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Abstract: Electrochromism of organic compounds is a well-known phenomenon; however, nowa-
days, most research is focused on anodic coloring materials. Development of efficient, cathodic
electrochromic materials is challenging due to the worse stability of electron accepting materials
compared with electron donating ones. Nevertheless, designing stable cathodic coloring organic
materials is highly desired—among other reasons—to increase the coloration performance. Hence,
four phthalimide derivatives named 1,5-PhDI, 1,4-PhDI, 2,6-PhDI and 3,3′-PhDI were synthesized
and analyzed in depth. In all cases, two imide groups were connected via naphthalene (1,5-PhDI,
1,4-PhDI, 2,6-PhDI) or 3,3′-dimethylnaphtidin (3,3′-PhDI) bridge. To observe the effect of chemical
structure on physicochemical properties, various positions of imide bond were considered, namely,
1,5- 1,4- and 2,6-. Additionally, a compound with the pyromellitic diimide unit capped with two
1-naphtalene substituents was obtained. All compounds were studied in terms of their thermal
behavior, using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Moreover,
electrochemical (CV, DPV) and spectroelectrochemical (UV–Vis and EPR) analyses were performed
to evaluate the obtained materials in terms of their application as cathodic electrochromic materials.
All obtained materials undergo reversible electrochemical reduction which leads to changes in their
optical properties. In the case of imide derivatives, absorption bands related to both reduced and
neutral forms are located in the UV region. However, importantly, the introduction of the 3,3′-
dimethylnaphtidine bridge leads to a noticeable bathochromic shift of the reduced form absorption
band of 3,3′-PhDI. This indicates that optimization of the phthalimide structure allows us to obtain
stable, cathodic electrochromic materials.

Keywords: electrochemistry; spectroelectrochemistry; electrochromism; phthalimides

1. Introduction

Electrochromic materials are able to change their color hue upon applied potential,
due to redox processes [1]. Such features might be applied in various devices, such as
smart windows, auto-dimming car mirrors, adaptive camouflage, wearable displays, data
storage, energy storage or e-paper [2–8]. Among various classes of organic materials
investigated for this effect, such as metal complexes [9] or coordination polymers [10,11],
conjugated polymers and small molecules seem to be particularly interesting [6,12]. They
exhibit high coloration efficiency, vivid colors at low potential range and durable and
fast switching [13]. Moreover, color tunability of organic molecules, through structural
modification, might be easily achieved, which is another important feature of this class
of compounds. Depending on the redox process, as a result of which color hue appears,
electrochromic materials may be divided into anodically colored (reversible oxidation) or
cathodically colored (reversible reduction). Most research is focused on the development
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of novel anodically colored materials, consisting of electron-donating groups such as
triarylamines, thiophene or carbazole [14–16]. Materials which have an electrochromic
effect, resulting from reversible reduction, draw much less interest, on account of the charge
trapping effect of H2O/O2—complex [17]. Development of efficient, cathodically colorable
materials would, however, be highly desired to increase the coloration performance through
reduction of energy consumed by cathodes, when utilized together with anodically coloring
material for device fabrication.

The most promising materials for cathodic coloring are arylene diimides (DI), which
are n-type semiconductors. The number of reports regarding electrochromic diimides is,
however, scarce [18–22] due to their limited solubility required for thin film formation
on the transparent electrode. This could be overcome by various strategies, such as elec-
tropolymerization which leads to deposition of the active film directly on the working
electrode surface [19,20]. Another approach relies on in situ growth of a metal–organic
framework on the substrate [21,22]. Finally, a soluble poly (amylic acid) might be deposited
on the electrode and subsequently imidized under thermal treatment [23]. Most of the
interest is focused on novel naphthalene (NDI) and perylene diimides (PDI) due to their
superior photophysical properties [24]. Pyromellitic diimides (PMDI), as well as phthalim-
ides (PhDI), have been almost completely omitted as a building block when developing
new electrochromic compounds. Such units might provide a better solubility compared to
NDI or PDI. There has already been a report presented which describes the use of PMDI-
based salts for construction of a dual-mode photochromic and intrinsically electrochromic
device [25].

In this work, we focus on phthalimides, being model compounds for polymers with
PMDI building blocks. According to our best knowledge, when it comes to electrochromic
cathodic materials, such units have virtually not been investigated. Hence, we decided to
study, in depth, the impact of chemical structure of some model PhDI and PMDI derivatives
on their properties, especially on their electrochemical reduction and the products of this
process. For these purposes, PhDI units were coupled with naphthalene moieties, due to
their advantageous properties [24]. To observe the effect of chemical structure on physico-
chemical properties, various positions of imide bond were considered, namely 1,5- 1,4- and
2,6-. Moreover, a compound with the pyromellitic diimide unit was obtained, capped with
two 1-naphtalene substituents. Finally, a compound with 3,3′-dimethylnaphtidine was
obtained, due to the promising properties of polyimide consisting of such a building unit,
as reported in [23]. All of the compounds were studied in terms of their thermal behavior,
using differential calorimetry (DSC) and thermogravimetric analysis (TGA). Absorption
measurements (UV–Vis) of their solutions, as well as electrochemical and spectroelectro-
chemical (UV–Vis and EPR) analyses, were performed to evaluate the obtained materials in
terms of their application as cathodic electrochromic materials.

2. Results

All of the studied imides were obtained by solution condensation of various anhy-
drides and amines in dimethylacetamide (DMA). The chemical structures, together with
detailed synthetic protocols, as well as 1H-NMR and FTIR characterization data, are given
in the experimental section, while the registered spectra are presented in Supplementary
Materials (see Figures S1–S5 and Figure S6 for 1H-NMR and FTIR spectra, respectively).

2.1. Structural and Solubility Studies

The imides were obtained in good yields, and of high purity (good agreement between
calculated and found elemental composition). In any of the registered NMR spectra neither
an amine nor a carboxylic proton could be found. This supports reaction occurrence
and excludes the formation of amylic acids. Proton spectra of 3,3′-PhDI and 1-PMDI are
well resolved and the number of signals together with their integrals are in a very good
agreement with the number of aromatic protons. The spectra of 1,5-PhDI, 1,4-PhDI and
2,6-PhDI are worse resolved, probably due to their worse solubility; however, the number
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of signal groups and their integrals also supports the expected chemical structure. The
FTIR spectra of all compounds revealed characteristic absorption bands assigned to either
asymmetric or symmetric C=O stretching in ranges of 1781–1776 cm−1 or 1727–1716 cm−1,
respectively. Solubility of obtained imides was investigated in several solvents (Table 1).

Table 1. Solubility tests of investigated imides.

Compound DMSO
(ε = 47.00)

DMF
(ε = 38.25)

NMP
(ε = 33.00)

THF
(ε = 7.58)

1,5-PhDI +/− +/+ +/+ −/−
1,4-PhDI +/− +/+ +/+ −/−
2,6-PhDI +/− +/+ +/+ −/−
1-PMDI +/+ +/+ +/+ −/−

3,3′-PhDI +/+ +/+ +/+ +/+
1 mg/mL, (+/+) soluble in room temperature; (+/−) soluble when heated; (−/−) partially soluble or not soluble
when heated.

All of the synthesized compounds were very well soluble in DMF and NMP. In DMSO,
imides based on naphthalene core (1,5-PhDI; 1,4-PhDI and 2,6-PhDI) are required to be
heated to dissolve, contrary to compounds synthesized from naphthalene monoamine
(1-PMDI) or methyl-substituted diaminonaphtidine (3,3′-PhDI). Moreover, the presence of
methyl substituents in 3,3′-PhDI also provides a solubility in much less polar THF.

2.2. Thermal Properties

The glass transition temperatures (Tg) were designated using differential scanning
calorimetry (DSC—Figures S7–S11) and thermogravimetric analyses (TGA—Figure S12),
respectively. Almost all (except 2,6-PhDI) DSC curves registered during the first heating
stage did not reveal endotherms related to melting, suggesting an amorphous character of
the samples. Simultaneously a characteristic inflection on the curves was observed, which
was ascribed to the glass transition. The temperatures of Tg, taken from the midpoint of the
inflection, are gathered in Table 2.

Table 2. Thermal parameters of studied imides.

Compound Tg [◦C]

1,5-PhDI 204
1,4-PhDI 162
2,6-PhDI 170
1-PMDI 248

3,3′-PhDI 205

Imide based on 2,6-diaminonaphtalene (2,6-PhDI) during the first heating stage
showed a double endotherm at 451 ◦C and 484 ◦C connected with melting, after which
decomposition of material took place (Figure S9). The glass transition temperature was
registered during the second heating stage for a sample annealed to the temperature of the
first endotherm and quenched. No mass loss was registered.

All of the studied imides showed high glass transition temperatures. The highest Tg
was observed for 1-PMDI, consisting of two naphthalene moieties (Table 2). This might
result from the most rigid structure of this imide. Slightly lower Tg was registered for
compounds based on 1,5-naphtalene (1,5-PhDI) and 3,3′-dimanonaphtidine (3,3′-PhDI).
Interestingly, a change of imide substituent’s position from 1,5- to 1,4- or 2,6- resulted in
the lowering of the glass transition temperature, which could be a result of coplanarity
deterioration along two aromatic moieties, weakening the π-π stacking.
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2.3. Optical Properties

The absorption of synthesized imides was recorded for 10−4 M solutions using DMF
as a solvent. Registered spectra (Figure 1) showed a rather narrow absorption range in near
ultraviolet, which is characteristic for core-unsubstituted naphthalene diimides [26,27].
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Figure 1. Absorption spectra of imide’s solutions in DMF. Concentration 10−4 M.

Electronic spectra of all compounds revealed a single absorption band, connected with
electron transitions between π→π * levels. The position of this band was identical (291 nm)
for solutions of imides based on 1,5-naphtalene (1,5-PhDI) and 1,4-naphtalene (1,4-PhDI).
A change of imide bonds positions to 2,6- (2,6-PhDI) resulted in a slight bathochromic shift
of the lowest energy absorption band to 292 nm. Comparing these spectra with spectra of
core substituted phthalimides, it can be noticed that N-substituted ones exhibit absorption
at lower wavelengths in the UV region [28,29]. This can be advantageous due to the fact
that it can result in electrochromic materials with colorless and colored states.

The spectra of imide 1-PMDI was characterized by a slightly pronounced vibronic
structure. The energy peak corresponding to 0–1 transition, localized at 285 nm, was of
the highest energy and was accompanied by peak of lower energy 0–0 (294 nm) and of
higher energy (0–2), visible as a deflection at 273.0 nm [30–32]. The π→π * absorption
band of 3,3′-PhDI was localized at the highest wavelengths (297 nm), suggesting enhanced
π-conjugation area. Even though this could be attributed to the presence of additional
naphthalene moiety, it is known that due to the twist of two aromatic units, a deterioration
of co-planarity might take place, reducing the effective π-conjugation area [33]. Thus, the
observed bathochromic shift is probably a result of substitution with methyl groups of a
slight electron-donating character. Moreover, an additional well-pronounced deflection is
visible on the absorption edge at 324 nm, which could be attributed to the charge transfer
band between acceptor naphthalene diimide and capping phenyl groups [34].

2.4. Electrochemical Behavior

All investigated imides underwent reversible or quasi-reversible electrochemical
reduction. Reduction of 1-PMDI proceed as a two-step process, whereas the rest of the
analyzed imides showed a one-step electrochemical reduction (Figures 2 and S13, Table 3).
The CV voltammogram of 1-PMDI (Figure 2a) corresponds to a known mechanism of
arylene diimides reduction [35–38]. In the first stage, a radical anion is generated; in the
second stage, dianion. The minimum of cathode peak associated with the first stage of
1-PMDI reduction was observed at −1.21 V, and the potential of the corresponding anode
peak was −1.10 V. In turn, for the second step, the potential of the minimum of the cathode
peak was registered at −1.86 V and the corresponding anode peak was observed at −1.75 V.
The remaining compounds exhibited one redox couple in a similar manner, such as in the
case of compounds with only one imide group, indicating the fact that the reduction of both
phthalimide units occurs concomitantly at the same potential; hence, there is no interaction
between them.
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Figure 2. Cyclic voltammograms of 1-PMDI (a) and 1,4-PhDI (b), registered in 0.1 M Bu4NPF6/DCM
electrolyte. Scan rate of 0.1 V/s.

Table 3. Electrochemical data collected for investigated compounds dissolved in 0.1 M Bu4NPF6/
DCM electrolyte.

Compound Ered [V] ∆E a [V] Eredonset [V] EA b [eV] Ered2 [V] ∆E2 [V]

1,5-PhDI −1.96 0.17 −1.74 −3.06 - -
1,4-PhDI −1.90 0.19 −1.70 3.10 - -
2,6-PhDI −1.93 * - −1.88 * - -
1-PMDI −1.22 0.12 −1.06 −3.74 −1.86 0.11

3,3′-PhDI −1.77 0.13 −1.63 −3.17 - -
a peak separation; b electron affinity: EA = −(Ered nset + 4.8) [eV]; * determined from DPV curve.

Among all investigated compounds, 1-PMDI underwent reduction at the highest value
of potential, which means that it is easiest to reduce. This indicates the fact that pyromellitic
diimide exhibits stronger electron accepting properties compared with the phthalimide
unit. Considering the reduction potentials of the investigated imides, 3,3′-PhDI is the
easiest to reduce. Potential for the reduction of investigated compounds decreases (is
shifted to more negative potentials) in order: 1-PMDI (−1.22 V) > 3,3′-PhDI (−1.77 V) >
1,4-PhDI (−1.90 V) > 2,6-PhDI (−1.93 V) > 1,5-PhDI (−1.96 V). Hence, the introduction of
the 3,3′-dimethylnaphtidine unit between the imide group leads to the noticeable increase
in the reduction potential compared with naphthalene unit, confirming the promising
properties of polyimide consisting of such a building unit.

2.5. EPR Spectroelectrochemistry

Electrochemical reduction of all investigated derivatives leads to radical anion gener-
ation, which was confirmed by EPR spectroelectrochemical measurement. In the case of
radical anion of 1-PMDI, which is the product of the first step of the 1-PMDI reduction, the
EPR spectrum consisted of eleven spectral lines (Figure 3a). Such a hyperfine structure can
be fitted assuming isotropic hyperfine interactions of the unpaired electron with the nuclei
of two nitrogen and two hydrogen atoms of pyromellitic diimide, indicating the lack of
interaction of the radical with N-substituents. The lowering of working electrode potential
to the value corresponding to the second reduction step 1-PMDI led to the decrease in
the intensity of the EPR signal. This is associated with the formation of spinless dianions.
Registered EPR spectra of radical anions of all analyzed phthalimides are similar, showing
hyperfine structure (Figures 3b and S14) which can be simulated assuming isotropic hyper-
fine interactions of the unpaired electron with the nuclei of one nitrogen and four hydrogen
atoms of phthalimide units (Table 4). Radicals are characterized by the same g-factor, which
additionally confirms that in the case of all studied phthalimides, reduction takes place
on the same structural unit. EPR measurements clearly show that independently from the
bridge between imide groups, the obtained radical anions localize only on phthalimide
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units. The simulated spectrum of 3,3′-PhDI radical anion is characterized by broader
linewidth due to the fact that it is less resolved compared with the rest of phthalimides.
This can be associated with the different rate of relaxation of this radical compared with
the rest of the radicals.
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Figure 3. Experimental (black line) and simulated (red dashed line) EPR spectra of electrochemically
generated radical anions of 1-PMDI (a) and 1,4-PhDI (b) in 0.1 M Bu4NPF6/DCM electrolyte. Fitting
parameters are listed in Table 4.

Table 4. Fitting parameters for simulation of EPR spectra of radical anions, together with g-factor
estimated from experimental spectra.

Radical Anion of: g-Factor Hffc [G] Linewidth [G]

1,5-PhDI 2.0038 N: 2.55; 2xH: 2.35; 2xH: 0.29 0.14
1,4-PhDI 2.0039 N: 2.55; 2xH: 2.34; 2xH: 0.29 0.12
2,6-PhDI 2.0038 N: 2.55; 2xH: 2.35; 2xH: 0.29 0.11
1-PMDI 2.0041 2xN: 1.22; 2xH: 0.66 0.08

3,3′-PhDI 2.0039 N: 2.56; 2xH: 2.35; 2xH: 0.28 0.19
Hfcc—hyperfine coupling constant.

2.6. UV–Vis Spectroelectrochemistry

To evaluate the potential electrochromic properties of investigated compounds, a
UV–Vis spectroelectrochemical experiment was applied (Figure 4a,b). The neutral form of
each of the tested compounds in DMF-based electrolyte was characterized by the presence
of a single absorption band (see Section 2.3 Optical properties). The experiments were
repeated using DCM-based electrolyte as well (as DMF substitute) and the UV–Vis spectra
were recorded again. The negligible impact of the solvent was observed; absorption
maxima of individual bands were observed at similar wavelengths as for DMF. For 1-
PMDI, the wavelength of absorption maximum was observed at 288 nm, for 1,5-PhDI, at
291 nm, for 2,6-PhDI, at 292 nm and for 1,4-PhDI, at 289 nm. Compounds were further
electrochemically reduced using a potential range from 0 to −2 V; during the measurement,
the potential of the working electrode was gradually lowered. In the case of 1-PMDI,
UV–Vis spectroelectrochemical results showed two-stage character of the pyromellitic
diimide derivative reduction (Figure 4a) The first step led to a rise of low intensity band
with the maximum at 717 nm. The gradual increase of this peak was observed in the
potential range from −0.9 to −1.2 V and is associated with the formation of radical anions.
Further decreasing of the working electrode potential led to bleaching of this band and the
appearance of an absorption band of higher intensity with a maximum at 552 nm, which
is a result of the dianions generation. In the literature, there have been already reported
results associated with UV–Vis spectroelectrochemical analysis of the PMDI derivative
with triphenylamine units as N-substituents [35]; however, in the case of 1-PMDI, the
electrochromic effect is more evident. What is more, in the case of the previously reported
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PMDI derivative, its reduction proceeds as a one-step process due to the fact that the
surplus electron density in the formed radical anion could not be efficiently delocalized [35].
Evidently, the change of N-substituents has led to better distribution of electron density
which results in two-step reduction of 1-PMDI. This provides the multi-electrochromic
material, as absorption bands associated with radical anion and dianion are located at
different wavelengths.
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Figure 4. UV–Vis spectra of 1-PMDI (a) and 1,4-PhDI (b) collected for decreasing working electrode
potential in 0.1 M Bu4NPF6/DMF electrolyte.

For all investigated phthalimide derivatives, at a potential of about −1.6 V, a decrease
in the intensity of the band assigned to the neutral form was noticed. Simultaneously, the
appearance of a new band was observed, the intensity of which was increasing, while the
potential value was decreasing. The maximum of absorption band related to the reduced
form was registered at 340 nm for 1,4-PhDI (Figure 4b), 337 nm for 2,6-PhDI, 336 nm in the
case of 1,5-PhD and at 340 nm for 3,3-PhDI (Figure S15 and Table 5). The presence of this
band can be attributed to the formation of the radical anions of the compounds.

Table 5. UV–Vis spectroscopic data obtained for the studied derivatives dissolved in 0.1 M Bu4NPF6/
DMF electrolyte in their neutral and reduced states.

Compound λmax [nm]
Neutral Radical Anion Dianion

1,5-PhDI 291 336 -
1,4-PhDI 291 340 -
2,6-PhDI 292 337 -
1-PMDI 294 717 552

3,3′-PhDI 297 367 -

2.7. Theoretical Calculation

To deepen the analysis and confirm our findings, the DFT and TDDFT calculations
were conducted. The theoretical HOMO and LUMO energies are given in Table 6. The
values of LUMO levels are different from the values of EA calculated based on CV (Table 3)
measurements. It is worth to note that, although DFT calculations are useful to model orbital
energies of organic electroactive materials, differences between theory and experiment
exist often. HOMO energies obtained from theoretical calculations are rather considered
consistent with the experiment and can be used to predict oxidation potentials. On the
other hand, the calculation of LUMO energies very often gives values that are less negative
compared with what is experimentally determined [39,40], such as in our case. The reason
for such discrepancy is the lack of an electron in this orbital [39]. Nevertheless, in the case of
theoretical calculation, as well as experimental results, the 1-PMDI molecule is characterized
by the lowest value of the LUMO and EA energy, which shows again that pyromellitic
diimide exhibits stronger electron accepting properties compared with the phthalimide
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unit and it is a promising building block for cathodically colored stable electrochromic
materials. The LUMO energy values of the rest of the investigated compounds are similar
(around ca. −2.50 eV), showing that this value is little dependent on the bridge between
imide groups. This is in agreement with the electrochemical results, which show that the
bridge between phthalimide units has little impact on reduction potential. This is directly
connected with the fact that for all investigated molecules, HOMO and LUMO orbitals
are separated (Table 7). There is no interaction between imide groups and N-substituent;
hence, the N-substituent did not affect the reduction potential as well as the LUMO level of
the investigated compounds. Interestingly, in the cases of 1,5-PhDI and 2,6-PhDI, LUMO
orbital localizes on both imide groups; whereas for 1,4-PhDI and 3,3′-PhDI, LUMO orbital
localized on one of them. This can be associated with slightly higher angles between
imide group and bridge in 1,4-PhDI. In the case of 3,3′-PhDI, the additional twist between
naphthalene units in the linker probably also contributes to it (Tables 8 and S1).

Table 6. Theoretical values of HOMO and LUMO levels.

Compound HOMO [eV] LUMO [eV]

1,5-PhDI −6.44 −2.48
1,4-PhDI −6.44 −2.49
2,6-PhDI −6.19 −2.51
1-PMDI −6.39 −3.28

3,3′-PhDI −6.18 −2.48

Table 7. Calculated HOMO and LUMO orbitals of investigated compounds.

Compound HOMO LUMO

1,5-PhDI
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Scheme 1. Synthetic procedure of 1,5-PhDI. 

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

1-PMDI 

  

3,3′-PhDI 

  

Table 8. Calculated angles between the bridge and imide groups in neutral and reduced form. 

Compound 

D.Ang  

(Neutral Form) 

D.Ang. 

(Dianion) 

D.Ang (Neu-

tral Form) 

D.Ang. 

(Dianion) 

C-N-C-C C-N-C-C C-C-C-C C-C-C-C 

1,5-PhDI 76.4 60.0 - - 

1,4-PhDI 76.8 61.7 - - 

2,6-PhDI 46.4 35.1 - - 

1-PMDI 89.5 61.3 - - 

3,3′-PhDI 77.5 69.9 80.2 82.9 

3. Materials and Methods 

3.1. Materials 

Commercially available 1,5-diaminonaphthalene (97%), 1-aminonaphthalene (99+%), 

2,6-diaminonaphthalene (95+%) AmBeed, 1,4-diaminonaphthalene (95+%) AmBeed, Ben-

zene-1,2,4,5-tetracarboxylic dianhydride (99%), phthalic anhydride (98+%) and 3,3′-dime-

thylnaphtidine (95+%) were used as received. Solvents, namely, N,N-dimethylformamide 

(DMF; 99.8%), N,N-dimethylacetamide (DMA; 99.8%), methanol (99.8%), dimethylsulph-

oxide (DMSO; 99.9%), N-methylpyrrolidone (NMP; 99.5%) and tetrahydrofuran (THF; 

99.9+%) were used as received. 

3.2. Synthesis 

3.2.1. Synthesis of 1,5-PhDI 

Phthalic anhydride (3 mmol, 355.36 mg) and 1,5-diaminonaphthalene (1 mmol, 

157.69 mg) and 1,5 mL of DMA were added to a 10 mL round-bottom flask (Scheme 1). 

The temperature was gradually elevated by 50 °C every 30 min until achieving the boiling 

point of the solvent (170 °C). The mixture was then refluxed for 24 h. After the reaction 

had been completed, the mixture was cooled to room temperature and precipitated in 

methanol. The precipitation was filtered, washed with cold methanol and dried in air, 

providing a brown-violet crystal solid (337.40 mg, yield 81%). 

FTIR (KBr, cm−1) υ: 3089–3048 (Ar-H stretching), 1777 (imide assym. C=O), 1713 (im-

ide symm. C=O), 727 (imide ring deformation). 
1H NMR (600 MHz, CDCl3) δ ppm 7.66–7.72 (m, 1 H) 7.75–7.80 (m, 1 H) 7.94–8.04 (m, 

2 H) 8.05–8.11 (m, 1 H). 

Anal Cald. C26H14N2O4 C: 74.64%, H: 3.37%, N: 6.70%, found: C: 75.01%; H: 3.66%; N: 

7.18%. 

 
Scheme 1. Synthetic procedure of 1,5-PhDI. 

3,3′-PhDI

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

1-PMDI 

  

3,3′-PhDI 

  

Table 8. Calculated angles between the bridge and imide groups in neutral and reduced form. 

Compound 

D.Ang  

(Neutral Form) 

D.Ang. 

(Dianion) 

D.Ang (Neu-

tral Form) 

D.Ang. 

(Dianion) 

C-N-C-C C-N-C-C C-C-C-C C-C-C-C 

1,5-PhDI 76.4 60.0 - - 

1,4-PhDI 76.8 61.7 - - 

2,6-PhDI 46.4 35.1 - - 

1-PMDI 89.5 61.3 - - 

3,3′-PhDI 77.5 69.9 80.2 82.9 

3. Materials and Methods 

3.1. Materials 

Commercially available 1,5-diaminonaphthalene (97%), 1-aminonaphthalene (99+%), 

2,6-diaminonaphthalene (95+%) AmBeed, 1,4-diaminonaphthalene (95+%) AmBeed, Ben-

zene-1,2,4,5-tetracarboxylic dianhydride (99%), phthalic anhydride (98+%) and 3,3′-dime-

thylnaphtidine (95+%) were used as received. Solvents, namely, N,N-dimethylformamide 

(DMF; 99.8%), N,N-dimethylacetamide (DMA; 99.8%), methanol (99.8%), dimethylsulph-

oxide (DMSO; 99.9%), N-methylpyrrolidone (NMP; 99.5%) and tetrahydrofuran (THF; 

99.9+%) were used as received. 

3.2. Synthesis 

3.2.1. Synthesis of 1,5-PhDI 

Phthalic anhydride (3 mmol, 355.36 mg) and 1,5-diaminonaphthalene (1 mmol, 

157.69 mg) and 1,5 mL of DMA were added to a 10 mL round-bottom flask (Scheme 1). 

The temperature was gradually elevated by 50 °C every 30 min until achieving the boiling 

point of the solvent (170 °C). The mixture was then refluxed for 24 h. After the reaction 

had been completed, the mixture was cooled to room temperature and precipitated in 

methanol. The precipitation was filtered, washed with cold methanol and dried in air, 

providing a brown-violet crystal solid (337.40 mg, yield 81%). 

FTIR (KBr, cm−1) υ: 3089–3048 (Ar-H stretching), 1777 (imide assym. C=O), 1713 (im-

ide symm. C=O), 727 (imide ring deformation). 
1H NMR (600 MHz, CDCl3) δ ppm 7.66–7.72 (m, 1 H) 7.75–7.80 (m, 1 H) 7.94–8.04 (m, 

2 H) 8.05–8.11 (m, 1 H). 

Anal Cald. C26H14N2O4 C: 74.64%, H: 3.37%, N: 6.70%, found: C: 75.01%; H: 3.66%; N: 

7.18%. 

 
Scheme 1. Synthetic procedure of 1,5-PhDI. 

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

1-PMDI 

  

3,3′-PhDI 

  

Table 8. Calculated angles between the bridge and imide groups in neutral and reduced form. 

Compound 

D.Ang  

(Neutral Form) 

D.Ang. 

(Dianion) 

D.Ang (Neu-

tral Form) 

D.Ang. 

(Dianion) 

C-N-C-C C-N-C-C C-C-C-C C-C-C-C 

1,5-PhDI 76.4 60.0 - - 

1,4-PhDI 76.8 61.7 - - 

2,6-PhDI 46.4 35.1 - - 

1-PMDI 89.5 61.3 - - 

3,3′-PhDI 77.5 69.9 80.2 82.9 

3. Materials and Methods 

3.1. Materials 

Commercially available 1,5-diaminonaphthalene (97%), 1-aminonaphthalene (99+%), 

2,6-diaminonaphthalene (95+%) AmBeed, 1,4-diaminonaphthalene (95+%) AmBeed, Ben-

zene-1,2,4,5-tetracarboxylic dianhydride (99%), phthalic anhydride (98+%) and 3,3′-dime-

thylnaphtidine (95+%) were used as received. Solvents, namely, N,N-dimethylformamide 

(DMF; 99.8%), N,N-dimethylacetamide (DMA; 99.8%), methanol (99.8%), dimethylsulph-

oxide (DMSO; 99.9%), N-methylpyrrolidone (NMP; 99.5%) and tetrahydrofuran (THF; 

99.9+%) were used as received. 

3.2. Synthesis 

3.2.1. Synthesis of 1,5-PhDI 

Phthalic anhydride (3 mmol, 355.36 mg) and 1,5-diaminonaphthalene (1 mmol, 

157.69 mg) and 1,5 mL of DMA were added to a 10 mL round-bottom flask (Scheme 1). 

The temperature was gradually elevated by 50 °C every 30 min until achieving the boiling 

point of the solvent (170 °C). The mixture was then refluxed for 24 h. After the reaction 

had been completed, the mixture was cooled to room temperature and precipitated in 

methanol. The precipitation was filtered, washed with cold methanol and dried in air, 

providing a brown-violet crystal solid (337.40 mg, yield 81%). 

FTIR (KBr, cm−1) υ: 3089–3048 (Ar-H stretching), 1777 (imide assym. C=O), 1713 (im-

ide symm. C=O), 727 (imide ring deformation). 
1H NMR (600 MHz, CDCl3) δ ppm 7.66–7.72 (m, 1 H) 7.75–7.80 (m, 1 H) 7.94–8.04 (m, 

2 H) 8.05–8.11 (m, 1 H). 

Anal Cald. C26H14N2O4 C: 74.64%, H: 3.37%, N: 6.70%, found: C: 75.01%; H: 3.66%; N: 

7.18%. 

 
Scheme 1. Synthetic procedure of 1,5-PhDI. 

Table 8. Calculated angles between the bridge and imide groups in neutral and reduced form.

Compound
D.Ang

(Neutral Form)
D.Ang.

(Dianion)
D.Ang

(Neutral Form)
D.Ang.

(Dianion)

C-N-C-C C-N-C-C C-C-C-C C-C-C-C

1,5-PhDI 76.4 60.0 - -
1,4-PhDI 76.8 61.7 - -
2,6-PhDI 46.4 35.1 - -
1-PMDI 89.5 61.3 - -

3,3′-PhDI 77.5 69.9 80.2 82.9



Molecules 2023, 28, 1740 9 of 15

3. Materials and Methods
3.1. Materials

Commercially available 1,5-diaminonaphthalene (97%), 1-aminonaphthalene (99+%), 2,6-
diaminonaphthalene (95+%) AmBeed, 1,4-diaminonaphthalene (95+%) AmBeed, Benzene-1,2,4,5-
tetracarboxylic dianhydride (99%), phthalic anhydride (98+%) and 3,3′-dimethylnaphtidine
(95+%) were used as received. Solvents, namely, N,N-dimethylformamide (DMF; 99.8%),
N,N-dimethylacetamide (DMA; 99.8%), methanol (99.8%), dimethylsulphoxide (DMSO;
99.9%), N-methylpyrrolidone (NMP; 99.5%) and tetrahydrofuran (THF; 99.9+%) were used
as received.

3.2. Synthesis
3.2.1. Synthesis of 1,5-PhDI

Phthalic anhydride (3 mmol, 355.36 mg) and 1,5-diaminonaphthalene (1 mmol, 157.69 mg)
and 1,5 mL of DMA were added to a 10 mL round-bottom flask (Scheme 1). The temperature
was gradually elevated by 50 ◦C every 30 min until achieving the boiling point of the solvent
(170 ◦C). The mixture was then refluxed for 24 h. After the reaction had been completed, the
mixture was cooled to room temperature and precipitated in methanol. The precipitation
was filtered, washed with cold methanol and dried in air, providing a brown-violet crystal
solid (337.40 mg, yield 81%).
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FTIR (KBr, cm−1) υ: 3089–3048 (Ar-H stretching), 1777 (imide assym. C=O), 1713
(imide symm. C=O), 727 (imide ring deformation).

1H NMR (600 MHz, CDCl3) δ ppm 7.66–7.72 (m, 1 H) 7.75–7.80 (m, 1 H) 7.94–8.04 (m,
2 H) 8.05–8.11 (m, 1 H).

Anal Cald. C26H14N2O4 C: 74.64%, H: 3.37%, N: 6.70%, found: C: 75.01%; H: 3.66%;
N: 7.18%.

3.2.2. Synthesis of 1,4-PhDI

Phthalic anhydride (3 mmol, 350.98 mg) was dissolved in 1 mL of DMA and heated
to 50 ◦C in a 10 mL round-bottom flask. Afterwards, 1,4-diaminonaphthalene (1 mmol,
159.59 mg) was added and the mixture temperature was rapidly increased to the boiling
point of the solvent (170 ◦C) and refluxed for 6 h (Scheme 2). After cooling to room
temperature, the mixture was precipitated in methanol. The precipitation was filtered,
washed with cold methanol and dried in air, providing a brown crystal solid.
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Scheme 2. Synthetic procedure of 1,4-PhDI.

FTIR (KBr, cm−1) υ: 3097–3067 (Ar-H stretching), 1779 (imide assym. C=O), 1726
(imide symm. C=O), 716 (imide ring deformation).

1H NMR (600 MHz, CDCl3) δ ppm:7.60–7.65 (m, 1 H) 7.85 (m, 1 H) 7.93–7.97 (m, 1 H)
8.00 (dd, J = 5.46, 3.20 Hz, 2 H) 8.08 (dd, J = 5.27, 3.01 Hz, 2 H).
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Anal Cald. C26H14N2O4 C: 74.64%, H: 3.37%, N: 6.70%, found: C: 74.52%; H: 3.30%;
N: 6.51%.

3.2.3. Synthesis of 2,6-PhDI

Phthalic anhydride (3 mmol, 346.98 mg) was dissolved in 1 mL of DMA and heated
to 50 ◦C in a 10 mL round-bottom flask. Afterwards, 1,4-diaminonaphthalene (1 mmol,
159.59 mg) was added and the mixture temperature was gradually elevated by 50 ◦C
every 30 min until achieving the boiling point of the solvent (170 ◦C) and refluxed for 24 h
(Scheme 3). After cooling to room temperature, the mixture was precipitated in methanol.
The precipitation was filtered, washed with cold methanol and dried in air, providing a
brown crystal solid.
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Scheme 3. Synthetic procedure of 2,6-PhDI.

FTIR(KBr, cm−1) υ: 3090–3045 (Ar-H stretching), 1777 (imide assym. C=O), 1716
(imide symm. C=O), 722 (imide ring deformation).

1H NMR (600 MHz, CDCl3) δ ppm: 7.66–7.72 (m, 1 H) 7.74–7.79 (m, 1 H) 7.94–8.01 (m,
2 H) 8.01–8.04 (m, 1 H) 8.04–8.10 (m, 1 H).

Anal Cald. C26H14N2O4 C: 74.64%, H: 3.37%, N: 6.70%, found: C: 74.75%; H: 3.47%;
N: 6.71%.

3.2.4. Synthesis of 1-PMDI

Benzene-1,2,4,5-tetracarboxylic dianhydride (1 mmol, 219.26 mg) was dissolved in
2.75 mL of DMA and heated to 50 ◦C in a 10 mL round-bottom flask. Afterwards, 1-
aminonaphtalene (2.5 mmol, 348.85 mg) was added and the mixture temperature was
gradually elevated by 50 ◦C every 30 min until achieving the boiling point of the solvent
(170 ◦C) and refluxed for 6 h (Scheme 4). After cooling to room temperature, the mixture
was precipitated in methanol. The precipitation was filtered, washed with cold methanol
and dried in air, providing a yellow crystal solid (438.38 mg, yield 94%).
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FTIR(KBr, cm−1) υ: 3105–3018 (Ar-H stretching), 1776 (imide assym. C=O), 1723
(imide symm. C=O), 724 (imide ring deformation).

1H NMR (600 MHz, CDCl3) δ ppm:7.57–7.62 (m, 2 H) 7.63–7.68 (m, 2 H) 7.71–7.75 (m,
2 H) 7.76–7.79 (m, 2 H) 7.89 (d, J = 8.28 Hz, 1 H) 7.94 (d, J = 8.28 Hz, 1 H) 8.12 (d, J = 8.28
Hz, 2 H) 8.18 (d, J = 7.91 Hz, 2 H) 8.53 (d, J = 3.76 Hz, 2 H).

Anal Cald. C30H16N2O4 C: 76.92%, H: 3.44%, N: 5.98%, found: C: 76.33%; H: 3.37%;
N: 5.82%.

3.2.5. Synthesis of 3,3′-PhDI

Phthalic anhydride (3 mmol, 342.64 mg) was dissolved in 3 mL of DMA and heated
to 50 ◦C in a 10 mL round-bottom flask. Afterwards, 3,3′-dimethylnaphtidine (1 mmol,
314.64 mg) was added and the mixture temperature was gradually elevated by 50 ◦C
every 30 min until achieving the boiling point of the solvent (170 ◦C) and refluxed for 6 h
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(Scheme 5). After cooling to room temperature, the mixture was precipitated in methanol.
The precipitation was filtered, washed with cold methanol and dried in air, providing a
brown crystal solid (418.32 mg, yield 73%).
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FTIR(KBr, cm−1) υ: 3068–3027 (Ar-H stretching), 2925 (C-H aliphatic stretching), 1781
(imide assym. C=O), 1723 (imide symm. C=O), 724 (imide ring deformation).

1H NMR (600 MHz, CDCl3) δ ppm: 2.37 (s, 3 H) 7.35 (d, J = 8.28 Hz, 1 H) 7.45 (t,
J = 7.72 Hz, 1 H) 7.55 (t, J = 7.72 Hz, 1 H) 7.73 (s, 1 H) 7.85 (d, J = 8.66 Hz, 1 H) 8.00–8.06 (m,
2 H) 8.09–8.16 (m, 2 H).

Anal Cald. C38H24N2O4 C: 79.71%, H: 4.22%, N: 4.89%, found: C: 79.15%; H: 4.18%;
N: 4.78%.

3.3. Characterisation Methods
1H-NMR spectra of synthesized polyazomethines have been recorded on an Avance

IIUltrashield Plus spectrometer, operating at 600 MHz, using deuterated chloroform
(99.95%) as a solvent and tetramethylsilane (TMS) as an internal reference. The FTIR
spectra have been recorded on a JASCO FTIR 6700 Fourier transform infrared spectrometer,
in a transmittance mode, in the range of 4000–400 cm−1 at a resolution of 2 cm−1 and for
64 accumulated scans. DSC measurements have been taken with a DSC Q2000 apparatus
(TA Instruments, Newcastle, DE, USA), in a range of −50–380 ◦C under the nitrogen at-
mosphere (flow rate was 50 mL/min), using aluminum sample pans. The instrument has
been calibrated with a high-purity indium. In this study, the glass transition temperature
(Tg) has been taken as a midpoint of heat capacity change for amorphous samples obtained
by quenching from the melt in liquid nitrogen. Thermogravimetric analysis (TGA) has
been performed with TGA/DSC1 Mettler Toledo thermal analyses, in a range of 25 to
600 ◦C at a heating rate of 10◦/min in a stream of nitrogen (60 mL/min). The obtained
TGA data have been analyzed with the Mettler Toledo Star System SW 9.30. The absorption
spectra of solutions have been recorded in ranges of 270–800 nm (DMF). Concentration of
all investigated solutions was 1 × 10−4 M.

Electrochemical analysis (cyclic voltammetry, CV; differential pulse voltammetry;
DPV) was performed in a three-electrode system using an electrochemical cell equipped
with the platinum working electrode, the platinum auxiliary electrode in the form of a coil
and the silver pseudo-reference electrode, using an Eco Chemie (Utrecht, the Netherlands)
Autolab M101 potentiostat. The potential of the pseudo-reference electrode was calibrated
versus the ferrocene/ferrocenium (Fc/Fc+) redox couple. An amount of 0.1 M solution of
tetrabutylammonium hexafluorophosphate (Bu4NPF6; 98+%) in dichloromethane (DCM;
HPLC grade) or N,N-dimethylformamide (DMF; HPLC grade) serves as a supporting
electrolyte. Electrochemical analysis was conducted for 1× 10−3 M solutions of investigated
compounds dissolved in the previously prepared electrolyte. The CVs and DPVs were
registered using a scan rate of 0.1 V/s. In the case of CV, the step potential was equal to
0.00244, whereas DPVs were registered using the step potential of 0.01 V and the modulation
amplitude of 0.07 V.

Spectroelectrochemical measurements were carried out using a UV-Vis Hewlett Packard
(Palo Alto, CA, USA) 8453 spectrophotometer and JEOL (Tokyo, Japan) JES-FA 200, an
X-band CW-EPR spectrometer operating at 100 kHz field modulation and an Cypress
Systems (California, USA) OMNI 90 or Eco Chemie (Utrecht, The Netherlands) AUTOLAB
PGSTAT100N potentiostat.
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The UV–Vis spectroelectrochemical cell made of a quartz cuvette was equipped with
the ITO working electrode, an auxiliary electrode made of platinum, and a silver pseudo-
reference electrode. The EPR spectroelectrochemical cylindrical cell consists of the platinum
wire as a working electrode, the platinum spiral as an auxiliary electrode and the silver wire
as a pseudo reference electrode. Microwave power and modulation width were adjusted in
each case in order to provide non-saturated and well-resolved spectra. The spectra of the
radical anions were registered during the potentiostatic reduction at potentials determined
from CV measurements. Simulation of EPR spectra lineshape was conducted with the
WinSim software [41].

Spectroelectrochemical analysis was performed for 0.5 and 1.0 mM solutions of investi-
gated compounds dissolved in supporting electrolyte such as in the case of electrochemical
measurements. All of the electrochemical and spectroelectrochemical investigations were
conducted on argon-purged solutions.

3.4. Theoretical Calculation

DFT calculations were carried out with a B3LYP hybrid functional [42–45] combined
with a def2SVP basis set [46]. Ground state and diradical dianion geometry optimalization
was followed by frequency calculations; in all cases, no imaginary frequencies were found.
All calculations in this work were conducted with a polarizable continuum model (PCM)
using dichloromethane as a solvent and were performed with Gaussian 09.E software [47]
using PLGrid structure.

4. Conclusions

Summarizing, four phthalimides derivatives consists of two imide groups connected
via naphthalene (1,5-PhDI, 1,4-PhDI, 2,6-PhDI) or 3,3′-dimethylnaphtidin (3,3′-PhDI) bridge
were synthesized and analyzed in depth. Additionally, a compound with the pyromel-
litic diimide unit capped with two 1-naphtalene substituents was obtained. All synthe-
sized materials undergo electrochemical reduction. The reduction potential is almost the
same for all compounds with naphthalene bridge. However, the introduction of 3,3′-
dimethylnaphtidine leads to the noticeable increase in the reduction potential compared
with the naphthalene unit, confirming the promising properties of polyimides with such
a building unit. The pyromellitic diimide derivative is the easiest to reduce out of all the
investigated molecules due to the fact that the diimide unit is a stronger electron-acceptor
compared with monoimide moiety. The reduction of all compounds leads to the generation
of stable radical anions which was confirmed by EPR spectroelectrochemistry. The analysis
of the hyperfine structure of obtained EPR spectra allows us to conclude that in all cases,
radical anions localize on the imide or diimide core, which is in agreement with theoretical
calculations. This also shows that there is no interaction between the imide/diimide unit
and N-substituents. To evaluate the potential electrochromic properties of investigated
compounds, a UV–Vis spectroelectrochemical experiment was performed. In all cases,
electrochemical reduction leads to reversible changes in UV–Vis spectra; however, for imide
derivatives, the absorption bands related to the reduced, as well as for neutral form, are
located in the UV region. Nevertheless, the introduction of 3,3′-dimethylnaphtidine leads
to the noticeable bathochromic shift of the absorption band associated with radical anion
generation, leaving the absorption of the neutral form in the UV region. This indicates
that even though the bridge between the imide groups has little impact on the reduction
potential and optical properties of neutral forms, it is quite important when it comes to the
absorption features of reduced forms. This is important due to the fact that the change of
the bridge between imide groups can result in the obtaining of cathodic electrochromic
materials possessing colorless and colored states, which indicates that the optimization the
N-substituted phthalimide structure allows us to obtain stable, cathodic electrochromic
materials. Similarly, in the case of the pyromellitic diimide unit, which has been rather
overlooked as a building block for electrochromic materials, the obtained results clearly
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showed that the proper choice of N-substituents can improve the electrochromic response
of pyromellitic diimide derivatives.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28041740/s1, Figures S1–S5: 1H-NMR spectra of investi-
gated compounds; Figure S6: FTIR spectra of investigated compounds; Figures S7–S11: DSC curves
registered for investigated compounds during first heating stage; Figure S12: TGA curves regis-
tered for investigated compounds; Figure S13: Differential pulse voltammogram of 2,6-PhDI and
cyclic voltammograms of 1,5 PhDI and 3,3′-PhDI registered in 0.1 M Bu4NPF6/DCM electrolyte;
scan rate of 0.1 V/s; Figure S14: Experimental (black line) and simulated (red dashed line) EPR
spectra of electrochemically generated radical anions of 2,6-PhDI, 1,5-PhDI and 3,3′-PhDI in 0.1 M
Bu4NPF6/DCM electrolyte; fitting parameters are listed in Table 4; Figure S15: UV–Vis spectra
of 2,6-PhDI, 1,5-PhDI and 3.3′-PhDI collected for decreasing working electrode potential in 0.1 M
Bu4NPF6/DMF electrolyte; Table S1: Calculated angles between the bridge and imide groups in
neutral and reduced form.
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