Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials
Abstract
:1. Introduction
2. Results
2.1. Structural and Solubility Studies
2.2. Thermal Properties
2.3. Optical Properties
2.4. Electrochemical Behavior
2.5. EPR Spectroelectrochemistry
2.6. UV–Vis Spectroelectrochemistry
2.7. Theoretical Calculation
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.2.1. Synthesis of 1,5-PhDI
3.2.2. Synthesis of 1,4-PhDI
3.2.3. Synthesis of 2,6-PhDI
3.2.4. Synthesis of 1-PMDI
3.2.5. Synthesis of 3,3′-PhDI
3.3. Characterisation Methods
3.4. Theoretical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Higuchi, M.; Kurth, D.G. Electrochemical Functions of Metallosupramolecular Nanomaterials. Chem. Rec. 2007, 7, 203–209. [Google Scholar] [CrossRef]
- Korgel, B.A. Composite for Smarter Windows. Nature 2013, 500, 278–279. [Google Scholar] [CrossRef]
- Deb, S.K. Opportunities and Challenges in Science and Technology of WO3 for Electrochromic and Related Applications. Sol. Energy Mater. Sol. Cells 2008, 92, 245–258. [Google Scholar] [CrossRef]
- Higuchi, M. Stimuli-Responsive Metallo-Supramolecular Polymer Films: Design, Synthesis and Device Fabrication. J. Mater. Chem. C 2014, 2, 9331–9341. [Google Scholar] [CrossRef]
- Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic Organic and Polymeric Materials for Display Applications. Displays 2006, 27, 2–18. [Google Scholar] [CrossRef]
- Österholm, A.M.; Eric Shen, D.; Kerszulis, J.A.; Bulloch, R.H.; Kuepfert, M.; Dyer, A.L.; Reynolds, J.R. Four Shades of Brown: Tuning of Electrochromic Polymer Blends Toward High-Contrast Eyewear. ACS Appl. Mater. Interfaces 2015, 7, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Chakraborty, C. Metallo-Macrocycle Camouflages: Multicolored Electrochromism in a Fe(II) Based Metallo-Supramolecular Macrocycle Utilizing the Redox of Metal Centers and Carbazole Containing Ligand. ACS Appl. Electron. Mater. 2019, 1, 2531–2540. [Google Scholar] [CrossRef]
- Cai, G.; Chen, J.; Xiong, J.; Lee-Sie Eh, A.; Wang, J.; Higuchi, M.; See Lee, P. Molecular Level Assembly for High-Performance Flexible Electrochromic Energy-Storage Devices. ACS Energy Lett. 2020, 5, 1159–1166. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, C. Nanostructured Metallo-Supramolecular Polymer-Based Gel-Type Electrochromic Devices with Ultrafast Switching Time and High Colouration Efficiency. J. Mater. Chem. C 2019, 7, 2871–2879. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, C. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. ACS Appl. Mater. Interfaces 2020, 12, 35181–35192. [Google Scholar] [CrossRef]
- Roy, S.; Chakraborty, C. Transmissive to Blackish-Green NIR Electrochromism in a Co(Ii)-Based Interfacial Co-Ordination Thin Film. Chem. Commun. 2021, 57, 7565–7568. [Google Scholar] [CrossRef]
- Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K.C. Viologen-Based Electrochromic Materials and Devices. J. Mater. Chem. C 2019, 7, 4622–4637. [Google Scholar] [CrossRef]
- Shah, K.W.; Wang, S.X.; Soo, D.X.Y.; Xu, J. Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers 2019, 11, 1839. [Google Scholar] [CrossRef] [PubMed]
- Tarkuc, S.; Sahmetlioglu, E.; Tanyeli, C.; Akhmedov, I.M.; Toppare, L. Electrochromic Properties of a Soluble Conducting Polymer of 1-Benzyl-2,5-Di(Thiophene-2-Yl)-1H-Pyrrole. Sens. Actuators B Chem. 2007, 121, 622–628. [Google Scholar] [CrossRef]
- Santra, D.C.; Nad, S.; Malik, S. Electrochemical Polymerization of Triphenylamine End-Capped Dendron: Electrochromic and Electrofluorochromic Switching Behaviors. J. Electroanal. Chem. 2018, 823, 203–212. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chiu, Y.T. Electrosynthesis and Electrochromic Properties of Poly(Amide-Triarylamine)s Containing Triptycene Units. RSC Adv. 2015, 5, 90941–90951. [Google Scholar] [CrossRef]
- De Leeuw, D.M.; Simenon, M.M.J.; Brown, A.R.; Einerhand, R.E.F. Stability of N-Type Doped Conducting Polymers and Consequences for Polymeric Microelectronic Devices. Synth. Met. 1997, 87, 53–59. [Google Scholar] [CrossRef]
- Li, F.; Huang, Z.J.; Zhou, Q.H.; Pan, M.Y.; Tang, Q.; Gong, C. Bin Energy-Saving and Long-Life Electrochromic Materials of Naphthalene Diimide-Cored Pyridinium Salts. J. Mater. Chem. C 2020, 8, 10031–10038. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chen, Y.Z. Electroactive and Ambipolar Electrochromic Polyimides from Arylene Diimides with Triphenylamine N-Substituents. Dye. Pigment. 2017, 144, 173–183. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Chen, Y.Z. Electrochemical Synthesis of Stable Ambipolar Electrochromic Polyimide Film from a Bis(Triphenylamine) Perylene Diimide. J. Electroanal. Chem. 2017, 799, 417–423. [Google Scholar] [CrossRef]
- AlKaabi, K.; Wade, C.R.; Dincă, M. Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs. Chem 2016, 1, 264–272. [Google Scholar] [CrossRef]
- Wu, X.; Wang, K.; Lin, J.; Yan, D.; Guo, Z.; Zhan, H. A Thin Film of Naphthalenediimide-Based Metal-Organic Framework with Electrochromic Properties. J. Colloid Interface Sci. 2021, 594, 73–79. [Google Scholar] [CrossRef]
- Łapkowski, M.; Zagórska, M. Spectroelectrochemical Study of Polyimide Films Derived from Pyromellitic Dianhydride and 3, 3′-Dimethylnaphtidine. Pol. J. Chem. 1995, 745, 742–745. [Google Scholar]
- Yang, J.; Xiao, B.; Tajima, K.; Nakano, M.; Takimiya, K.; Tang, A.; Zhou, E. Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. Macromolecules 2017, 50, 3179–3185. [Google Scholar] [CrossRef]
- Abdinejad, T.; Zamanloo, M.R.; Esrafili, M.D.; Seifzadeh, D. Constructing a Dual-Mode Photochromic and Intrinsically Electrochromic Device Based on Organic Salts Prepared by Acid-Base Neutralization of Pyromellitic Diimides Bearing a Carboxyl Group with Aliphatic Amines. J. Photochem. Photobiol. A Chem. 2020, 388, 112162. [Google Scholar] [CrossRef]
- Licchelli, M.; Orbelli Biroli, A.; Poggi, A. A Prototype for the Chemosensing of Ba2+ Based on Self-Assembling Fluorescence Enhancement. Org. Lett. 2006, 8, 915–918. [Google Scholar] [CrossRef] [PubMed]
- Alp, S.; Erten, Ş.; Karapire, C.; Köz, B.; Doroshenko, A.O.; Içli, S. Photoinduced Energy–Electron Transfer Studies with Naphthalene Diimides. J. Photochem. Photobiol. A Chem. 2000, 135, 103–110. [Google Scholar] [CrossRef]
- Payne, A.J.; Hendsbee, A.D.; McAfee, S.M.; Paul, D.K.; Karan, K.; Welch, G.C. Synthesis and Structure-Property Relationships of Phthalimide and Naphthalimide Based Organic π-Conjugated Small Molecules. Phys. Chem. Chem. Phys. 2016, 18, 14709–14719. [Google Scholar] [CrossRef]
- Çakal, D.; Ertan, S.; Cihaner, A.; Önal, A.M. Electrochemical and Optical Properties of Substituted Phthalimide Based Monomers and Electrochemical Polymerization of 3,4-Ethylenedioxythiophene-Polyhedral Oligomeric Silsesquioxane (POSS) Analogue. Dye Pigment. 2019, 161, 411–418. [Google Scholar] [CrossRef]
- Pron, A.; Reghu, R.R.; Rybakiewicz, R.; Cybulski, H.; Djurado, D.; Grazulevicius, J.V.; Zagorska, M.; Kulszewicz-Bajer, I.; Verilhac, J.-M. Triarylamine Substituted Arylene Bisimides as Solution Processable Organic Semiconductors for Field Effect Transistors. Effect of Substituent Position on Their Spectroscopic, Electrochemical, Structural, and Electrical Transport Properties. J. Phys. Chem. C 2011, 115, 15008–15017. [Google Scholar] [CrossRef]
- Erten, S.; Alp, S.; Icli, S. Photooxidation Quantum Yield Efficiencies of Naphthalene Diimides under Concentrated Sun Light in Comparisons with Perylene Diimides. J. Photochem. Photobiol. A Chem. 2005, 175, 214–220. [Google Scholar] [CrossRef]
- Thalacker, C.; Röger, C.; Würthner, F. Synthesis and Optical and Redox Properties of Core-Substituted Naphthalene Diimide Dyes. J. Org. Chem. 2006, 71, 8098–8105. [Google Scholar] [CrossRef]
- Nitschke, P.; Jarząbek, B.; Damaceanu, M.-D.; Bejan, A.-E.; Chaber, P. Spectroscopic and Electrochemical Properties of Thiophene-Phenylene Based Shiff-Bases with Alkoxy Side Groups, towards Photovoltaic Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119242. [Google Scholar] [CrossRef] [PubMed]
- Rybakiewicz, R.; Ganczarczyk, R.; Charyton, M.; Skorka, L.; Ledwon, P.; Nowakowski, R.; Zagorska, M.; Pron, A. Low Band Gap Donor-Acceptor-Donor Compounds Containing Carbazole and Naphthalene Diimide Units: Synthesis, Electropolymerization and Spectroelectrochemical Behaviour. Electrochim. Acta 2020, 358, 136922. [Google Scholar] [CrossRef]
- Pluczyk, S.; Zassowski, P.; Rybakiewicz, R.; Wielgosz, R.; Zagorska, M.; Lapkowski, M.; Pron, A. UV-Vis and EPR Spectroelectrochemical Investigations of Triarylamine Functionalized Arylene Bisimides. RSC Adv. 2015, 5, 7401–7412. [Google Scholar] [CrossRef]
- Olech, K.; Sołoducho, J.; Laba, K.; Data, P.; Lapkowski, M.; Roszak, S. The Synthesis and Characterization of -3,4-Ethylenedioxythiophene Derivatives with Electroactive Features. Electrochim. Acta 2014, 141, 349–356. [Google Scholar] [CrossRef]
- Gawrys, P.; Louarn, G.; Zagorska, M.; Pron, A. Solid State Electrochemistry and Spectroelectrochemistry of Poly(Arylene Bisimide–Alt-Oligoether)S. Electrochim. Acta 2011, 56, 3429–3435. [Google Scholar] [CrossRef]
- Pluczyk, S.; Kuznik, W.; Lapkowski, M.; Reghu, R.R.; Grazulevicius, J. V The Effect of the Linking Topology on the Electrochemical and Spectroelectrochemical Properties of Carbazolyl Substituted Perylene Bisimides. Electrochim. Acta 2014, 135, 487–494. [Google Scholar] [CrossRef]
- McCormick, T.M.; Bridges, C.R.; Carrera, E.I.; Dicarmine, P.M.; Gibson, G.L.; Hollinger, J.; Kozycz, L.M.; Seferos, D.S. Conjugated Polymers: Evaluating DFT Methods for More Accurate Orbital Energy Modeling. Macromolecules 2013, 46, 3879–3886. [Google Scholar] [CrossRef]
- Pluczyk-Malek, S.; Honisz, D.; Akkuratov, A.; Troshin, P.; Lapkowski, M. Tuning the Electrochemical and Optical Properties of Donor-Acceptor D-A2-A1-A2-D Derivatives with Central Benzothiadiazole Core by Changing the A2 Strength. Electrochim. Acta 2021, 368, 137540. [Google Scholar] [CrossRef]
- Duling, D.R. Simulation of Multiple Isotropic Spin-Trap EPR Spectra. J. Magn. Reson. Ser. B 1994, 104, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Compound | DMSO (ε = 47.00) | DMF (ε = 38.25) | NMP (ε = 33.00) | THF (ε = 7.58) |
---|---|---|---|---|
1,5-PhDI | +/− | +/+ | +/+ | −/− |
1,4-PhDI | +/− | +/+ | +/+ | −/− |
2,6-PhDI | +/− | +/+ | +/+ | −/− |
1-PMDI | +/+ | +/+ | +/+ | −/− |
3,3′-PhDI | +/+ | +/+ | +/+ | +/+ |
Compound | Tg [°C] |
---|---|
1,5-PhDI | 204 |
1,4-PhDI | 162 |
2,6-PhDI | 170 |
1-PMDI | 248 |
3,3′-PhDI | 205 |
Compound | Ered [V] | ∆E a [V] | Eredonset [V] | EA b [eV] | Ered2 [V] | ∆E2 [V] |
---|---|---|---|---|---|---|
1,5-PhDI | −1.96 | 0.17 | −1.74 | −3.06 | - | - |
1,4-PhDI | −1.90 | 0.19 | −1.70 | 3.10 | - | - |
2,6-PhDI | −1.93 * | - | −1.88 * | - | - | |
1-PMDI | −1.22 | 0.12 | −1.06 | −3.74 | −1.86 | 0.11 |
3,3′-PhDI | −1.77 | 0.13 | −1.63 | −3.17 | - | - |
Radical Anion of: | g-Factor | Hffc [G] | Linewidth [G] |
---|---|---|---|
1,5-PhDI | 2.0038 | N: 2.55; 2xH: 2.35; 2xH: 0.29 | 0.14 |
1,4-PhDI | 2.0039 | N: 2.55; 2xH: 2.34; 2xH: 0.29 | 0.12 |
2,6-PhDI | 2.0038 | N: 2.55; 2xH: 2.35; 2xH: 0.29 | 0.11 |
1-PMDI | 2.0041 | 2xN: 1.22; 2xH: 0.66 | 0.08 |
3,3′-PhDI | 2.0039 | N: 2.56; 2xH: 2.35; 2xH: 0.28 | 0.19 |
Compound | λmax [nm] | ||
---|---|---|---|
Neutral | Radical Anion | Dianion | |
1,5-PhDI | 291 | 336 | - |
1,4-PhDI | 291 | 340 | - |
2,6-PhDI | 292 | 337 | - |
1-PMDI | 294 | 717 | 552 |
3,3′-PhDI | 297 | 367 | - |
Compound | HOMO [eV] | LUMO [eV] |
---|---|---|
1,5-PhDI | −6.44 | −2.48 |
1,4-PhDI | −6.44 | −2.49 |
2,6-PhDI | −6.19 | −2.51 |
1-PMDI | −6.39 | −3.28 |
3,3′-PhDI | −6.18 | −2.48 |
Compound | HOMO | LUMO |
---|---|---|
1,5-PhDI | ||
1,4-PhDI | ||
2,6-PhDI | ||
1-PMDI | ||
3,3′-PhDI |
Compound | D.Ang (Neutral Form) | D.Ang. (Dianion) | D.Ang (Neutral Form) | D.Ang. (Dianion) |
---|---|---|---|---|
C-N-C-C | C-N-C-C | C-C-C-C | C-C-C-C | |
1,5-PhDI | 76.4 | 60.0 | - | - |
1,4-PhDI | 76.8 | 61.7 | - | - |
2,6-PhDI | 46.4 | 35.1 | - | - |
1-PMDI | 89.5 | 61.3 | - | - |
3,3′-PhDI | 77.5 | 69.9 | 80.2 | 82.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadzka, M.; Nitschke, P.; Musioł, M.; Siwy, M.; Pluczyk-Małek, S.; Honisz, D.; Łapkowski, M. Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials. Molecules 2023, 28, 1740. https://doi.org/10.3390/molecules28041740
Zawadzka M, Nitschke P, Musioł M, Siwy M, Pluczyk-Małek S, Honisz D, Łapkowski M. Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials. Molecules. 2023; 28(4):1740. https://doi.org/10.3390/molecules28041740
Chicago/Turabian StyleZawadzka, Magdalena, Paweł Nitschke, Marta Musioł, Mariola Siwy, Sandra Pluczyk-Małek, Damian Honisz, and Mieczysław Łapkowski. 2023. "Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials" Molecules 28, no. 4: 1740. https://doi.org/10.3390/molecules28041740
APA StyleZawadzka, M., Nitschke, P., Musioł, M., Siwy, M., Pluczyk-Małek, S., Honisz, D., & Łapkowski, M. (2023). Naphthalene Phthalimide Derivatives as Model Compounds for Electrochromic Materials. Molecules, 28(4), 1740. https://doi.org/10.3390/molecules28041740