Synthesis of Phthalimide Derivatives and Their Insecticidal Activity against Caribbean Fruit Fly, Anastrepha suspensa (Loew)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure for the Synthesis of Derivatives 1
2.2. Procedure for the Synthesis of Derivatives 2a–2m
2.3. Procedure for the Synthesis of Derivatives 3a–3m
2.4. Procedure for the Synthesis of Derivatives 4a–4m
2.5. In Silico Prediction of Toxicity Risk of Compounds
2.6. Toxicity of Derivatives 4a–4m against Female Adult Anastrepha Suspensa
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemistry
3.2. Evaluation of In Silico Studies
3.3. Toxicity to the Caribbean Fruit Fly
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Gohary, N.S.; Shaaban, M.I. Synthesis, antimicrobial, antiquorum-sensing, and cytotoxic activities of new series of isoindoline-1,3-dione, pyrazolo[5,1-a]isoindole, and pyridine derivatives. Arch. Pharm. Chem. Life Sci. 2015, 348, 666–680. [Google Scholar] [CrossRef]
- Rateb, H.S.; Ahmed, H.E.A.; Ahmed, S.; Ihmaid, S.; Afifi, T.H. Discovery of novel phthalimide analogs: Synthesis, antimicrobial and antitubercular screening with molecular docking studies. EXCLI J. 2016, 15, 781–796. [Google Scholar]
- Bansode, T.N.; Shelke, J.V.; Dongre, V.G. Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines. Eur. J. Med. Chem. 2009, 44, 5094–5098. [Google Scholar] [CrossRef] [PubMed]
- Durairaju, P.; Umarani, C.; Periyasami, G.; Vivekanand, P.A.; Rahaman, M. Synthesis and in vitro antimicrobial evaluation of photoactive multi—block chalcone conjugate phthalimide and 1,8-naphthalimide novolacs. Polymers 2021, 13, 1859. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.L.; Xu, L.; Li, J.J.; Liu, Y.; Chen, B.Q. Synthesis, antiproliferative, and antimicrobial properties of novel phthalimide derivatives. Med. Chem. Res. 2022, 31, 120–131. [Google Scholar] [CrossRef]
- Akgün, H.; Karamelekoğlu, İ.; Berk, B.; Kurnaz, I.; Sarıbıyık, G.; Öktem, S.; Kocagöz, T. Synthesis and anti mycobacterial activity of some phthalimide derivatives. Bioorg. Med. Chem. 2012, 20, 4149–4154. [Google Scholar] [CrossRef]
- Santos, J.L.; Yamasaki, P.R.; Chin, C.M.; Takashi, C.H.; Pavan, F.R.; Leite, C.Q.F. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem. 2009, 17, 3795–3799. [Google Scholar] [CrossRef]
- Orzeszko, A.; Kaminska, B.; Starosciak, B.J. Synthesis and antimicrobial activity of new adamantane derivatives III. IL Farm. 2002, 57, 619–624. [Google Scholar] [CrossRef]
- Panek, D.; Wieckowska, A.; Wichur, T.; Bajda, M.; Godyn, J.; Jonczyk, J.; Mika, K.; Janockova, J.; Soukup, O.; Knez, D.; et al. Design, synthesis and biological evaluation of new phthalimide and saccharin derivatives with alicyclic amines targeting cholinesterases, beta-secretase and amyloid beta aggregation. Eur. J. Med. Chem. 2017, 5, 676–695. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Q.; Yu, G.; Cao, Z.; Qiang, X.; Liu, X.; Deng, Y. Phthalimide-(N-alkylbenzylamine) cysteamide hybrids as multifunctional agents against Alzheimer’s disease: Design, synthesis, and biological evaluation. Chem. Biol. Drug Des. 2021, 98, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Pawar, N.S.; Kapadi, U.R.; Hundiwale, D.G.; Kumbhar, P.P. Applications of polymer-supported reactions in the synthesis of pesticides I: Alkylation and acylation of N-hydroxy phthalimide. J. Sci. Ind. Res. 2002, 61, 454–456. [Google Scholar]
- South, A.; Hastings, I.M. Insecticide resistance evolution with mixtures and sequences: A model-based explanation. Malar. J. 2018, 17, 80. [Google Scholar] [CrossRef] [Green Version]
- Umetsu, N.; Shirai, Y. Development of novelpesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Y.; Wangyang, W.Z.; Liu, F.; Cui, Y.L.; Duan, Y.S.; Wang, M.; Liu, S.Z.; Rui, C.H. Design, synthesis, and insecticidal activities of phthalamides containing a hydrazone substructure. J. Agric. Food Chem. 2010, 58, 6858–6863. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, R.; Li, X.; Xu, X.; Xu, Z.; Cheng, J.; Wang, Y.; Li, Y.; Shao, X.; Li, Z. Synthesis, insecticidal activities, and 3D-QASR of N-pyridylpyrazole amide derivatives containing a phthalimide as potential ryanodine receptor activators. J. Agric. Food Chem. 2022, 70, 12651–12662. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Anastassiadou, M.; Arena, M.; Auteri, D.; Brancato, A.; Bura, L.; Cabrera, L.C.; Chaideftou, E.; Chiusolo, A.; Crivellente, F.; et al. Conclusion onthe peer review of the pesticide risk assessment of the active substance phosmet. EFSA J. 2021, 19, e06237. [Google Scholar] [PubMed]
- Clarke, A.R.; Measham, P.F. Competition: A Missing component of fruit fly (Diptera: Tephritidae) risk assessment and planning. Insects 2022, 13, 1065. [Google Scholar] [CrossRef] [PubMed]
- Shelly, T.; Epsky, N.; Jang, E.B.; Reyes-Flores, J.; Vargas, R. Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Springer: Dordrecht, The Netherlands; New York, NY, USA, 2014; pp. 15–74. [Google Scholar]
- Weldon, C.W.; Boardman, L.; Marlin, D.; Terblanche, J.S. Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Front. Zool. 2016, 13, 15. [Google Scholar] [CrossRef]
- Quilici, S.; Atiama-Nurbel, T.; Brévault, T. Plant odors as fruit fly attractants. In Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer Publishing: Berlin/Heidelberg, Germany, 2014; pp. 119–144. [Google Scholar]
- Tan, K.H.; Nishida, R.; Jang, E.B.; Shelly, T.E. Pheromones, male lures and trapping of tephritid fruit flies. In Trapping and the Detection, Control, and Regulation of Tephritid Fruitflies; Shelly, T., Epsky, N., Jang, E.B., Reyes-Flores, J., Vargas, R., Eds.; Springer Publishing: Berlin/Heidelberg, Germany, 2014; pp. 15–74. [Google Scholar]
- Xu, S.; Pei, L.; Wang, C.; Zhang, Y.K.; Li, D.; Yao, H.; Wu, X.; Chen, Z.S.; Sun, Y.; Xu, J. Novel hybrids of natural oridonin-bearing nitrogen mustards as potential anticancer drug candidates. ACS Med. Chem. Lett. 2014, 5, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Tok, F.; Abas, B.İ.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents. Bioorg. Chem. 2020, 102, 104063. [Google Scholar] [CrossRef]
- Zheng, C.H.; Yang, H.; Zhang, M.; Lu, S.H.; Shi, D.; Wang, J.; Chen, X.H.; Ren, X.H.; Liu, J.; Lv, J.G.; et al. Design, synthesis, and activity evaluation of broad-spectrum small-molecule inhibitors of anti-apoptotic Bcl-2 family proteins: Characteristics of broad-spectrum protein binding and its effects on anti-tumor activity. Bioorg. Med. Chem. Lett. 2012, 22, 39–44. [Google Scholar] [CrossRef]
- Hassan, M.M.; Israelian, J.; Nawar, N.; Ganda, G.; Manaswiyoungkul, P.; Raouf, Y.S.; Armstrong, D.; Sedighi, A.; Olaoye, O.O.; Erdogan, F.; et al. Characterization of conformationally constrained benzanilide scaffolds for potent and selective HDAC8 targeting. J. Med. Chem. 2020, 63, 8634–8648. [Google Scholar] [CrossRef]
- Karakuş, S.; Rollas, S. Synthesis and antimycobacterial activity of some 2-(4-aminophenyl)-5-substituted amino-1,3,4-thiadiazole derivatives and their coupling products. Marmara Pharm. J. 2016, 20, 199–206. [Google Scholar] [CrossRef]
- Verma, R.S.; Pandey, R.K.; Kumar, P. Synthesis of Alkyl 4-<<4’-(1,2-Dihydro-5-chloro-2-oxo-3H-indol-3-ylideneamino)-benzoyl>amino>benzoates and Related Compounds. Indian J. Chem. Sect. B. 1982, 21, 775–777. [Google Scholar]
- Seelam, N.; Shrivastava, S.P. Synthesis and in-vitro activity of some new class of thiazolidinone and their arylidene derivatives. Bull. Korean Chem. Soc. 2011, 32, 3996–4000. [Google Scholar] [CrossRef]
- Sedaghat, A.; Rezaee, E.; Hosseini, O.; Tabatabai, S.A. Para-aminobenzohydrazide derivatives as fatty acid amide hydrolase inhibitors: Design, synthesis and biological evaluation. IJPR-Iran J. Pharm. Res. 2020, 19, 103–112. [Google Scholar]
- Akdağ, K.; Tok, F.; Karakuş, S.; Erdoğan, Ö.; Çevik, Ö.; Koçyiğit-Kaymakçıoğlu, B. Synthesis and biological evaluation of some hydrazide-hydrazone derivatives as anticancer agents. Acta Chim. Slov. 2022, 69, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.S.; Chauhan, S.; Prasad, C.R. Synthesis of some 3-<4-(p-carbalkoxyphenylcarbamoyl)phenylaminomethyl>benzothiazolin-2-thiones and related systems as CNS active agents. Indian J. Chem. Sect. B 1983, 22, 705–706. [Google Scholar]
- Hosny, M.A.; Zaki, Y.H.; Mokbel, W.A.; Abdelhamid, A.O. Synthesis of novel thiazole, pyranothiazole, thiazolo[4,5-b]pyridinesandthiazolo[5′,4′:5,6]pyrano[2,3-d]pyrimidine derivatives and incorporating isoindoline-1,3-dione group. BMC Chem. 2019, 13, 37. [Google Scholar] [CrossRef]
- Abbott, A.F. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT, 9.4; SAS Institute: Cary, NC, USA, 2020. [Google Scholar]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Sodeeq, B.; Nosakhare, I.; Isaiah, O. Structure-based discovery of multitarget directed anti-inflammatory p-nitrophenyl hydrazones; molecular docking, drug-likeness, in-silico pharmaco kinetics, and toxicity studies. Biol. Med. Chem. 2022, 1–49. [Google Scholar] [CrossRef]
- Tabanca, N.; Masi, M.; Epsky, N.D.; Nocera, P.; Cimmino, A.; Kendra, P.E.; Niogret, J.; Evidente, A. Laboratory evaluation of natural and synthetic aromatic compounds as potential attractants for male Mediterranean Fruit Fly, Ceratiti scapitata. Molecules 2019, 24, 2409. [Google Scholar] [CrossRef]
- Raina-Fulton, R. A Review of methods for the analysis of orphan and difficult pesticides: Glyphosate, glufosinate, quaternary ammonium and phenoxy acid herbicides, and dithio carbamate and phthalimide fungicides. J. AOAC Int. 2014, 97, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, J.; Hogendoorn, K. Non-insecticide pesticide impacts on bees: A review of methods and reported outcomes. Agric. Ecosyst. Environ. 2021, 314, 107423. [Google Scholar] [CrossRef]
Compounds | Environmental Toxicity | cLog P | |
---|---|---|---|
Bioconcentration Factors * | IGC50 ** | ||
Isoindoline-1,3-dione | 0.458 | 2.557 | 0.536 |
4-Aminobenzohydrazide | 0.495 | 2.763 | −0.753 |
N-(4-(Hydrazinecarbonyl)phenyl)benzamide | 0.469 | 3.337 | 1.339 |
Compound 4a | 0.365 | 3.488 | 2.674 |
Chemical | N * | Slop ± SE | LD50, µg/fly | χ2 | df | p |
---|---|---|---|---|---|---|
4a | 194 | 0.85 ± 0.40 | 0.7015 | 1.1235 | 13 | 0.9999 |
4c | 194 | 0.83 ± 0.38 | 1.9168 | 1.6079 | 13 | 0.9999 |
4d | 190 | 0.76 ± 0.37 | 1.3602 | 0.8145 | 13 | 0.9999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the US government employees and is in the public domain in the US. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tok, F.; Yang, X.; Tabanca, N.; Koçyiğit-Kaymakçıoğlu, B. Synthesis of Phthalimide Derivatives and Their Insecticidal Activity against Caribbean Fruit Fly, Anastrepha suspensa (Loew). Biomolecules 2023, 13, 361. https://doi.org/10.3390/biom13020361
Tok F, Yang X, Tabanca N, Koçyiğit-Kaymakçıoğlu B. Synthesis of Phthalimide Derivatives and Their Insecticidal Activity against Caribbean Fruit Fly, Anastrepha suspensa (Loew). Biomolecules. 2023; 13(2):361. https://doi.org/10.3390/biom13020361
Chicago/Turabian StyleTok, Fatih, Xiangbing Yang, Nurhayat Tabanca, and Bedia Koçyiğit-Kaymakçıoğlu. 2023. "Synthesis of Phthalimide Derivatives and Their Insecticidal Activity against Caribbean Fruit Fly, Anastrepha suspensa (Loew)" Biomolecules 13, no. 2: 361. https://doi.org/10.3390/biom13020361
APA StyleTok, F., Yang, X., Tabanca, N., & Koçyiğit-Kaymakçıoğlu, B. (2023). Synthesis of Phthalimide Derivatives and Their Insecticidal Activity against Caribbean Fruit Fly, Anastrepha suspensa (Loew). Biomolecules, 13(2), 361. https://doi.org/10.3390/biom13020361