Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (487)

Search Parameters:
Keywords = photovoltaic greenhouse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 6551 KiB  
Article
Optimization Study of the Electrical Microgrid for a Hybrid PV–Wind–Diesel–Storage System in an Island Environment
by Fahad Maoulida, Kassim Mohamed Aboudou, Rabah Djedjig and Mohammed El Ganaoui
Solar 2025, 5(3), 39; https://doi.org/10.3390/solar5030039 - 4 Aug 2025
Viewed by 311
Abstract
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity [...] Read more.
The Union of the Comoros, located in the Indian Ocean, faces persistent energy challenges due to its geographic isolation, heavy dependence on imported fossil fuels, and underdeveloped electricity infrastructure. This study investigates the techno-economic optimization of a hybrid microgrid designed to supply electricity to a rural village in Grande Comore. The proposed system integrates photovoltaic (PV) panels, wind turbines, a diesel generator, and battery storage. Detailed modeling and simulation were conducted using HOMER Energy, accompanied by a sensitivity analysis on solar irradiance, wind speed, and diesel price. The results indicate that the optimal configuration consists solely of PV and battery storage, meeting 100% of the annual electricity demand with a competitive levelized cost of energy (LCOE) of 0.563 USD/kWh and zero greenhouse gas emissions. Solar PV contributes over 99% of the total energy production, while wind and diesel components remain unused under optimal conditions. Furthermore, the system generates a substantial energy surplus of 63.7%, which could be leveraged for community applications such as water pumping, public lighting, or future system expansion. This study highlights the technical viability, economic competitiveness, and environmental sustainability of 100% solar microgrids for non-interconnected island territories. The approach provides a practical and replicable decision-support framework for decentralized energy planning in remote and vulnerable regions. Full article
Show Figures

Figure 1

22 pages, 3678 KiB  
Article
Technical and Economic Analysis of a Newly Designed PV System Powering a University Building
by Miroslaw Zukowski and Robert Adam Sobolewski
Energies 2025, 18(14), 3742; https://doi.org/10.3390/en18143742 - 15 Jul 2025
Viewed by 293
Abstract
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus [...] Read more.
The use of renewable energy sources on university campuses is crucial for sustainable development, environmental protection by reducing greenhouse gas emissions, improving energy security, and public education. This study addresses technical and economic aspects of the newly designed photovoltaic system on the campus of the Bialystok University of Technology. The first part of the article presents the results of 9 years of research on an experimental photovoltaic system that is part of a hybrid wind and PV small system. The article proposes five variants of the arrangement of photovoltaic panels on the pergola. A new method was used to determine the energy efficiency of individual options selected for analysis. This method combines energy simulations using DesignBuilder software and regression analysis. The basic economic indicators NPV and IRR were applied to select the most appropriate arrangement of PV panels. In the recommended solution, the panels are arranged in three rows, oriented vertically, and tilted at 37°. The photovoltaic system, consisting of 438 modules, has a peak power of 210 kWp and is able to produce 166,392 kWh of electricity annually. The NPV is 679,506 EUR, and the IRR is over 38% within 30 years of operation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 455
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

34 pages, 5374 KiB  
Review
Analysis of Infrastructure Requirements for Sustainable Transportation Technologies
by Richard A. Dunlap
Energies 2025, 18(13), 3556; https://doi.org/10.3390/en18133556 - 5 Jul 2025
Viewed by 759
Abstract
At present, transportation energy comes primarily from fossil fuels. In order to mitigate the effects of greenhouse gas emissions, it is necessary to transition to low-carbon transportation technologies. These technologies can include battery electric vehicles, fuel cell vehicles and biofuel vehicles. This transition [...] Read more.
At present, transportation energy comes primarily from fossil fuels. In order to mitigate the effects of greenhouse gas emissions, it is necessary to transition to low-carbon transportation technologies. These technologies can include battery electric vehicles, fuel cell vehicles and biofuel vehicles. This transition includes not only the development and production of suitable vehicles, but also the development of appropriate infrastructure. For example, in the case of battery electric vehicles, this infrastructure would include additional grid capacity for battery charging. For fuel cell vehicles, infrastructure could include facilities for the production of suitable electrofuels, which, again, would require additional grid capacity. In the present paper, we look at some specific examples of infrastructure requirements for battery electric vehicles and vehicles using hydrogen and other electrofuels in either internal combustion engines or fuel cells. Analysis includes the necessary additional grid capacity, energy storage requirements and land area associated with renewable energy generation by solar photovoltaics and wind. The present analysis shows that the best-case scenario corresponds to the use of battery electric vehicles powered by electricity from solar photovoltaics. This situation corresponds to a 47% increase in grid electricity generation and the utilization of 1.7% of current crop land. Full article
(This article belongs to the Special Issue The Future of Renewable Energy: 2nd Edition)
Show Figures

Figure 1

16 pages, 912 KiB  
Article
Environmental Impact Assessment of Heat Storage System in Rock-Bed Accumulator
by Mateusz Malinowski, Stanisław Bodziacki, Stanisław Famielec, Damian Huptyś, Sławomir Kurpaska, Hubert Latała and Zuzanna Basak
Energies 2025, 18(13), 3360; https://doi.org/10.3390/en18133360 - 26 Jun 2025
Viewed by 243
Abstract
The use of a rock-bed accumulator for a short-term heat storage and air exchange in a building facility is an economical and energy-efficient technological solution to balance and optimize the energy supplied to the facility. Existing scientific studies have not addressed, as yet, [...] Read more.
The use of a rock-bed accumulator for a short-term heat storage and air exchange in a building facility is an economical and energy-efficient technological solution to balance and optimize the energy supplied to the facility. Existing scientific studies have not addressed, as yet, the environmental impacts of using a rock bed for heat storage. The purpose of the research is the environmental life cycle assessment (LCA) of a heat storage system in a rock-bed accumulator supported by a photovoltaic installation. The boundaries of the analyzed system include manufacturing the components of the storage device, land preparation for the construction of the accumulator, the entire construction process, including transportation of materials, and its operation in cooperation with a horticultural facility (foil tunnel) during one growing season, as well as the photovoltaic installation. The functional unit in the analysis is 1 square meter of rock-bed accumulator surface area. SimaPro 8.1 software and Ecoinvent database were used to perform the LCA, applying the ReCiPe model to analyze environmental impact. The analysis showed the largest negative environmental impact occurs during raw materials extraction and component manufacturing (32.38 Pt). The heat stored during one season (April to October) at a greenhouse facility reduces this negative impact by approx. 7%, mainly due to the reduction in the use of fossil fuels to heat the facility. A 3 °C increase in average air temperature results in an average reduction of 0.7% per year in the negative environmental impact of the rock-bed thermal energy storage system. Full article
Show Figures

Figure 1

25 pages, 1588 KiB  
Article
Reducing the Environmental Footprint of Urban Housing in Sub-Saharan Africa: A Case Study of Cameroon
by Modeste Kameni Nematchoua and Mbani Menguissa Andre Marie
Buildings 2025, 15(12), 2141; https://doi.org/10.3390/buildings15122141 - 19 Jun 2025
Viewed by 413
Abstract
This study presents a comprehensive Life Cycle Assessment (LCA) of the NENGOUE residence, a multi-occupancy building located in Yaoundé, Cameroon, over an 80-year lifespan. The analysis encompasses four life cycle phases—construction, use, renovation, and deconstruction—and evaluates twelve environmental impact categories. The results reveal [...] Read more.
This study presents a comprehensive Life Cycle Assessment (LCA) of the NENGOUE residence, a multi-occupancy building located in Yaoundé, Cameroon, over an 80-year lifespan. The analysis encompasses four life cycle phases—construction, use, renovation, and deconstruction—and evaluates twelve environmental impact categories. The results reveal that the use phase contributes overwhelmingly to environmental burdens, accounting for over 96% of total impacts. To mitigate this dominance, two alternative scenarios were assessed: a sustainable transport model and the integration of a photovoltaic system. In the first scenario, environmentally friendly commuting strategies, such as increased walking, cycling, and public transport, led to a 17.10% reduction in greenhouse gas (GHG) emissions. In the second, rooftop photovoltaics offset 69.29% of the building’s electricity needs, resulting in a 26.72% GHG reduction. A third, combined scenario demonstrated the highest environmental gains, achieving a 42.97% reduction in GHG emissions, alongside substantial improvements across other impact categories, including acidification (−38.4%), cumulative energy demand (−28.3%), and photochemical ozone formation (−40.18%). In addition to the environmental benefits, the study highlights the importance of considering social acceptance, behavioral change, and economic feasibility for real-world implementation. The willingness of residents to adopt sustainable mobility practices, cultural preferences, safety concerns, and the initial cost barriers associated with photovoltaic technology are identified as critical factors. These findings underscore the need for integrated strategies that combine technological innovation with inclusive urban planning and stakeholder engagement. The proposed approach demonstrates that aligning environmental measures with local socio-economic realities can significantly enhance the sustainability of residential buildings, contributing meaningfully to climate change mitigation in Sub-Saharan African cities. Full article
Show Figures

Figure 1

19 pages, 4046 KiB  
Article
Combining Hydrodynamic Modelling and Solar Potential Assessment to Evaluate the Effects of FPV Systems on Mihăilești Reservoir, Romania
by Gabriela Elena Dumitran, Elena Catalina Preda, Liana Ioana Vuta, Bogdan Popa and Raluca Elena Ispas
Hydrology 2025, 12(6), 157; https://doi.org/10.3390/hydrology12060157 - 19 Jun 2025
Viewed by 896
Abstract
Floating photovoltaic (FPV) systems are a new green technology emerging lately, having the indisputable advantage of not covering agricultural land but instead the surface of lakes or reservoirs. Being a new technology, even though the number of studies is significant, reliable results remain [...] Read more.
Floating photovoltaic (FPV) systems are a new green technology emerging lately, having the indisputable advantage of not covering agricultural land but instead the surface of lakes or reservoirs. Being a new technology, even though the number of studies is significant, reliable results remain limited. This paper presents the possible influence of an FPV farm installed on the surface of a reservoir in Romania in four scenarios of the surface being covered with photovoltaic panels. The changes in the water mass under the FPV panels were determined using mathematical modelling as a tool. For this purpose, a water quality model was implemented for Mihăilești Reservoir, Romania, and the variations in the temperature, the phytoplankton biomass, and the total phosphorus and nitrogen were computed. Also, by installing FPV panels, it was estimated that a volume of water of between 1.75 and 7.43 million m3/year can be saved, and the greenhouse gas emission reduction associated with the proposed solutions will vary between 15,415 and 66,066 tCO2e/year; these results are in agreement with those reported in other scientifical studies. The overall conclusion is that the effect of an FPV farm on the reservoir’s surface is beneficial for the water quality in the reservoir. Full article
(This article belongs to the Special Issue Hydrodynamics and Water Quality of Rivers and Lakes)
Show Figures

Figure 1

35 pages, 7539 KiB  
Article
Tomato Yield Under Different Shading Levels in an Agrivoltaic Greenhouse in Southern Spain
by Anna Kujawa, Julian Kornas, Natalie Hanrieder, Sergio González Rodríguez, Lyubomir Hristov, Álvaro Fernández Solas, Stefan Wilbert, Manuel Jesus Blanco, Leontina Berzosa Álvarez, Ana Martínez Gallardo, Adoración Amate González, Marina Casas Fernandez, Francisco Javier Palmero Luque, Manuel López Godoy, María del Carmen Alonso-García, José Antonio Carballo, Luis Fernando Zarzalejo Tirado, Cristina Cornaro and Robert Pitz-Paal
AgriEngineering 2025, 7(6), 178; https://doi.org/10.3390/agriengineering7060178 - 6 Jun 2025
Cited by 1 | Viewed by 2324
Abstract
Agrivoltaic greenhouses in southern Spain offer a sustainable way to manage excessive irradiance levels by generating renewable energy. This study presents a shading experiment on tomato cultivation in a raspa-y-amagado greenhouse in Almeria, southern Spain, during the 2023–2024 growing season. Photovoltaic modules were [...] Read more.
Agrivoltaic greenhouses in southern Spain offer a sustainable way to manage excessive irradiance levels by generating renewable energy. This study presents a shading experiment on tomato cultivation in a raspa-y-amagado greenhouse in Almeria, southern Spain, during the 2023–2024 growing season. Photovoltaic modules were mimicked by opaque plastic sheets that were arranged in a checkerboard pattern on the roof of the greenhouse. Two shading zones (30% and 50% roof cover ratio) were compared against an unshaded control zone. Microclimate, plant physiology, yield and quality were monitored during the study. The results show that shading influenced the microclimate, which directly impacted crop yield. The 30% and 50% shading zones resulted in 15% and 26% crop yield reductions, respectively. A preliminary, theoretical analysis of potential revenues of the photovoltaic yield showed that reductions in crop yield can be overcompensated by the energy generated by the PV system. For the summer crop cycle, a higher PV production and lower crop yield reductions can be expected. The economic advantage demonstrates the potential of agrivoltaic greenhouses in southern Spain. Full article
Show Figures

Figure 1

28 pages, 3215 KiB  
Article
Optimization of Solar Generation and Battery Storage for Electric Vehicle Charging with Demand-Side Management Strategies
by César Berna-Escriche, Lucas Álvarez-Piñeiro and David Blanco
World Electr. Veh. J. 2025, 16(6), 312; https://doi.org/10.3390/wevj16060312 - 3 Jun 2025
Viewed by 860
Abstract
The integration of Electric Vehicles (EVs) with solar power generation is important for decarbonizing the economy. While electrifying transportation reduces Greenhouse Gas (GHG) emissions, its success depends on ensuring that EVs are charged with clean energy, requiring significant increases in photovoltaic capacity and [...] Read more.
The integration of Electric Vehicles (EVs) with solar power generation is important for decarbonizing the economy. While electrifying transportation reduces Greenhouse Gas (GHG) emissions, its success depends on ensuring that EVs are charged with clean energy, requiring significant increases in photovoltaic capacity and robust Demand-Side Management (DSM) solutions. EV charging patterns, such as home, workplace, and public charging, need adapted strategies to match solar generation. This study analyzes a system designed to meet a unitary hourly average energy demand (8760 MWh annually) using an optimization framework that balances PV capacity and battery storage to ensure reliable energy supply. Historical solar data from 22 years is used to analyze seasonal and interannual fluctuations. The results show that solar PV alone can cover around 30% of the demand without DSM, rising to nearly 50% with aggressive DSM measures, using PV capacities of 1.0–2.0 MW. The optimization reveals that incorporating battery storage can achieve near 100% coverage with PV power of 8.0–9.0 MW. Moreover, DSM reduces required storage from 18 to about 10 MWh. These findings highlight the importance of integrating optimization-based energy management strategies to enhance system efficiency and cost-effectiveness, offering a pathway toward a more sustainable and resilient EV charging infrastructure. Full article
Show Figures

Figure 1

17 pages, 5647 KiB  
Article
Solar Photovoltaic Diagnostic System with Logic Verification and Integrated Circuit Design for Fabrication
by Abhitej Divi and Shuza Binzaid
Solar 2025, 5(2), 24; https://doi.org/10.3390/solar5020024 - 30 May 2025
Cited by 1 | Viewed by 1091
Abstract
Solar photovoltaic (PV) panels are the best solution to reduce greenhouse gas emissions by fossil fuel combustion, with global capability now exceeding 714 GW due to rapid technological advances in solar panels (SPs). However, SPs’ efficiency and lifespan remain limited due to the [...] Read more.
Solar photovoltaic (PV) panels are the best solution to reduce greenhouse gas emissions by fossil fuel combustion, with global capability now exceeding 714 GW due to rapid technological advances in solar panels (SPs). However, SPs’ efficiency and lifespan remain limited due to the absence of advanced fault-detection systems, and they are prone to short circuits (SC), open circuits (OC), and power degradation. Therefore, this large-scale production requires reliable, real-time fault diagnosis to maintain panel performance. However, traditional diagnostic methods implemented using MPPT, neural networks, or microcontroller-based systems often rely on complex computational algorithms and are not cost-effective. So, this paper proposes a diagnostic system composed of six functional blocks to address this issue. The proposed system was initially verified using an Intel DE-10 Lite FPGA board. Once its functionality was confirmed, an ASIC design was proposed for mass production, offering a significantly lower implementation cost and reduced hardware complexity than prior methods. Different circuit designs were developed for each of the six blocks. All designs were created using Cadence software and TSMC 180 nm technology files. The basic components used in these designs include PMOS transistors with 300 nm channel length and 2 µm width, NMOS transistors with 350 nm channel length and 2 µm width, as well as resistors and capacitors. Differential amplifiers with a gain of 40 dB were used for voltage and current sensing from the SP. The chip activation signal generator circuit was designed with an adjustable frequency and generated 120 MHz and 100 MHz signals in this work. The decision-making block, Logic Driver Circuit, was innovatively implemented using a reduced number of transistors. A custom memory block with a reset switch was also implemented to store the fault value detected at the SP. Finally, the proposed ASIC was implemented for fabrication, which is highly cost-effective in mass production and does not require complex computational stages. Full article
Show Figures

Figure 1

29 pages, 3271 KiB  
Article
Offshore Platform Decarbonization Methodology Based on Renewable Energies and Offshore Green Hydrogen: A Techno-Economic Assessment of PLOCAN Case Study
by Alejandro Romero-Filgueira, Maria José Pérez-Molina, José Antonio Carta and Pedro Cabrera
J. Mar. Sci. Eng. 2025, 13(6), 1083; https://doi.org/10.3390/jmse13061083 - 29 May 2025
Viewed by 515
Abstract
The decarbonization of offshore infrastructures is relevant to advancing global climate goals. This study presents a renewable-based energy system tailored for the Oceanic Platform of the Canary Islands (PLOCAN), designed to achieve full energy autonomy and eliminate greenhouse gas emissions. A hybrid configuration [...] Read more.
The decarbonization of offshore infrastructures is relevant to advancing global climate goals. This study presents a renewable-based energy system tailored for the Oceanic Platform of the Canary Islands (PLOCAN), designed to achieve full energy autonomy and eliminate greenhouse gas emissions. A hybrid configuration integrating photovoltaic panels, vertical-axis wind turbines, lithium-ion batteries, a proton exchange membrane (PEM) electrolyzer, and a PEM fuel cell was developed and evaluated through detailed resource assessment, system simulation, and techno-economic analysis under real offshore constraints. The results confirm that complete decarbonization is technically feasible, with a net present cost approximately 15% lower than the current diesel-based system and a total suppression of pollutant emissions. Although the transition entails a higher initial investment, the long-term economic and environmental gains are substantial. Offshore green hydrogen emerges as a key vector for achieving energy resilience and sustainability in isolated marine infrastructures, offering a replicable pathway towards fully decarbonized ocean platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 745 KiB  
Review
Regenerative Agrivoltaics: Integrating Photovoltaics and Regenerative Agriculture for Sustainable Food and Energy Systems
by Uzair Jamil and Joshua M. Pearce
Sustainability 2025, 17(11), 4799; https://doi.org/10.3390/su17114799 - 23 May 2025
Cited by 1 | Viewed by 1070
Abstract
Regenerative agriculture has emerged as an innovative approach to food production, offering the potential to achieve reduced or even positive environmental and social outcomes compared to the soil degradation and greenhouse gas emissions of conventional agriculture. Simultaneously, a sophisticated dual-use system combining solar [...] Read more.
Regenerative agriculture has emerged as an innovative approach to food production, offering the potential to achieve reduced or even positive environmental and social outcomes compared to the soil degradation and greenhouse gas emissions of conventional agriculture. Simultaneously, a sophisticated dual-use system combining solar energy generation from photovoltaics with agricultural production, called agrivoltaics, is rapidly expanding. Combining these approaches into regenerative agrivoltaics offers a promising solution to the challenges regarding food in a rapidly warming world. This review theoretically examines the compatibility and mutual benefits of combining agrivoltaics and regenerative agriculture while also identifying the challenges, opportunities, and pathways for implementing this system. A foundation for advancing regenerative agrivoltaics is made by identifying areas for research, which include the following: (1) carbon sequestration, (2) soil health and fertility, (3) soil moisture, (4) soil microbial activity, (5) soil nutrients, (6) crop performance, (7) water-use efficiency, and (8) economics. By addressing the intersection of agriculture, renewable energy, and sustainability, regenerative agrivoltaics emphasizes the transformative potential of integrated systems in reshaping land use and resource management. This evaluation underscores the importance of policy and industry collaboration in facilitating the adoption of regenerative agrivoltaics, advocating for tailored support mechanisms to enable widespread implementation of low-cost, zero-carbon, resilient food systems. Full article
(This article belongs to the Special Issue Achieving Sustainable Agriculture Practices and Crop Production)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
An Operational Optimization Model for Micro Energy Grids in Photovoltaic-Storage Agricultural Greenhouses Based on Operation Mode Selection
by Peng Li, Mengen Zhao, Hongkai Zhang, Outing Zhang, Naixun Li, Xianyu Yue and Zhongfu Tan
Processes 2025, 13(6), 1622; https://doi.org/10.3390/pr13061622 - 22 May 2025
Viewed by 425
Abstract
Addressing the urgent need for sustainable energy transitions in rural development while achieving the dual carbon goals, this study focuses on resolving critical challenges in agricultural photovoltaic (PV) applications, including land-use conflicts, compound energy demands (electricity, heating, cooling), and financial constraints among farmers. [...] Read more.
Addressing the urgent need for sustainable energy transitions in rural development while achieving the dual carbon goals, this study focuses on resolving critical challenges in agricultural photovoltaic (PV) applications, including land-use conflicts, compound energy demands (electricity, heating, cooling), and financial constraints among farmers. To tackle these issues, a dual-mode cost–benefit analysis framework was developed, integrating two distinct investment models: self-invested construction (SIC), where farmers independently finance and manage the system, and energy performance contracting (EPC), where third-party investors fund infrastructure through shared energy-saving or revenue agreements. Then, an integrated photovoltaic-storage agricultural greenhouse (PSAG) microgrid optimization model is established, synergizing renewable energy generation, battery storage, and demand-side management while incorporating operational mode selection. The proposed model is validated through a real-world case study of a village agricultural greenhouse in Gannan, China, characterized by typical rural energy profiles and climatic conditions. Simulation results demonstrate that the optimal system configuration requires 27.91 kWh energy storage capacity and 18.67 kW peak output, with annualized post-depreciation costs of 81,083.69 yuan (SIC) and 74,216.22 yuan (EPC). The key findings reveal that energy storage integration reduces operational costs by 8.5% compared to non-storage scenarios, with the EPC model achieving 9.3% greater cost-effectiveness than SIC through shared-investment mechanisms. The findings suggest that incorporating an energy storage system reduces costs for farmers, with the EPC model offering greater cost savings. Full article
Show Figures

Figure 1

15 pages, 2676 KiB  
Article
Integration of a Double-Concentrated Solar Cooking System Operable from Inside a Home for Energy Sustainability
by Raul Asher García Uribe, Sergio Rodríguez Miranda, Lourdes Vital López, Marco Antonio Zamora Antuñano and Raúl García García
Energies 2025, 18(11), 2673; https://doi.org/10.3390/en18112673 - 22 May 2025
Viewed by 458
Abstract
Cooking food is a factor that contributes to global energy consumption and greenhouse gas emissions. This research proposes the design, simulation using thermal resistances with MATLAB Simulink, and experimental evaluation of an automated double-concentrated solar cooking system operable from inside a home. Water [...] Read more.
Cooking food is a factor that contributes to global energy consumption and greenhouse gas emissions. This research proposes the design, simulation using thermal resistances with MATLAB Simulink, and experimental evaluation of an automated double-concentrated solar cooking system operable from inside a home. Water was used as a cooking load. Each test for 25 min was entered into a system integrated by a programmable elevator to transport the food to the roof, a configurable temperature display, a photovoltaic power source, and double solar collection (direct through a modified box oven and reflected by a parabolic dish collector). When both solar components operated simultaneously, the system reached a temperature of 79 °C, representing a 57.34 °C increase. On average, the solar concentrator provided 78.02% more energy than the oven alone. This approach is expected to reduce cooking time and contribute to sustainable home design aimed at mitigating greenhouse gas emissions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 1717 KiB  
Article
A Life-Cycle Carbon Reduction Optimization Framework for Production Activity Systems: A Case Study on a University Campus
by Xiangze Wang, Jingqi Deng, Tingting Hu, Dungang Gu, Rui Liu, Guanghui Li, Nan Zhang and Jiaqi Lu
Systems 2025, 13(5), 395; https://doi.org/10.3390/systems13050395 - 20 May 2025
Viewed by 572
Abstract
Decarbonizing production activities is a critical task in the transition towards carbon neutrality. Traditional carbon footprint accounting tools, such as life-cycle assessment (LCA) and the Greenhouse Gas Protocol, primarily quantify direct and indirect emissions but offer limited guidance on actionable reduction strategies. To [...] Read more.
Decarbonizing production activities is a critical task in the transition towards carbon neutrality. Traditional carbon footprint accounting tools, such as life-cycle assessment (LCA) and the Greenhouse Gas Protocol, primarily quantify direct and indirect emissions but offer limited guidance on actionable reduction strategies. To address this gap, this study proposes a comprehensive life-cycle carbon footprint optimization framework that integrates LCA with a mixed-integer linear programming (MILP) model. The framework, while applicable to various production contexts, is validated using a university campus as a case study. In 2023, the evaluated university’s net carbon emissions totaled approximately 24,175.07 t CO2-eq. Based on gross emissions (28,306.43 t CO2-eq) before offsetting, electricity accounted for 66.09%, buildings for 15.55%, fossil fuels for 8.67%, and waste treatment for 8.46%. Seasonal analysis revealed that June and December exhibited the highest energy consumption, with emissions exceeding the monthly average by 19.4% and 48.6%, respectively, due to energy-intensive air conditioning demand. Teaching activities emerged as a primary contributor, with baseline emissions estimated at 5485.24 t CO2-eq. Optimization strategies targeting course scheduling yielded substantial reductions: photovoltaic-based scheduling reduced electricity emissions by 7.00%, seasonal load shifting achieved a 26.92% reduction, and combining both strategies resulted in the highest reduction, at 45.95%. These results demonstrate that aligning academic schedules with photovoltaic generation and seasonal energy demand can significantly enhance emission reduction outcomes. The proposed framework provides a scalable and transferable approach for integrating time-based and capacity-based carbon optimization strategies across broader operational systems beyond the education sector. Full article
Show Figures

Figure 1

Back to TopTop