Maria Udrea, Irina Zarafu, Cornel Chiriță, Marilena Viorica Hovaneț and Carmen Limban
Processes 2023, 11(6), 1616; https://doi.org/10.3390/pr11061616 - 25 May 2023
Cited by 2 | Viewed by 3293
Abstract
Novel phthalimide derivatives, namely N-(1,3-dioxoisoindolin-2-yl)-2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetamide (1a) and N-(1,3-dioxoisoindolin-2-yl)thiophene-2-carboxamide (1b), and hexahydrophthalimide derivative N-(1,3-dioxohexahydro-1H-isoindol-2(3H)-yl)-2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetamide (2), have been synthesized. The phthalimide derivatives were synthesized from phthalic anhydride and 2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetohydrazide [...] Read more.
Novel phthalimide derivatives, namely N-(1,3-dioxoisoindolin-2-yl)-2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetamide (1a) and N-(1,3-dioxoisoindolin-2-yl)thiophene-2-carboxamide (1b), and hexahydrophthalimide derivative N-(1,3-dioxohexahydro-1H-isoindol-2(3H)-yl)-2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetamide (2), have been synthesized. The phthalimide derivatives were synthesized from phthalic anhydride and 2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetohydrazide or thiophene-2-carbohydrazide, and the hexahydrophthalimide derivative has been synthesized from hexahydrophthalic anhydride and 2-(2-methyl-4-oxoquinazolin-3(4H)-yl)acetohydrazide. The chemical structures of the compounds are elucidated by Nuclear Magnetic Resonance (NMR) and Infrared (IR) spectra. The new in vitro antioxidant activities of the obtained substances were evaluated using the DPPH method. All tested compounds showed antioxidative activity, the most active compound being 1b. Bioinformatics tools were used for the prediction of pharmacokinetics and pharmacodynamics profiles. Our results showedthat all compounds have a suitable intestinal absorption rate, good BBB and CNS permeabilities and have as molecular targets MAO B, COX-2 and NF-KB, important for antioxidant activities. Full article
(This article belongs to the Special Issue 10th Anniversary of Processes: Women's Special Issue Series)
Show Figures

Figure 1

22 pages, 6346 KiB  
Article
Spectroscopic and Theoretical Analysis of the Interaction between Plasma Proteins and Phthalimide Analogs with Potential Medical Application
by Edward Krzyżak, Aleksandra Kotynia, Dominika Szkatuła and Aleksandra Marciniak
Life 2023, 13(3), 760; https://doi.org/10.3390/life13030760 - 10 Mar 2023
Cited by 3 | Viewed by 2066
Abstract
One of the groups of organic compounds with potential use in medicine and pharmacy is phthalimide derivatives. They are characterized by a wide range of properties such as antibacterial, antifungal, and anti-inflammatory. In this study, we focused on research on four phthalimide derivatives [...] Read more.
One of the groups of organic compounds with potential use in medicine and pharmacy is phthalimide derivatives. They are characterized by a wide range of properties such as antibacterial, antifungal, and anti-inflammatory. In this study, we focused on research on four phthalimide derivatives with proven non-toxicity, which are cyclooxygenase inhibitors. With the use of molecular docking study and spectroscopic methods, such as fluorescence, circular dichroism, and FT-IR spectroscopies, we analyzed the way the tested compounds interact with plasma proteins. Among the many proteins present in the plasma, we selected three: albumin, α1-acid glycoprotein, and gamma globulin, which play significant roles in the human body. The obtained results showed that all tested compounds bind to the analyzed proteins. They interact most strongly with albumin, which is a transport protein. However, interactions with serum albumin and orosomucoid do not cause significant changes in their structures. Only in the case of gamma globulins significant changes were observed in protein secondary structure. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

19 pages, 6058 KiB  
Article
Exploring Probenecid Derived 1,3,4-Oxadiazole-Phthalimide Hybrid as α-Amylase Inhibitor: Synthesis, Structural Investigation, and Molecular Modeling
by Bilal Ahmad Khan, Syeda Shamila Hamdani, Muhammad Khalid, Muhammad Ashfaq, Khurram Shahzad Munawar, Muhammad Nawaz Tahir, Ataualpa A. C. Braga, Ahmed M. Shawky, Alaa M. Alqahtani, Mohammed A. S. Abourehab, Gamal A. Gabr, Mahmoud A. A. Ibrahim and Peter A. Sidhom
Pharmaceuticals 2023, 16(3), 424; https://doi.org/10.3390/ph16030424 - 10 Mar 2023
Cited by 10 | Viewed by 3194
Abstract
1,3,4-Oxadiazole moiety is a crucial pharmacophore in many biologically active compounds. In a typical synthesis, probenecid was subjected to a sequence of reactions to obtain a 1,3,4-oxadiazole–phthalimide hybrid (PESMP) in high yields. The NMR (1H and 13C) spectroscopic [...] Read more.
1,3,4-Oxadiazole moiety is a crucial pharmacophore in many biologically active compounds. In a typical synthesis, probenecid was subjected to a sequence of reactions to obtain a 1,3,4-oxadiazole–phthalimide hybrid (PESMP) in high yields. The NMR (1H and 13C) spectroscopic analysis initially confirmed the structure of PESMP. Further spectral aspects were validated based on a single-crystal XRD analysis. Experimental findings were confirmed afterwards by executing a Hirshfeld surface (HS) analysis and quantum mechanical computations. The HS analysis showed the role of the π⋯π stacking interactions in PESMP. PESMP was found to have a high stability and lower reactivity in terms of global reactivity parameters. α-Amylase inhibition studies revealed that the PESMP was a good inhibitor of α-amylase with an s value of 10.60 ± 0.16 μg/mL compared with that of standard acarbose (IC50 = 8.80 ± 0.21 μg/mL). Molecular docking was also utilized to reveal the binding pose and features of PESMP against the α-amylase enzyme. Via docking computations, the high potency of PESMP and acarbose towards the α-amylase enzyme was unveiled and confirmed by docking scores of −7.4 and −9.4 kcal/mol, respectively. These findings shine a new light on the potential of PESMP compounds as α-amylase inhibitors. Full article
(This article belongs to the Special Issue Enzyme Inhibitors: Potential Therapeutic Approaches)
Show Figures

Figure 1

14 pages, 4076 KiB  
Article
Improved Electrochemical Hydrogen Peroxide Detection Using a Nickel(II) Phthalimide-Substituted Porphyrazine Combined with Various Carbon Nanomaterials
by Amanda Leda, Mina Hassani, Tomasz Rebis, Michal Falkowski, Jaroslaw Piskorz, Dariusz T. Mlynarczyk, Peter McNeice and Grzegorz Milczarek
Nanomaterials 2023, 13(5), 862; https://doi.org/10.3390/nano13050862 - 25 Feb 2023
Cited by 7 | Viewed by 2758
Abstract
A metal-free porphyrazine derivative with peripheral phthalimide substituents was metallated with a nickel(II) ion. The purity of the nickel macrocycle was confirmed using HPLC, and characterized by MS, UV–VIS, and 1D (1H, 13C) and 2D (1H–13C [...] Read more.
A metal-free porphyrazine derivative with peripheral phthalimide substituents was metallated with a nickel(II) ion. The purity of the nickel macrocycle was confirmed using HPLC, and characterized by MS, UV–VIS, and 1D (1H, 13C) and 2D (1H–13C HSQC, 1H–13C HMBC, 1H–1H COSY) NMR techniques. The novel porphyrazine was combined with various carbon nanomaterials, such as carbon nanotubes—single walled (SWCNTs) and multi-walled (MWCNTs), and electrochemically reduced graphene oxide (rGO), to create hybrid electroactive electrode materials. The carbon nanomaterials’ effect on the electrocatalytic properties of nickel(II) cations was compared. As a result, an extensive electrochemical characterization of the synthesized metallated porphyrazine derivative on various carbon nanostructures was carried out using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). An electrode modified with carbon nanomaterials GC/MWCNTs, GC/SWCNTs, or GC/rGO, respectively, was shown to have a lower overpotential than a bare glassy carbon electrode (GC), allowing for the measurement of hydrogen peroxide in neutral conditions (pH 7.4). It was shown that among the tested carbon nanomaterials, the modified electrode GC/MWCNTs/Pz3 exhibited the best electrocatalytic properties in the direction of hydrogen peroxide oxidation/reduction. The prepared sensor was determined to enable a linear response to H2O2 in concentrations ranging between 20–1200 µM with the detection limit of 18.57 µM and sensitivity of 14.18 µA mM−1 cm−2. As a result of this research, the sensors produced here may find use in biomedical and environmental applications. Full article
Show Figures

Figure 1

12 pages, 1187 KiB  
Article
Synthesis of Phthalimide Derivatives and Their Insecticidal Activity against Caribbean Fruit Fly, Anastrepha suspensa (Loew)
by Fatih Tok, Xiangbing Yang, Nurhayat Tabanca and Bedia Koçyiğit-Kaymakçıoğlu
Biomolecules 2023, 13(2), 361; https://doi.org/10.3390/biom13020361 - 14 Feb 2023
Cited by 7 | Viewed by 3247
Abstract
In this study, thirteen phthalimide derivatives were designed and synthesized. All synthesized compounds were evaluated to determine their potential for inhibitory activities against females of the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae). These efforts led to the discovery of three compounds [...] Read more.
In this study, thirteen phthalimide derivatives were designed and synthesized. All synthesized compounds were evaluated to determine their potential for inhibitory activities against females of the Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Tephritidae). These efforts led to the discovery of three compounds 4a, 4c, and 4d with potent insecticidal activity (LD50 range from 0.70 to 1.91 μg/fly). Among these compounds, 4a exhibited the highest inhibitory potency with 0.70 μg/fly. In addition, in silico models indicated that compound 4a is less toxic than phthalimide and other precursors. Therefore, our results suggest that 4a has strong potential as a candidate component for developing a novel environmentally friendly insecticide for control of pest fruit flies. Full article
(This article belongs to the Topic Advances in Chemical Ecology)
Show Figures

Figure 1

15 pages, 6431 KiB  
Article
Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials
by Magdalena Zawadzka, Paweł Nitschke, Marta Musioł, Mariola Siwy, Sandra Pluczyk-Małek, Damian Honisz and Mieczysław Łapkowski
Molecules 2023, 28(4), 1740; https://doi.org/10.3390/molecules28041740 - 11 Feb 2023
Cited by 5 | Viewed by 2985
Abstract
Electrochromism of organic compounds is a well-known phenomenon; however, nowadays, most research is focused on anodic coloring materials. Development of efficient, cathodic electrochromic materials is challenging due to the worse stability of electron accepting materials compared with electron donating ones. Nevertheless, designing stable [...] Read more.
Electrochromism of organic compounds is a well-known phenomenon; however, nowadays, most research is focused on anodic coloring materials. Development of efficient, cathodic electrochromic materials is challenging due to the worse stability of electron accepting materials compared with electron donating ones. Nevertheless, designing stable cathodic coloring organic materials is highly desired—among other reasons—to increase the coloration performance. Hence, four phthalimide derivatives named 1,5-PhDI, 1,4-PhDI, 2,6-PhDI and 3,3′-PhDI were synthesized and analyzed in depth. In all cases, two imide groups were connected via naphthalene (1,5-PhDI, 1,4-PhDI, 2,6-PhDI) or 3,3′-dimethylnaphtidin (3,3′-PhDI) bridge. To observe the effect of chemical structure on physicochemical properties, various positions of imide bond were considered, namely, 1,5- 1,4- and 2,6-. Additionally, a compound with the pyromellitic diimide unit capped with two 1-naphtalene substituents was obtained. All compounds were studied in terms of their thermal behavior, using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover, electrochemical (CV, DPV) and spectroelectrochemical (UV–Vis and EPR) analyses were performed to evaluate the obtained materials in terms of their application as cathodic electrochromic materials. All obtained materials undergo reversible electrochemical reduction which leads to changes in their optical properties. In the case of imide derivatives, absorption bands related to both reduced and neutral forms are located in the UV region. However, importantly, the introduction of the 3,3′-dimethylnaphtidine bridge leads to a noticeable bathochromic shift of the reduced form absorption band of 3,3′-PhDI. This indicates that optimization of the phthalimide structure allows us to obtain stable, cathodic electrochromic materials. Full article
Show Figures

Figure 1

19 pages, 4144 KiB  
Article
Chitosan Composites Containing Boron-Dipyrromethene Derivatives for Biomedical Applications
by Aleksander Smolarkiewicz-Wyczachowski, Halina Kaczmarek, Jaroslaw Piskorz, Pawel Nowak and Marta Ziegler-Borowska
Int. J. Mol. Sci. 2023, 24(2), 1770; https://doi.org/10.3390/ijms24021770 - 16 Jan 2023
Cited by 5 | Viewed by 2864
Abstract
The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl [...] Read more.
The work is devoted to preparing and characterizing the properties of photosensitive composites, based on chitosan proposed for photodynamic therapy. Chitosan films with a 5% addition of two BODIPY dyes were prepared by solution casting. These dyes are dipyrromethene boron derivatives with N-alkyl phthalimide substituent, differing in the presence of iodine atoms in positions 2 and 6 of the BODIPY core. The spectral properties of the obtained materials have been studied by infrared and UV-vis absorption spectroscopy and fluorescence, both in solutions and in a solid state. Surface properties were investigated using the contact angle measurement. The morphology of the sample has been characterized by Scanning Electron and Atomic Force Microscopy. Particular attention was paid to studying the protein absorption and kinetics of the dye release from the chitosan. Adding BODIPY to the chitosan matrix leads to a slight increase in hydrophilicity, higher structure heterogeneity, and roughness, than pure chitosan. The presence of iodine atoms in the BODIPY structure caused the bathochromic effect, but the emission quantum yield decreased in the composites. It has been found that BODIPY-doped chitosan interacts better with human serum albumin and acidic α-glycoprotein than unmodified chitosan. The release rate of dyes from films immersed in methanol depends on the iodine present in the structure. Full article
(This article belongs to the Special Issue The Chitosan Biomaterials: Advances and Challenges)
Show Figures

Figure 1

17 pages, 1791 KiB  
Article
Spectrofluorimetric and Computational Investigation of New Phthalimide Derivatives towards Human Neutrophil Elastase Inhibition and Antiproliferative Activity
by Beata Donarska, Marta Świtalska, Joanna Wietrzyk, Wojciech Płaziński and Krzysztof Z. Łączkowski
Int. J. Mol. Sci. 2023, 24(1), 110; https://doi.org/10.3390/ijms24010110 - 21 Dec 2022
Cited by 6 | Viewed by 2144
Abstract
Herein, nine phthalimide-based thiazoles (4a4i) were synthesized and investigated as new human neutrophil elastase (HNE) inhibitors using spectrofluorimetric and computational methods. The most active compounds containing 4-trifluoromethyl (4c), 4-naphthyl (4e) and 2,4,6-trichloro (4h) [...] Read more.
Herein, nine phthalimide-based thiazoles (4a4i) were synthesized and investigated as new human neutrophil elastase (HNE) inhibitors using spectrofluorimetric and computational methods. The most active compounds containing 4-trifluoromethyl (4c), 4-naphthyl (4e) and 2,4,6-trichloro (4h) substituents in the phenyl ring exhibited high HNE inhibitory activity with IC50 values of 12.98–16.62 µM. Additionally, compound 4c exhibited mixed mechanism of action. Computational investigation provided a consistent picture of the ligand-receptor pattern of inter-actions, common for the whole considered group of compounds. Moreover, compounds 4b, 4c, 4d and 4f showed high antiproliferative activity against human cancer cells lines MV4-11, and A549 with IC50 values of 8.21 to 25.57 µM. Additionally, compound 4g showed high activity against MDA-MB-231 and UMUC-3 with IC50 values of 9.66 and 19.81 µM, respectively. Spectrophotometric analysis showed that the most active compound 4c demonstrated high stability under physiological conditions. Full article
(This article belongs to the Special Issue Anticancer Drug Development and Cancer Immunotherapy)
Show Figures

Figure 1

14 pages, 2032 KiB  
Article
Tricyclic Fused Lactams by Mukaiyama Cyclisation of Phthalimides and Evaluation of their Biological Activity
by Lewis T. Ibbotson, Kirsten E. Christensen, Miroslav Genov, Alexander Pretsch, Dagmar Pretsch and Mark G. Moloney
Antibiotics 2023, 12(1), 9; https://doi.org/10.3390/antibiotics12010009 - 21 Dec 2022
Cited by 2 | Viewed by 1960
Abstract
We report that phthalimides may be cyclized using a Mukaiyama-type aldol coupling to give variously substituted fused lactam (1,2,3,9b-tetrahydro-5H-pyrrolo[2,1-a]isoindol-5-one) systems. This novel process shows a high level of regioselectivity for o-substituted phthalimides, dictated by steric and electronic factors, [...] Read more.
We report that phthalimides may be cyclized using a Mukaiyama-type aldol coupling to give variously substituted fused lactam (1,2,3,9b-tetrahydro-5H-pyrrolo[2,1-a]isoindol-5-one) systems. This novel process shows a high level of regioselectivity for o-substituted phthalimides, dictated by steric and electronic factors, but not for m-substituted phthalimides. The initial aldol adduct is prone to elimination, giving 2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-ones, and the initial cyclisation can be conducted in such a way that aldol cyclisation-elimination is achievable in a one-pot approach. The 2,3-dihydro-5H-pyrrolo[2,1-a]isoindol-5-ones possess cross conjugation and steric effects which significantly influence the reactivity of several functional groups, but conditions suitable for epoxidation, ester hydrolysis and amide formation, and reduction, which provide for ring manipulation, were identified. Many of the derived lactam systems, and especially the eliminated systems, show low solubility, which compromises biological activity, although in some cases, antibacterial and cytotoxic activity was found, and this new class of small molecule provides a useful skeleton for further elaboration and study. Full article
(This article belongs to the Special Issue Molecular Methods in Antibiotics Discovery)
Show Figures

Figure 1

15 pages, 5170 KiB  
Article
A Synergistic Effect of Phthalimide-Substituted Sulfanyl Porphyrazines and Carbon Nanotubes to Improve the Electrocatalytic Detection of Hydrogen Peroxide
by Michal Falkowski, Amanda Leda, Tomasz Rebis, Jaroslaw Piskorz, Lukasz Popenda, Mina Hassani, Dariusz T. Mlynarczyk, Michal P. Marszall and Grzegorz Milczarek
Molecules 2022, 27(14), 4409; https://doi.org/10.3390/molecules27144409 - 9 Jul 2022
Cited by 4 | Viewed by 2714
Abstract
A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV–VIS, and NMR spectroscopy). To obtain hybrid [...] Read more.
A sulfanyl porphyrazine derivative with peripheral phthalimide moieties was metallated with cobalt(II) and iron(II) metal ions. The purity of the macrocycles was confirmed by HPLC, and subsequently, compounds were characterized using various analytical methods (ES-TOF, MALDI-TOF, UV–VIS, and NMR spectroscopy). To obtain hybrid electroactive electrode materials, novel porphyrazines were combined with multiwalled carbon nanotubes. The electrocatalytic effect derived from cobalt(II) and iron(II) cations was evaluated. As a result, a significant decrease in the overpotential was observed compared with that obtained with bare glassy carbon (GC) or glassy carbon electrode/carbon nanotubes (GC/MWCNTs), which allowed for sensitive determination of hydrogen peroxide in neutral conditions (pH 7.4). The prepared sensor enables a linear response to H2O2 concentrations of 1–90 µM. A low detection limit of 0.18 μM and a high sensitivity of 640 μA mM−1 cm−2 were obtained. These results indicate that the obtained sensors could potentially be applied in biomedical and environmental fields. Full article
(This article belongs to the Special Issue Synthesis and Applications of Electrocatalytic Nanomaterials)
Show Figures

Figure 1

Back to TopTop